文档库 最新最全的文档下载
当前位置:文档库 › 分子生物学简答题

分子生物学简答题

分子生物学简答题
分子生物学简答题

第二章

1、DNA二级结构的特点?

答:(1)DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的(2)DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧.

2.阐述Meselson和Stahl关于DNA半保留复制的证明实验?

答:用普通培养基(含14N的氮源)培养15N标记的大肠杆菌,经过一代后,所有DNA 的密度都在15N-DNA和14N-DNA之间,即形成了一半15N和一半14N的杂合分子,两代后出现等量的14N分子和14N-15N杂合分子。若再继续培养,可以看到14N-DNA分子增多,说明DNA分子复制时均可被分成两个亚单位,分别构成子代分子的一半,这些亚单位经过很多代复制仍然保持着完整性。

3.描述大肠杆菌DNA聚合酶I在DNA生物合成过程中的作用?

答:该酶被认为在切除由紫外线照射而形成的嘧啶二聚体中起着重要的作用,它也可用以出去冈崎片段5,端RNA引物,使冈崎片段间缺口消失,保证连接酶将片段连接起来。

4.DNA的损伤原因是什么?

答:DNA的损伤分自发性损伤、物理因素引起的DNA损伤、和化学因素引起的DNA损伤.

自发性损伤是由于DNA复制中的错误和碱基的自发性化学变化造成DNA的损伤.物理因素引起的DNA损伤常是缘于紫外线引起的DNA损伤和电离辐射引起的DNA损伤.化学因素引起的DNA损伤是突变剂或致癌剂对DNA的作用,包括烷化剂对DNA的损伤和碱基类似物对DNA的损伤.

5.组蛋白具有哪些特性?

答:进化上的极端保守性,无组织特异性,肽链上氨基酸分布的不对称性,组蛋白的修饰作用(包括甲基化,乙酰化,磷酸化,范素化及ADP核糖基化),富含赖氨酸的组蛋白H5

6.比较原核生物和真核生物DNA复制的不同点。

答:真核生物每条染色质上可以有多处复制起始点,而原核生物只有一个起始点;真核生物的染色体在全部完成复制之前,个个起始点上DNA的复制不能再开始,而在快速生长的原核生物中,复制起始点上可以连续开始新的DNA复制,表现为虽只有一个复制单元,但可有多个复制叉。(1)原核为单复制起点,真核为多复制起点(2)原核

复制子大而少,真核复制子小而多(3)真核复制起始受许可

因子的控制(4)

真核复制叉移动的速度快,原核速度慢(5)真核冈崎片段

小,原核大(6)真核复制存在端粒和端粒酶(7)真核原核

DNA聚合酶种类,结构,

作用上有差异(8)真核生物DNA复制的起始需要起始原点

识别复合物(ORC)参与

7.大肠杆菌染色体的分子质量大约是2.5x109Da,核苷酸的平均分子质量是330Da,两个邻近核苷酸对之间的距离是0.34mn,双螺旋每一转的高度(即螺距)是3.4nm,请问(1)该分子有多长?(2)该DNA有多少转?

1)该分子有多长?答:1碱基=330Da,1碱基对=660Da 碱基对=2.5×109/660=3.8×106 kb 染色体DNA的长度=3.8×106/0.34=1.3×106nm=1.3mm

(2)该DNA有多少转?

答:转数=3.8×106×0.34/3.4=3.8×105

8.转座作用机理及遗传学效应?

答:作用机理:转座可被分为复制型和非复制型两大类。顾名思义,在复制性转座中,整个转座子被复制了,所移动和转座的的仅仅是原转座子的拷贝。转座酶和解离酶分别作用于原始转座子和复制转座子。TnA类转座主要是这种形式。与此相对应,在非复制型转座中,原始转座子作为一个可移动的实体直接被移动,IS,Mu及Tn5等都以这种方式进行转座。

遗传效应:转座引入插入突变

(P65)转座引起新的基因

转座产生的染色体畸变

转座引起的生物进化

9.请解释与DNA复制有关的两个术语:进行性和忠实性。在E.coil DNA复制过程中,哪些蛋白质或酶能够增强DNA复制的进行型和忠实性?

