文档库 最新最全的文档下载
当前位置:文档库 › 故障分析单相接地短路对称分量计算

故障分析单相接地短路对称分量计算

故障分析单相接地短路对称分量计算
故障分析单相接地短路对称分量计算

某系统接线图如下所示,电源的次暂态电动势及各元件的序电抗

均已知。当K 点发生C 相接地短路时,求短路起始瞬间故障点处的个序电气量及各向量,并画出故障点处的电压电流相量图。

T1

115KV

T2

10.5KV

L

E

M

"E

N

"K

1

10.5kv

各元件的参数如下:

发电机 G1 62.5MVA 10.5KV x 1%=12.5 x 2%=16 E M =11KV G2 31.25MVA 10.5KV x 1%=12.5 x 2%=16 E M =10.5KV 变压器 T1 60MVA 10.5/121KV U K %=10.5 T2 31.5MVA 10.5/121KV U K %=10.5 线 路 x 1= x 2 =0.4Ω/k m x 0=3x 1 L=60km

1、计算各序网络的等值参数

取基准功率S B =100MVA, 基准电压U B =U AV , 将各元件参数换算成标么值,数值分别标在各序网络中。 计算过程如下: 正序:

181.0115

100604.0333.05.101005.315.101005.10100%175.05.10100605.101005.10100%4.05.1010025.315.101005.12100%2.05.101005.625.101005.12100%2

2*

12

2

2

2

*

212

2

2

2

*

112

2

2

2

1

*

212

2

2

2

1

*

11=??===??=??==??=??==??=??==??=??=N

N

L B

B N

N

K

T B

B N

N

K

T B

B N

N

G B

B N

N

G S U xl x

U S S U U x U S S U U x U S S U X x U S S U X x

负序:

181

.0333

.0175

.0512.05.1010025.315.1010016100%256.05.10100605.1010016100%*

1*

2*

21*

22*

11*

122

2

2

2

2

*

222

2

2

2

2

*

12=======??=??==??=??=L L T T T T B

B N

N

G B

B N

N

G x x

x

x x x

U S S U X x U S S U X x

零序:

333

.0544

.0175

.0*

21*

202*

0*

11*

10======T T N

N L T T x x

S

U xl x x

x

由正序、负序、零序的电路参数可得到正序、负序、零序等值网络如

E

M

U

KC 1

E

N

j0.2j0.175j0.181j0.333j0.4

K1N1

jx

M

1jx

N

1

正序等值网络

j0.175

j0.181j0.333K2

N2

U

kc 2

I

kc 2

jx

M

2jx

N

2j0.256j0.512

负序等值网络

j0.175

j0.544

j0.333

K0

N0

U KC 0

I

KC 0

jx

N

0jx

M

零序等值网络

各序网络的等值参数计算如下:

316.0733.0556.0733.0556.0//111=?+==∑N M x x x

028

.1733

.0556.0556

.01733.005.11111*=+?+?=+''+''=''∑

N

M

M

N

N

M

x x x E x E E 228.0333

.0719.0333.0719.0//355.0845.0612.0845

.0612.0//000222=+?===+?==∑∑N

M N M x x x x x x 为了简化计算,得出的电流为实数,设?∠==''∑90028.1028.1j E

2、计算各序电气量及各相量

C 相接地短路时,已C 相为基准相的边界条件为:

00210

21=++===kc kc kc kc kc kc kc U U U U

I I I

根据这些边界条件,将三个序网络串联起来,可得到如下的复合序网

图:

x 1∑x 2∑

x 0∑

1kc U

0kc U

2kc U

1kc I

2kc I

0kc I

∑''E

(1)由复合序网图求故障点处的各序电流电压及序功率计算如下

143

.1)

228.0355.0316.0(028.1021)0(0

2

1

=++=++===∑

j j Z Z Z U I I I k

kc kc kc 667.0)(406.0355.0143.1261.0228.0143.10

2

1

22

2

00

j U U

U

j j x I

j U j j x I

j U

kc kc kc kc kc kc kc =+-=-=?-=-=-=?-=-=∑

298.0143.1261.0464.0143.1406.0762.0143.1667.00

2

2

2

1

1

1

j j I U S

j j I U S j j I U

S

kc kc kc kc kc kc kc kc kc -=?-==-=?-===?==

(2)求故障点处的各相电流、电压计算如下

429.3143.13301=?====kc kc kb ka I I I I

ka

U =2α(j0.667)+α(-j0.406)+(-j0.261)=0.929-j0.39=1.008e

8.22-=1.008e

2.337

kb

U =α(j0.667)+2α(-j0.406)+(-j0.261)=-0.929-j0.39=1.008e 8.202

kc

U =0 (3)画短路点的电流、电压相量图:

根据短路处的边界条件:

0021021=++===kc kc kc kc kc kc kc U U U U I I I

按一定的比例画出K 点电流、电压的相量图如下所示。

由于∑0X <∑2X 所以2kc U >0

kc U ,两个非故障相电压间的相位差角 θu= 2.337- 8.202= 4.134> 120

1kc U

2kc U

0kc U

0=k c U 2ka U

2kb U

1ka U

1kb U kb U

ka U

u

θ

短路点处的电压相量图

1kc I

2kc I 0kc I =ka I 0

=kb I kc I

2ka I

1ka I

1kb I

2kb I

短路点处的电流相量图

(4) 求各电气量的有名值

短路点所在电压等级的电压电流基值为:

B U =

3

115=66.4(KV) B

I =3

115100?=0.502(KA)

故各电气量的有名值

kc

I =3.429?0.502=1.721(KA) ka U =kb U =1.008?66.4=66.931(KV) 1kc S =0.762?66.4?0.502=25.400(MVA) 2kc S =0.464?66.4?0.502=15.466(MVA) 0kc S =0.298?66.4?0.502=9.933(MVA)

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: ) 120sin()360240sin()240sin(); 120sin(); sin( t U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随着时间t 的流逝,当 t 值每增长360°(或2π)时,电压ua 就经过了一个周期的循环,如下图所示:

图 如上图,t代表时间, 代表t=0时刻的角度(例如上图中ua当t=0时位于原点, ), 表示角速度即每秒变化多少度。例如电网的频率为50Hz,每即代表0 秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算:

不对称短路计算与分析

题目: 电力系统不对称短路计算与分析 初始条件: 系统接线如下图,线路f处发生金属性B、C相接地短路。已知各元件参为:发电机G:S N=60MV A, V N=10.5KV,X d″=0.2, X2=0.25,E″=11KV; 变压器T-1:S N=60MV A, Vs(%)=10.5,K T1=10.5 / 115kV; 变压器T-2:S N=60MV A, Vs(%)=10.5,K T2=115 / 10.5kV; 线路L:长L=90km, X1=0.4Ω/km, X0=3.5X1; 负荷LD:S LD=40MV A,X1=1.2, X2=0.35。 要求完成的主要任务: 选取基准功率S B=60MV A,基准电压为平均额定电压,要求: (1)制定正、负、零序网,计算网络各元件序参数标幺值。 (2)计算各序组合电抗及电源组合电势并绘制复合序网。 (3)计算短路点的入地电流有名值和A相电压有名值。 (4)计算短路时发电机侧线路流过的各相电流有名值。 时间安排: 熟悉设计任务 5.27 收集相关资料 5.28 选定设计原理 5.29 计算分析及结果分析 5.30 --6.6 撰写设计报告 6.7 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 本次课程设计的步骤为先进行正、负、零序参数的标幺值转化,再分别用戴维南定理做出各序等值电路得到各序的短路电抗,然后根据两相接地短路的边界条件绘制复合网络电路,并求出各序短路电流、总短路电流和A相电压,最后根据电力系统的具体电路计算发电机侧的相电流。根据标幺值计算出有名值。本文最后还总结了各种简单短路情况的短路电流的计算方法。 关键词:标幺值两相接地短路复合网络电路

3短路电流和计算课后习题解析

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

两相短路故障的计算

编号0714141 课程设计 系(部)院:机电工程系 专业:电气工程及其自动化 作者姓名: 学号: 指导教师:职称:讲师 完成日期:年月日 二○一○年十二月

目录 目录 0 摘要 (2) ABSTRACT (3) 1 引言 (4) 1.1短路故障的原因 (4) 1.2短路故障发生的原因 (4) 1.3短路类型 (4) 1.4短路的危害 (4) 2 电力系统自动化的一般概念 (5) 3 本课程设计的主要任务 (6) 4 课程设计的目的 (6) 5 课程设计任务书 (6) 6课程设计内容及过程 (8) 6.1数学模型 (8) 6.1.1架空输电线的等值电路和参数 (8) 6.1.2变压器等值电路和参数 (9) 6.2对称分量法 (11) 6.2.1不对称三相量的分解 (11) 6.2.2变压器的各零序等值电路 (12) 6.3两相短路接地的分析 (13) 6.4算例 (16) 课程设计总结 (19) 参考文献 (20)