答:进行性是指DNA聚合酶沿着DNA模板所能移动的最大距离,即合成DNA分子的长度。DNA聚合酶Ⅲ的β钳确保DNA复制的进行性。

忠实性是衡量DNA聚合酶合成子代DNA分子的准确度,DNA聚合酶Ⅲ的3,→5,核酸外切酶校正功能确保DNA复制的忠实性。

10.试述DNA复制过程,总结DNA复制的基本规律。

以E.coli为例,DNA复制过程分三个阶段;①起始:从DNA上控制复制起始的序列即起始点开始复制,形成复制叉,复制方向多为双向,也可以是单向,若以双向进行复制,两个方向的复制速度不一定相同.由于DNA聚合酶不能从无到有合成新链,所以DNA复制需要有含3’-OH的引物,引物由含有引物酶的引发体合成一段含3一10个核苷酸的RNA片段;②延长:DNA复制时,分别以两条亲代DNA链为模板,当复制叉沿DNA移动时,以亲代3’→5’链为模板时,子链的合成方向是5'→3',可连续进行,以亲代5’→3’链为模板时,子链不能以3’→5’方向合成,而是先合成出许多5’→3’方向的冈崎片段,然后连接起来形成一条子链;③终止:当一个冈崎片段的3'-OH与前一个冈崎片段的5’-磷酸接近时,复制停止,由DNA聚合酶I切除引物,填补空隙,连接酶连接相邻的DNA片段.

DNA复制时,由DNA解旋酶(又称解链酶)通过水解ATP获得能量来解开DNA双链,并沿复制叉方向移动,所产生的单链很快被单链结合蛋白所覆盖,防止DNA的变性并保护其单链不被降解,复制叉前进过程中,双螺旋产生的应力在拓扑异构酶的作用下得到调整.

DNA复制基本规律:①复制过程为半保留方式;②原核生物单点起始,真核生物多点起始,复制方向多为双向,也有单向;③复制方式呈多样性,(直线型、Q型、滚动环型…等);④新链合成需要引物,引物RNA长度—般为几个~10个核苷酸,新链合成方向5’→ 3’,与模板链反向,碱基互补;⑤复制为半不连续的,以解决复制过程中,两条不同极性的链同时延伸问题,即…—条链可按5’→ 3’方向连续合成称为前导链,另一条链先按5’→ 3’方向合成许多不连续的冈崎片段(原核生物一般长1000-2000个核苷酸,真核生物一般长100--200个核苷酸),再通过连接酶连接成完整链,称后随链,且前导链与后随链合成速度不完全—致,前者快,后者慢.

11.略

第三章

1、简述原核生物转录作用的过程

原核生物转录作用的过程:

结合(binding):σ与RNA pol结合,大大降低了后者与DNA链的非特异性结合,而到了正确的promoter处,其亲和力提高了100倍;

解旋(unwinding):RNA pol将使约17bp的DNA解螺旋,形成一个open complex ;

起始(initiation):RNA pol合成8-10个nt ,σ因子被释放;

延长(elongation):形成一个转录泡,开始延长;

终止(termination):(1) 不依赖于ρ蛋白的terminator形成一个大发夹,在新合成RNA中其后有一段寡聚U,导致转录终止,RNA pol被释放;(2)依赖于ρ蛋白的terminator也形成一个发夹,但由于没有长段U,所以需要ρ蛋白帮助,终止RNA合成。

2、略

3、分别说出5种以上RNA的功能。

4、简述3种RNA在蛋白质生物合成中的作用。

mRNA:即信使RNA,上面有一系列分别由3个碱基构成的密码子,在合成蛋白质时与核糖体结合,提供合成的模板

rRNA:即核糖体RNA,与核糖体蛋白共同构成核糖体的大小亚基(也就是构成核糖体)tRNA:即转运RNA,上有反密码子(与密码子结合),每三个反密码子对应一个氨基酸,不同的氨基酸分别和不同的tRNA结合。tRNA起运输氨基酸的作用.

5、真核生物转录的前体hnRNA如何加工成为成熟的mRNA?

1.在专一的酶促作用下,5‘端形成特殊的帽子结构

2.在RNA末端腺苷酸转移酶的作用下,在3’端添加polA尾巴。

3.通过特殊的机制,去掉内含子,将外显子连接起来

4.对链内特定的核苷酸进行甲基化修饰。

6、增强子具有哪些特点。

增强子:可强烈促进一个或几个基因转录的DNA元件,增强子通常位于作用基因的上游,但当它们被反转或移到几百甚至几千碱基对外时,也能发挥作用。

①可以从非常远的距离使它的靶基因转录活性增加达1000倍;

②作用不依赖方向和位置,可位于基因的上游、下游甚至所调节基因的内部,通过使内部成环突出而实现与基本转录装置相互作用,能同时影响两侧两个基因的表达;

③必须与受调控的基因位于同一DNA分子中,但可位于任一条DNA链上;

④包含有功能的成簇的功能位点群--增强子元。可调节多个启动子,没有基因特异性,可以对其进行克隆、重组和转移;

⑤有组织和细胞的特异性,其表达需要特异蛋白因子的作用;

⑥优先作用于最邻近启动子的转录;

⑦与增强子结合的蛋白包括激素受体蛋白,因而,发育过程中增强子可能在基因活性的调控中起重要作用。

7、一个基因如何产生两种不同类型的mRNA分子

第一种是,一个原初产物含有一个以上的多聚腺苷化位点,能产生具不同3‘端的mRNA。第二种是,如果一个原初转录产物含有几个外显子,发生不同的剪接,产生多种mRNA。8、试比较DNA的复制、损伤DNA修复和逆转录过程中的DNA合成中的异同点。

模板

底物

复制方向

是否需要引物

9、原核生物与真核生物mRNA的特征。

原核生物mRNA的特点为:1>半衰期短.原核生物中,mRNA的转录和翻译是在同一个细胞空间里同步进行的,蛋白质合成往往在mRNA刚开始转录时就被引发了.2>许多以多顺反子的形式存在.原核细胞的mRNA(包括病毒)有时可以同时编码几个多肽.3>原核生物mRNA的5’端无帽子结构,3’端没有或只有较短的多聚A结构,原核生物起始密码子AUG上游有一被称为Ribosome Binding Site (RBS)或SD序列(Shine –Dalgarno sequence)的保守区,因为该序列与16S-rRNA 3’端反向互补,所以被认为在核糖体-mRNA的结合过程中起作用4>原核生物常以AUG(有时GUG,甚至UUG)作为起始密码子;

真核生物mRNA的特点为:1>真核细胞mRNA的合成和功能表达发生在不同的空间和时间范畴内.mRNA以较大分子量的前体RNA出现在核内,只有成熟的、相对分子质量明显变小并经化学修饰的mRNA才能进入细胞质,参与蛋白质的合成.2>以单顺反子形式存在.3>真核生物mRNA的5’端存在帽子结构,除组蛋白基因外,真核生物mRNA的3’端具有多聚A结构,真核生物的mRNA中,由DNA转录生成的原始转录产物-----前体mRNA,要经过5’加“帽”和3’酶切加多聚腺苷酸,再经过RNA的剪接,编码蛋白质的外显子部分就连接成为一个连续的可译框,通过核孔进入细胞质,作为蛋白质合成的模板.真核生物的mRNA还可以通过RNA编辑在初级转录物上增加、删除或取代某些核苷酸而改变遗传信.4>真核生物几乎永远以AUG 作为起始密码子.

10、什么是RNA编辑。以RNA编辑的事实如何理解中心法则?

RNA编辑是指由RNA水平的核苷酸改变所引起的密码子发生变化的一种预定修饰,一种RNA 编辑是以另一RNA为模板来修饰mRNA前体(2分)。通过编辑,可以给mRNA前体添加新的遗传信息(1分)。

mRNA 编辑较大程度地改变了DNA的遗传信息,使该基因的DNA序列仅是一串简略意义模糊的序列或称为隐秘基因、模糊基因(1.5分)。通过形成或删除AUG, UAA, UAG, UGA…,改变codon信息;扩大编码的遗传信息量(1分),既对中心法则构成了挑战,也是对中心法则的发展(0.5分)

11、DNA的复制和转录有什么不同?

相同点:有模板都需要模板原料酶和能量都在细胞内进行

不同点:前者模板是一条后者两条前者原料是核糖核苷酸后者是脱氧核苷酸

12、何为终止子,它终止转录的模式有几种,如何终止转录?

终止子(terminator T)是给予RNA聚合酶转录终止信号的DNA序列。在一个操纵元中至少在构基因群最后一个基因的后面有一个终止子。

一原核生物转录的终止

原核生物转录的终止有两种主要机制。一种机制是需要蛋白质因子ρ(Rho)的参与,称为依赖ρ因子(ρfactor)的转录终止机制,另一种机制是在离体系统中观察到,纯化的RNA聚合酶不需要其他蛋白质因子参与,可使转录终止,称为不依赖ρ因子的转录终止机制。

1依赖ρ因子的转录终止:ρ因子是一种分子量为46kDa的蛋白质,以六聚体为活性形式。依赖ρ因子的终止位点,未发现有特殊的DNA序列,但ρ因子能与转录中的RNA结合。ρ因子的六聚体被约70~80 nt的RNA包绕,激活ρ因子的ATP酶(ATPase)活性,并向RNA 的3’端滑动,滑至RNA聚合酶附近时,RNA聚合酶暂停聚合活性,使RNA∶DNA杂化链解链,转录的RNA释放出来而终止转录。如图13-8所示。