摘要 电力系统自动化(automation of power systems)对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。在电力系统的设计和运行中,必须考虑到可能发生的故障和不正常的运行情况,防止其破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,例如短路时电路的电压骤降,严重影响电气设备的正常运行,短路时保护装置动作,如熔断器的保险丝熔断,将短路电路切除,这会造成停电,而且短路点越靠近电源,停电范围越大,造成生活的不便和经济上的损失,严重的短路会影响电力系统运行的稳定性,可使并列运行的发电机组失去同步,造成系统解列,不对称短路,像单相短路和两相短路。因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。这里着重介绍简单不对称故障两相短路接地的常用计算方法。对称分量法是分析不对称故障常用方法,根据对称分量法,一组不对称的三相量可以分解为正序、负序和零序三相对称的三相量。在应用对称分量法分析计算不对称故障时必须首先作出电力系统的各序网络,通过网络化简求出各序网络对短路点的输入电抗以及正序网络的等值电势,再根据不对称短路的不同类型,列出边界方程,以求得短路点电压和电流的各序分量。 关键词:两相短路故障;短路计算;两相短路接地;对称分量法.

短路电流的定义、分类、计算方法、口诀、危害

短路电流 科技名词定义 中文名称:短路电流 英文名称:short-circuit current 定义:在电路中,由于短路而在电气元件上产生的不同于正常运行值的电流。 应用学科:电力(一级学科);电力系统(二级学科) 本内容由全国科学技术名词审定委员会审定公布 短路电流 short-circuit current 电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时流过的电流。其值可远远大于额定电流,并取决于短路点距电源的电气距离。例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍。大容量电力系统中,短路电流可达数万安。这会对电力系统的正常运行造成严重影响和后果。 目录

短路电流分类 三相系统中发生的短路有 4 种基本类型:三相短路,两相短路,单相对地短路和两相对地短路。其中,除三相短路时,三相回路依旧对称,因而又称对称短路外,其余三类均属不对称短路。在中性点接地的电力网络中,以一相对地的短路故障最多,约占全部故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。 发生短路时,电力系统从正常的稳定状态过渡到短路的稳定状态,一般需3~5秒。在这一暂态过程中,短路电流的变化很复杂。它有多种分量,其计算需采用电子计算机。在短路后约半个周波(0.01秒)时将出现短路电流的最大瞬时值,称为冲击电流。它会产生很大的电动力,其大小可用来校验电工设备在发生短路 短路电流相关示意图 时机械应力的动稳定性。短路电流的分析、计算是电力系统分析的重要内容之一。它为电力系统的规划设计和运行中选择电工设备、整定继电保护、分析事故提供了有效手段。 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动 力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正 确地选择电器设备、设计继电保护和选用限制短路电流的元件. 计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

不对称短路故障分析与计算-课程设计报告

信息工程学院 课程设计报告书 题目: 不对称短路故障分析与计算 专业:电气工程及其自动化 班级: 0312408班 学号: 031240868 学生姓名:わ- 深蓝 指导教师: 2015年06月05日

信息工程学院课程设计任务书 学号031240868 学生姓名わ- 深蓝专业(班级)电气0312408班设计题目不对称短路故障分析与计算 设计技术参数1 发电机参数 G1:为水电厂,额定容量110MVA,85 .0 φ cos N =,264 .0 " d = X G2、G3:为水电厂,额定容量25MVA,8.0 φ cos N =,13 .0 " d = X M:电动机(用电负载),2000KW,85 .0 φ cos N =,起动系数为6.5 2 变压器T参数 T1:额定容量16MVA,一次电压110KV,短路损耗86KW,空载损耗23.5KW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=0.9。变压器连接组标号:Ynd11。 T2、T3:额定容量31.5MVA,一次电压110KV,短路损耗148KW,空载损耗38.5KW,阻抗电压百分值UK%=10.5,空载电流百分值I0%=0.8。变压器连接组标号:Ynd11。 T4:额定容量10MVA,一次电压110V,短路损耗59KW,空载损耗16.5,阻抗电压百分比UK%=10.5,空载电流百分比I0%=1.0。变压器连接组标号:Ynd11。 3 线路参数 LGJ-120:截面120 2 m,长度100km,每条线路单位长度的正序电抗 km X/ 391 .0 )1(0 Ω =,零序电抗 )1(0 (0) 3 X X =,每条线路单位长度的对地电容 km S/ 10 92 .2 b6 0(1) - ? =。 LGJ-150:截面150 2 m,长度100km,每条线路单位长度的正序电抗 km X/ 384 .0 )1(0 Ω = ,零序电抗)1(0 (0) 3 X X = ,每条线路单位长度的对地电容 km S/ 10 97 .2 b6 0(1) - ? = 4 负载参数 容量8+6jMVA,在基准容量B S=100MVA下,负载负序电抗标幺值为X0(2)=0.35,零序电抗标幺值X(0)=1.2。