2.不依赖ρ因子的转录终止:在这种转录终止系统中,模板DNA在终止位点附近有特殊的连续T序列,在连续T之前有富含GC互补区及几个插入碱基,如图13-9。这种互补区的转录物可形成茎-环结构,影响RNA聚合酶的构象使转录暂停;同时,由于转录产物的(rU)n与模板的(dA)n之间的dA∶rU杂交区的双链是最不稳定的双链,使杂化链的稳定性下降,而转录泡模板区的两股DNA容易恢复双链,释出转录产物RNA,使转录终止。

二真核生物转录的终止

真核生物转录终止的机制,目前了解尚不多,而且3种RNA聚合酶的转录终止不完全相同。RNA聚合酶Ⅰ催化的转录有18 bp的终止子序列,可被辅助因子识别。RNA聚合酶II和III 催化转录的终止子,可能有与原核生物不依赖ρ因子的终止子相似的结构和终止机制,即有富含GC的茎-环结构(stem-loop structure)和连续的U。由于成熟的mRNA 3’端已被切除了一段并加入了poly A尾,具体的转录终止点目前尚未认识。

13、比较DNA聚合酶、RNA聚合酶、逆转录酶、引物酶在不同核酸生物合成中的作用异同点。

14、简述tRNA在蛋白质的生物合成中是如何起作用的。

在蛋白质合成中,tRNA起着运载氨基酸的作用,将氨基酸按照mRNA链上的密码子所决定的氨基酸顺序搬运到蛋白质合成的场所——核糖体的特定部位。

tRNA是多肽链和mRNA之间的重要转换器。

①其3ˊ端接受活化的氨基酸,形成氨酰-tRNA

②tRNA上反密码子识别mRNA链上的密码子

③合成多肽链时,多肽链通过tRNA暂时结合在核糖体的正确位置上,直至合成终止后多肽链才从核糖体上脱下。

15.有一个被认为是mRNA的核苷酸序列,长300个碱基,你怎样才能证明:(1)此RNA是mRNA 而不是tRNA或rRNA?(2)确定它是真核还是原核mRNA.

16、列举原核生物和真核生物转录的差异。

原核生物没有内含子,DNA复制和转录相对较容易也比较简单,调控几乎完全由基因上游的RNA聚合酶结合位点控制;

而真核生物由于内含子的存在,有了“可变剪接”的可能,内含子也可以调控部分DNA合成的问题,比如针对环境变化调整转录出的蛋白质的结构、组成等;

另外,真核原核生物的核糖体也是不一样的,其中蛋白质和核糖体RNA都有显著的区别.原核生物在拟核区发生转录,而真核生物则在细胞核内.

第四章

1、蛋白质合成体系的重要组分和功能

(1)mRNA:蛋白质合成的模板;(2)tRNA:蛋白质合成的氨基酸运载工具;(3)核糖体:蛋白质合成的场所;(4)辅助因子:(a)起始因子—--参与蛋白质合成起始复合物形成;(b)延长因子—--肽链的延伸作用;(c)释放因子一--终止肽链合成并从核糖体上释放出来。

蛋白质合成体系的重要组分

翻译:蛋白质的生物合成,即翻译,就是将核酸中由 4 种核苷酸序列编码的遗传信息,通过遗传密码破译的方式解读为蛋白质一级结构中20种氨基酸的排列顺序。

1.mRNA与遗传密码;

mRNA分子上从5’至3’方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码。

从mRNA 5’端起始密码子AUG到3’端终止密码子之间的核苷酸序列,各个三联体密码连续排列编码一个蛋白质多肽链,称为开放阅读框架(ORF)。

密码子特点:

①阅读方向:5’→3’;②无标点符号;③密码子不重叠;④密码子的简并性;⑤密码子与反密码子的作用;⑥起始密码子AUG,终止密码子UAA,UAG,UGA;⑦密码子的通用性和例外。

2.tRNA蛋白质合成过程中,起着运输氨基酸的作用。有如下的功能:

①3’末端携带氨基酸;②识别氨基酰-tRNA合成酶的位点;③核糖体识别位点;④反密码子的位点。

3.rRNA与核糖体

⑴.rRNA的主要功能是形成核糖体,是蛋白质合成的场所。

⑵.核糖体的活性中心:二位点模型:A位(氨酰基部位),氨基酰-tRNA进入部位。P位(肽基部位),为起始tRNA或正在延伸中的肽酰-tRNA结合部位。三位点模型:除了A位和P位外,还有E位,空载tRNA 离开的位点。

⑶.多核糖体:mRNA同时与若干个核糖体结合形成的念珠状结构,称为多核糖体

4.辅助因子

⑴.起始因子:参与蛋白质生物合成起始的蛋白因子;

⑵.延伸因子:参与蛋白质生物合成过程中肽链延伸的蛋白因子;

⑶.释放因子:作用是与终止密码子结合终止肽链的的合成并使肽链从核糖体上释放出来。

(二)蛋白质的生物合成过程

翻译过程从阅读框架的5′-AUG开始,按mRNA模板三联体密码的顺序延长肽链,直至终止密码出现。

1.氨基酸的活化;⑴.氨基酰-tRNA合成酶⑵.过程:氨基酰-tRNA合成酶

ATP + AA -----------------→ AA-AMP-酶 + PPi

tRNA + AA-AMP-酶 -----------------→氨基酰-tRNA + 酶

①氨基酰-tRNA合成酶对底物氨基酸和tRNA都有高度特异性。

②氨基酰-tRNA合成酶具有校正活性。

③氨基酰-tRNA的表示方法:Ala-tRNAAla 、Ser-tRNASer 、Met-tRNAMet

2.肽链合成的起始:

⑴.SD序列和起始因子 SD序列:mRNA 5’翻译起始区富含嘌呤的序列

起始因子:原核生物:IF-1、IF-2、IF-3真核生物:eIF-1、eIF-2、eIF-2A、eIF-3等

⑵.起始氨酰-tRNA 真核生物: Met-tRNAiMet原核生物: fMet- tRNAifMet

⑶.起始复合物的形成。①核蛋白体大小亚基分离;②mRNA在小亚基定位结合;③起始氨基酰-tRNA的结合;

④核蛋白体大亚基结合。

3.肽链的延伸:⑴.延伸过程所需蛋白因子称为延长因子;原核生物:EF-T(EF-Tu, EF-Ts)、EF-G真核生物:EF-1 、EF-2

⑵.过程进位:指根据mRNA下一组遗传密码指导,使相应氨基酰-tRNA进入核蛋白体A位,消耗1分子ATP,转肽:是由转肽酶催化的肽键形成过程;移位:肽酰-tRNA由A位→P位的过程,消耗1分子ATP;

4.肽链合成的终止和释放

⑴..原核生物释放因子:RF-1,RF-2,RF-3 真核生物释放因子:eRF

⑵.释放因子的功能:

a识别终止密码,如RF-1特异识别UAA、UAG;而RF-2可识别UAA、UGA。

b是诱导转肽酶改变为酯酶活性,相当于催化肽酰基转移到水分子-OH上,使肽链从核蛋白体上释放。

5.GTP在蛋白质的生物合成中的作用

蛋白质合成过程是一个大量消耗能量的过程。除去氨基酸活化是消耗ATP外,此外消耗的都是GTP。原因是GTP使一些蛋白质因子与tRNA或核糖体易于以非共价键结合。

c肽链合成后的加工与定向运输。从核蛋白体释放出的新生多肽链不具备蛋白质生物活性,必需经过不同的翻译后复杂加工过程才转变为天然构象的功能蛋白。

⑴.加工的方式:①多肽链折叠为天然的三维结构:新生肽链的折叠在肽链合成中、合成后完成,新生肽链N端在核蛋白体上一出现,肽链的折叠即开始。可能随着序列的不断延伸肽链逐步折叠,产生正确的二级结构、模序、结构域到形成完整空间构象;一般认为,多肽链自身氨基酸顺序储存着蛋白质折叠的信息,即一级结构是空间构象的基础;细胞中大多数天然蛋白质折叠都不是自动完成,而需要其他酶、蛋白辅助。几种有促进蛋白折叠功能的大分子:a.分子伴侣:分子伴侣是细胞一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。b. 蛋白二硫键异构酶:多肽链内或肽链之间二硫键的正确形成对稳定分泌蛋白、膜蛋白等的天然构象十分重要,这一过程主要在细胞内质网进行。

二硫键异构酶在内质网腔活性很高,可在较大区段肽链中催化错配二硫键断裂并形成正确二硫键连接,最终使蛋白质形成热力学最稳定的天然构象。c.肽-脯氨酰顺反异构酶:多肽链中肽酰-脯氨酸间形成的肽键有顺反两种异构体,空间构象明显差别。肽酰-脯氨酰顺反异构酶可促进上述顺反两种异构体之间的转换。肽酰-脯氨酰顺反异构酶是蛋白质三维构象形成的限速酶,在肽链合成需形成顺式构型时,可使多肽在各脯氨酸弯折处形成准确折叠。

②肽链一级结构的修饰a.肽链N端的修饰b.个别氨基酸的修饰c.多肽链的水解修饰

③高级结构修饰。a.亚基聚合b.辅基连接c.疏水脂链的共价连接

⑵.运输①蛋白质合成后需要经过复杂机制,定向输送到最终发挥生物功能的细胞靶部位,这一过程称为蛋白质的靶向输送。②所有靶向输送的蛋白质结构中存在分选信号,主要为N末端特异氨基酸序列,可引导蛋白质转移到细胞的适当靶部位,这一序列称为信号序列。③各种新生分泌蛋白的N端有保守的氨基酸序列称信号肽。输送的方式有两种:“翻译转运同步机制”和“翻译后转运机制”