电力系统两相接地短路计算与仿真

电力系统两相接地短路计算与仿真

辽宁工业大学《电力系统分析》课程设计(论文) 题目:电力系统两相接地短路计算与仿真(2) 院(系):电气工程学院 专业班级:电气112 学号:110303057 学生姓名:李晓冬 指导教师:孙丽颖 教师职称:教授 起止时间:14-06-30至14-07-11

课程设计(论文)任务及评语 课程设计(论文)任务 原始资料:系统如图 各元件参数如下(各序参数相同): G1、G2:S N =35MVA,V N =10.5kV,X=0.33; T1: S N =31.5MVA,Vs%=10.5,k=10.5/121kV,△Ps=180kW, △ Po=30kW,Io%=0.8;YN/d-11 T2: S N =31.5MVA,Vs%=10, k=10.5/121kV,△Ps=200kW, △Po=33kW,Io%=0.9; YN/d-11 L12:线路长70km,电阻0.2Ω/km,电抗 0.41Ω/km,对地容纳2.78×10-6S/km; L23:线路长75km,电阻0.18Ω/km,电抗 0.38Ω/km,对地容纳2.98×10-6S/km;; L13: 线路长85km,电阻0.18Ω/km,电抗 0.4Ω/km,对地容纳2.78×10-6S/km;; 负荷:S3=45MVA,功率因数均为0.9. 任务要求(节点2发生AC两相金属性接地短路时): 1 计算各元件的参数; 2 画出完整的系统等值电路图; 3 忽略对地支路,计算短路点的A、 B和C三相电压和电流; 4 忽略对地支路,计算其它各个节 点的A、B和C三相电压和支路电流; 5 在系统正常运行方式下,对各种 不同时刻AC两相接地短路进行Matlab仿 真; 6 将短路运行计算结果与各时刻短 路的仿真结果进行分析比较,得出结论。 G G G1 T1 1 L12 2 T2 G2 1:k

短路电流计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地<对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称。 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

电力系统两相短路计算与仿真(2)

辽宁工业大学 《电力系统分析》课程设计(论文)题目:电力系统两相短路计算与仿真(2) 院(系):工程技术学院 专业班级:电气工程及其自动化 学号: 学生姓名: 指导教师:王 教师职称 起止时间:15-06-15至15-06-26

课程设计(论文)任务及评语

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1短路的原因、类型及后果 (1) 1.1.1电路系统中的短路 (1) 1.1.1短路的后果 (1) 1.2短路计算的目的 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (3) 2.3 两相不对称短路的计算步骤 (4) 2.4两相(b相和c相)短路 (4) 第3章电力系统两相短路计算 (7) 3.1系统等值电路的化简 (7) 3.2两相短路计算 (9) 第4章短路计算的仿真 (11) 4.1仿真模型的建立 (11) 4.2 仿真结果及分析 (11) 第5章总结 (14) 参考文献 (15)

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

两相接地短路电流的计算

目录 1.前言 (1) 1.1短路电流的危害 (1) 1.2短路电流的限制措施 (1) 1.3短路计算的作用 (2) 2.数学模型 (3) 2.1对称分量法在不对称短路计算中的应用 (3) 2.2电力系统各序网络的制订 (9) 2.3两相接地短路的数学分析 (10) 2.4变压器的零序等值电路及其参数 (10) 3两相接地短路运行算例 (15) 4.结果分析 (18) 5.心得体会 (19) 6.参考文献 (20)

1.前言 电能作为我们日常生活中运用最多的一种能源,不仅有无气体无噪音污染,便于大范围的传送和方便变换,易于控制,损耗小,效率高等特点。 电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。 1.1短路电流的危害 短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。 1.2短路电流的限制措施 为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。主要措施如下: 一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。