2、遗传密码是如何破译

1953年,沃森和克里克弄清DNA的双链双螺旋结构之后,分子生物学像雨后春笋蓬勃发展。许多科学家的研究,使人们基本了解了遗传信息的流动方向:DNA→信使RNA→蛋白质。也就是说蛋白质由信使RNA指导合成,遗传密码应该在信使RNA上。基因密码的破译是六十年代分子生物学最辉煌的成就。先后经历了五十年代的数学推理阶段和1961-1965年的实验研究阶段。 1954年,物理学家George Gamov根据在DNA中存在四种核苷酸,在蛋白质中存在二十种氨基酸的对应关系,做出如下数学推理:如果每一个核苷酸为一个氨基酸编码,只能决定四种氨基酸(41=4);如果每二个核苷酸为一个氨基酸编码,可决定16种氨基酸

(42=16)。上述二种情况编码的氨基酸数小于20种氨基酸,显然是不可能的。那么如果三个核苷酸为一个氨基酸编码的,可编64种氨基酸(43=64);若四个核苷酸编码一个氨基酸,可编码256种氨基酸(44=256),以此类推。Gamov认为只有43=64这种关系是理想的,因为在有四种核苷酸条件下,64是能满足于20种氨基酸编码的最小数。而44=256以上。虽能保证20种氨基酸编码,但不符合生物体在亿万年进化过程中形成的和遵循的经济原则,因此认为四个以上核苷酸决定一个氨基酸也是不可能的。1961年,Brenner和Grick 根据DNA链与蛋白质链的共线性(colinearity),首先肯定了三个核苷酸的推理。随后的实验研究证明上述假想是正确的。 1962年,克里克用T4噬菌体侵染大肠杆菌,发现蛋白质中的氨基酸顺序是由相邻三个核苷酸为一组遗传密码来决定的。由于三个核苷酸为一个信息单位,有4^3=64种组合,足够20种氨基酸用了破译密码的竞赛中,美国的尼伦伯格博士走在前面。他用严密的科学推理对蛋白质合成的情况进行分析。既然核苷酸的排列顺序与氨基酸存在对应关系,那么只要知道RNA链上碱基序列,然后由这种链去合成蛋白质,不就能知道它们的密码了吗?用仅仅含有单一碱基的尿嘧啶(U),做试管内合成蛋白质的研究。合成蛋白质必须将DNA上的遗传信息转录到RNA上,而RNA的碱基与DNA稍有不同,一般是有UCGA4种(DNA中是TCGA)。这个实验只用了含有单一碱基U的特殊RNA。这样,就得到了只有UUU编码的RNA。把这种RNA 放到和细胞内相似的溶液里,如果上述观点正确,应该得到由单一一种氨基酸组成的蛋白质。这样合成的蛋白质中,只含有苯丙氨酸。于是,人们了解了第一个蛋白质的密码:UUU对应苯丙氨酸。随后,又有人用U-G交错排列合成了半胱氨酸-缬氨酸-半胱氨酸的蛋白质,从而确定了UGU为半胱氨酸的密码,而GUG为缬氨酸的密码。这样,人们不仅证明了遗传密码是由3个碱基排列组成,而且不断地找出了其他氨基酸的编码。进一步研究发现,不论生物简单到只一个细胞,还是复杂到与人一样高等,他的遗传密码是一样的。也就是说,一切生物共用一套遗传密码.

3、遗传密码的特点

分别是:1连续性 2不重叠性 3通用性 4简并性 5有起始密码子和终止密码子

遗传密码,又称密码子、遗传密码子、三联体密码。指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。特点:

1.连续性。mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均造成框移突变。

2.简并性。指一个氨基酸具有两个或两个以上的密码子。密码子的第三位碱基改变往往不影响氨基酸翻译。3.摆动性。mRNA上的密码子与转移RNA(tRNA)J上的反密码子配对辨认时,大多数情况遵守碱基互补配对原则,但也可出现不严格配对,尤其是密码子的第三位碱基与反密码子的第一位碱基配对时常出现不严格碱基互补,这种现象称为摆动配对。

4.通用性。蛋白质生物合成的整套密码,从原核生物到人类都通用。但已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。

4、简述蛋白质跨膜运输的机制

在分子生物学之中目前普遍知道的细胞内蛋白质的运输途径主要有四种:

1、蛋白质的跨膜转运。主要是指在细胞基质中合成的蛋白质转运到内质网、线粒体、质体与过氧化物酶等细胞器。这些蛋白质的运输受到结合于N端的转运肽的引导和其他空间定位信号序列参与,蛋白质在进入细胞器时必须在分子伴侣的帮助下解折叠或维持非折叠状态,这样子有利于通过膜上的输入装置。这是一个耗能的过程。

2、膜泡运输蛋白质大分子被包裹在膜泡之中,经历膜泡出芽与融合,从高尔基体分选转运至细胞的不同部位。

3、选择性的门控转运。在细胞基质中合成的蛋白质通过核孔时,被核孔复合物选择性地完成向细胞核中输入或者细胞核对外输出的过程。

4、利用细胞中的细胞骨架进行运输。在细胞骨架之上,蛋白质与和细胞骨架相结合的分子马达结合在一起,而分子马达则以固定于骨架之上的固定轨道定向地将蛋白质分子运输到细胞内指定的位置。

5、例举一个已知的DNA序列编码一种以上蛋白质的三种方法

③选择不同的起始密码AUG,即同源异型蛋白、错读,例如两种蛋白质均从同一起始密码开始起译,但按同一个读码框架对同一条mRNA进行识读和翻译:

①在核糖体结合位点之后含有多重起始位点;

②以不同的读码框架对同一条mRNA进行识读和翻译;

⑤真核生物内含子选择性剪接可由同一初级转录物产生多种蛋白质,核糖体继续翻译到下一个终止密码处:

①在核糖体结合位点之后含有多重起始位点

②在一两个碱基的移码方式出现重叠的可读框

③不同的剪接方式;

④编码在同一DNA区段不同极性单链上的重叠基因,另一种蛋白由于发生漏读,或终止密码的漏读(其中UGA,其中一种蛋白在遇到第一个终止密码是就停止翻译。

6、信号肽及其功能

各种结合在膜上或越膜的蛋白其特点是利用导肽上的各种信息来到达目的地。然而在一个细胞器外被翻译后再转运的导肽与协同翻译进入分泌途径的导肽的作用是不同的,后者常称为信号肽。

留在ER中,高尔基体中,质膜中或分泌到细胞外的蛋白它们与膜结合有一个明显的共同特点。核糖体合成这些蛋白与ER结合,这样新生蛋白能以共翻译的形式转运到ER中。

ER可以分成两种类型:

(1)膜结合多体的称为粗面内质网(rough ER,RER)为扁囊网;

(2)未结合多体的称为滑面内质网(smooth ER),为小管网。

ER在细胞中特别突出,分泌蛋白的大分子都在ER上合成。

在RER上合成的蛋白质是从核糖体直接越过膜进入ER,然后,蛋白质从ER膜再转运到高尔基体。导向它们的最终目的地。如溶酶体,或分泌胞,或质膜,如免疫球蛋白和多肽激素都是通过此途经分泌到细胞外。7.无答案

8、氨基酸在蛋白质合成过程中是怎样被活化的?

答: 催化氨基酸活化的酶称氨酰-tRNA合成酶,形成氨酰-tRNA,反应分两步进行:

(1)活化需Mg2+和Mn2+,由ATP供能,由合成酶催化,生成氨基酸-AMP-酶复合物。,

(2)转移在合成酶催化下将氨基酸从氨基酸—AMP—酶复合物上转移到相应的tRNA上,形成氨酰-tRNA。9.原核生物和真核生物在合成蛋白质的起始过程有什么区别?

10.蛋白质合成后的加工修饰有哪些内容?

11.蛋白质的高级结构是怎样形成的?

12.真核生物与原核生物核糖体组成有什么不同?如何证明核糖体是蛋白质的合成场所?

15. 列表比较核酸和蛋白质结构

16.蛋白质合成中如何保证其翻译的正确性

所谓“翻译”就是将mRNA上的遗传密码翻译为蛋白质的过程。

在蛋白质合成之前,细胞内的各种氨基酸,首先在某些酶的催化作用下,与ATP结合在一起,形成带有许

多能量的活化氨基酸,然后,这些被激活的氨基酸与特定的tRNA结合起来,被运送到核糖体上去。tRNA是运载氨基酸的工具,每一种氨基酸有一种对应的tRNA。我们可以把tRNA比做翻译过程中的“译员”,它们必须“认识”两种“文字”--mRNA上的密码子“文字”和氨基酸“文字”。

tRNA是一种相对分子质量较低的RNA,一般由75个核苷酸组成。核苷酸链的一端总有CCA这样的碱基序列,氨基酸就附在有CCA的这一端上。tRNA核苷酸链的另一端有一个由3个碱基组成的反密码区,这3个碱基与mRNA上相应的密码子可以互补配对,称为反密码子。反密码子均与mRNA上的密码子配对,就保证了tRNA所携带的氨基酸在合成蛋白质时被放到正确的位置上,可见tRNA分子的特殊的结构保证了每一种tRNA只能够运载一种特定的氨基酸。