不对称短路的分析和计算

目录 摘要 (3) 1 电力系统短路故障的基本概念 (4) 1.1短路故障的概述 (4) 1.2 三序网络原理 (5) 1.2.1 同步发电机的三序电抗 (5) 1.2.2 变压器的三序电抗 (5) 1.2.3 架空输电线的三序电抗 (6) 1.3 标幺制 (6) 1.3.1 标幺制概念 (6) 1.2.2标幺值的计算 (7) 1.4 短路次暂态电流标幺值和短路次暂态电流 (8) 2 简单不对称短路的分析与计算 (9) 2.1单相(a相)接地短路 (9) 2.2 两相(b,c相)短路 (10) 2.3两相(b相和c相)短路接地 (12) 2.4 正序等效定则 (14) 3 不对称短路的计算的实际应用 (14) 3.1 设计任务及要求 (14) 3.2 等值电路及参数标幺值的计算 (15) 3.3 各序网络的化简和计算 (17) 3.3.1 正序网络 (17) 3.3.2 负序网络 (19) 3.3.3 零序网络 (20) 3.4 短路点处短路电流、冲击电流的计算 (20) 4 实验结果分析 (21) 5 心得体会 (22)

6 参考文献 (23)

摘要 电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。 在电力系统运行过程中,时常会发生故障,且大多是短路故障。短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。其中三相短路为对称短路,后三者为不对称短路。电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。 求解不对称短路,首先应该计算各原件的序参数和画出等值电路。然后制定各序网络。根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。 关键词: 不对称短路计算、对称分量法、节点导纳矩阵

系统不对称短路计算

摘要 随着电力事业的快速发展,电力电子新技术得到了广泛应用;出于技术、经济等方面的考虑,500kV 及以上的超高压输电线路普遍不换位,再加上大量非线性元件的应用,电力系统的不对称问题日益严重。因此电力系统不对称故障分析与计算显得尤为重要。基于对称分量法的基本理论,对称分量法采取的具体方法之一是解析法,即把该网络分解为正,负,零序三个对称序网,这三组对称序分量可分别按对称的三相电路分解。计算机程序法。通过计算机形成三个序网的节点导纳矩阵,然后利用高斯消去法通过相应公式对他们进行数据运算,即可求得故障端点的等值阻抗。最后根据故障类型选取相关公式计算故障处各序电流,电压,进而合成三相电流电压。进行了参数不对称电网故障计算方法的研究。通过引计算机算法,系统介绍电网参数不对称的计算机算法方法。根据断相故障和短路故障的特点,通过在故障点引入计算机算法,,给出了各种断相故障和短路故障的仿真计算。此方法以将故障电网分为对称网络和不网络两部分,在程序法则下建立起不对称电网故障计算统一模型,根据线性电路的基本理论,并借助于相序参数变换技术完成故障计算。 关键词:参数不对称电网故障计算

目录 摘要 (5) 任务题目及要求 (1) (一) 短路 (3) 短路的含义 (3) 短路产生的原因及危害 (3) 短路故障的概述 (3) (二)标幺制 (4) 标幺值的定义 (4) 采用标么制的优点 (5) (三)电力系统各序网络的制定 (5) 序网络的制定 (5) 复合序网的绘制 (5) 正序网络 (6) 负序网络 (6) 零序网络 (6) (四)计算 (6) 取基准容量: (6) 计算各元件电抗标幺值: (6) 各元件电抗标幺值: (7) K1点短路电流计算 (8) K2点短路电流计算 (9) K3点短路电流计算 (10) (五)小结 (12) 参考文献 (13)

两相短路接地—课程设计

课程设计说明书 课程设计名称:电力系统分析课程设计 题目:两相接地故障的计算 学生姓名:喻翌 专业:电气工程与自动化 学号: 32 指导教师:袁宇春 日期:2010年6月 18日 成绩

目录 1 前言............................................. 错误!未定义书签。 短路故障计算的原因.............................. 错误!未定义书签。 短路发生的原因.................................. 错误!未定义书签。 短路类型........................................ 错误!未定义书签。 短路的危害...................................... 错误!未定义书签。 2 数学模型......................................... 错误!未定义书签。 架空输电线的等值电路和参数...................... 错误!未定义书签。 变压器等值电路和参数............................ 错误!未定义书签。 发电机等值电路.................................. 错误!未定义书签。 3 对称分量法....................................... 错误!未定义书签。 不对称三相量的分解.............................. 错误!未定义书签。 对称分量法在不对称短路计算中的应用.............. 错误!未定义书签。 变压器的各零序等值电路.......................... 错误!未定义书签。 4 两相短路接地的分析............................... 错误!未定义书签。 5 两相短路接地的计算流程........................... 错误!未定义书签。 6 算例............................................. 错误!未定义书签。 7 总结............................................. 错误!未定义书签。参考文献............................................ 错误!未定义书签。

不对称短路的分析和计算

不对称短路的分析和计 算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录

摘要 电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。 在电力系统运行过程中,时常会发生故障,且大多是短路故障。短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。其中三相短路为对称短路,后三者为不对称短路。电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。 求解不对称短路,首先应该计算各原件的序参数和画出等值电路。然后制定各序网络。根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。 关键词: 不对称短路计算、对称分量法、节点导纳矩阵

1电力系统短路故障的基本概念 短路故障的概述 在电力系统运行过程中,时常发生故障,其中大多数是短路故障。所谓短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。除中性点外,相与相或相与地之间都是绝缘的。电力系统短路可分为三相短路,单相接地短路。两相短路和两相接地短路等。三相短路的三相回路依旧是对称的,故称为不对称短路。 其他的几种短路的三相回路均不对称,故称为不对称短路。电力系统运行经念表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。 依照短路发生的地点和持续时间不同,它的后果可能使用户的供电情况部分地或全部地发生故障。当在有由多发电厂组成的电力系统发生端来了时,其后果更为严重,由于短路造成电网电压的大幅度下降,可能导致并行运行的发电机失去同步,或者导致电网枢纽点电压崩溃,所有这些可能引起电力系统瓦解而造成大面积的停电事故,这是最危险的后果。 产生短路的原因很多主要有如下几个方面: (1)原件损坏,例如绝缘材料的自然老化,设计,安装及维护不良所带来的设备缺陷发展成短路。

不对称短路的分析和计算

武汉理工大学《电力系统分析》课程设计说明书 目录 摘要 (3) 1 电力系统短路故障的基本概念 (4) 1.1短路故障的概述 (4) 1.2 三序网络原理 (5) 1.2.1 同步发电机的三序电抗 (5) 1.2.2 变压器的三序电抗 (5) 1.2.3 架空输电线的三序电抗 (6) 1.3 标幺制 (6) 1.3.1 标幺制概念 (6) 1.2.2标幺值的计算 (7) 1.4 短路次暂态电流标幺值和短路次暂态电流 (8) 2 简单不对称短路的分析与计算 (9) 2.1单相(a相)接地短路 (9) 2.2 两相(b,c相)短路 (10) 2.3两相(b相和c相)短路接地 (12) 2.4 正序等效定则 (14) 3 不对称短路的计算的实际应用 (14) 3.1 设计任务及要求 (14) 3.2 等值电路及参数标幺值的计算 (15) 3.3 各序网络的化简和计算 (17) 3.3.1 正序网络 (17) 3.3.2 负序网络 (19) 3.3.3 零序网络 (20) 3.4 短路点处短路电流、冲击电流的计算 (20) 4 实验结果分析 (21) 5 心得体会 (22)

6 参考文献 (23) 2

摘要 电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。 在电力系统运行过程中,时常会发生故障,且大多是短路故障。短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。其中三相短路为对称短路,后三者为不对称短路。电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。 求解不对称短路,首先应该计算各原件的序参数和画出等值电路。然后制定各序网络。根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。 关键词: 不对称短路计算、对称分量法、节点导纳矩阵 3

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络 X c X T X L X T X d ” C V fa(1) G + + +

电力系统两相接地短路计算与仿真

辽宁工业大学《电力系统计算》课程设计(论文) 题目:电力系统两相接地短路计算与仿真(3) 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师: 教师职称:讲师 起止时间:12-07-02至12-07-13

课程设计(论文)任务及评语

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1电力系统短路计算概述 (1) 1.1.1 电力系统短路计算的目的 (1) 1.1.2 短路计算的处理方法 (1) 1.2本文设计内容 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (4) 2.3两相接地不对称短路的计算步骤 (5) 第3章电力系统两相短路计算 (8) 3.1系统等值电路及元件参数计算 (8) 3.2系统等值电路及其化简 (9) 3.3两相接地短路计算 (10) 3.4计算其它各个节点的A、B和C三相电压和电流 (14) 3.5计算各条支路的电压和电流 (14) 第4章短路计算的仿真 (16) 4.1仿真模型的建立 (16) 4.2仿真结果比较分析 (18) 第5章总结 (20) 参考文献 (21)

相关文档
相关文档 最新文档