17.简述原核生物肽链的延伸过程

多肽链的延长在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。

(1)为密码子所特定的氨基酸tRNA结合到核蛋白体的A位,称为进位。氨基酰tRNA在进位前需要有三种延长因子的作用,即,热不稳定的EF(EF-Tu),热稳定的EF(EF,EF-Ts)以及依赖GTP的转位因子。EF-Tu 首先与GTP结合,然后再与氨基酰tRNA结合成三元复合物,这样的三元复合物才能进入A位。此时GTP 水解成GDP,EF-Tu和GDP与结合在A位上的氨基酰tRNA

①核蛋白体“给位”上携甲酰蛋氨酰基(或肽酰)的tRNA②核蛋白体“受体”上新进入的氨基酰tRNA;

③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的tRNA;④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键

(2)转肽--肽键的形成

在70S起始复合物形成过程中,核糖核蛋白体的P位上已结合了起始型甲酰蛋氨酸tRNA,当进位后,P 位和A位上各结合了一个氨基酰tRNA,两个氨基酸之间在核糖体转肽酶作用下,P位上的氨基酸提供α-COOH基,与A位上的氨基酸的α-NH2形成肽键,从而使P位上的氨基酸连接到A位氨基酸的氨基上,这就是转肽。转肽后,在A位上形成了一个二肽酰tRNA

(3)移位

转肽作用发生后,氨基酸都位于A位,P位上无负荷氨基酸的tRNA就此脱落,核蛋白体沿着mRNA向3’端方向移动一组密码子,使得原来结合二肽酰tRNA的A位转变成了P位,而A位空出,可以接受下一个新的氨基酰tRNA进入,移位过程需要EF-2,GTP和Mg2+的参加。

以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mRNA上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是N端到C端。

19.丝氨酸存在六种密码子,而其tRNA却只有三种,请说明其原因

20.根据翻译过程所涉及的各个步骤,设计出至少六种抑制翻译的方案

23.简述蛋白质生物合成过程

第五章

1、简述PCR反应的基本原理?

PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:

①模板DNA的变性:模板DNA

经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;

②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;

③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

2、简述外源基因转移到受体细胞后的几种命运?

a、外源基因与表达载体一起游离于染色体外进行转录

b、外源基因整合到染色体上并进行转录

c、外源基因整合到染色体上后不转录,而表现为基因沉默

3、对天然质粒的人工构建主要表现在哪些方面?

天然质粒往往存在着缺陷,因而不适合用作基因工程的载体,必须对之进行改造构建:

a、加入合适的选择标记基因,如两个以上,易于用作选择,通常是抗生素基因。

b、增加或减少合适的酶切位点,便于重组。

c、缩短长度,切去不必要的片段,提高导入效率,增加装载量。

d、改变复制子,变严紧为松弛,变少拷贝为多拷贝。

e、根据基因工程的特殊要求加装特殊的基因元件

4、简述基因工程的基本操作步骤及其应用意义?

a、.获取外源目的基因

b、寻找基因载体(通常为质粒、噬菌体等)使用限制性内切酶,使目的基因与载体产生相

同的粘性末端,两个末端互补连接,形成重组DNA

c、通常转化(或感染)将重组DNA引入寄主细胞

d、从大量的寄主细胞中筛选出带有重组体的细胞进行克隆

意义:a、利用基因工程技术可以大量生产在一些正常细胞中产量很低的多肽物质,用于医药等工业生产中

b、定向改造生物基因结构,生产抗病强、品质优的各种农副产品,以提高经济价值

c、用于生命科学的基础研究

第六章

1、基因文库的构建对重组子的筛选举出3种方法并简述过程。

A、抗性筛选:利用培养基中的药物进行筛选,重组子可获得抗性。

B、影印筛选:利用核酸探针对具有目的DNA片段的宿主进行筛选。

C、营养缺陷筛选:宿主是营养缺陷型,重组子可使宿主获得营养补偿能力,从而起到筛选效果。

2、真核生物的基因组是DNA,为什么不直接从DNAPCR得到我们需要的基因呢?

因为真核生物的基因含有大量的非编码区,称为内元(intron),真正编码蛋白的区段是被这些内元隔开的,这些编码区叫做外元(exon)。真核生物的DNA转录成为RNA之后,经过剪切和拼接,去掉这些非编码区,才形成成熟的mRNA,由mRNA再翻译成蛋白质。

所以,如果直接从真核生物的基因组DNA获取目的基因,克隆再表达,试图获取目的蛋白的思路是行不通的,因为获取的DNA里面会含有非编码区。要表达真核生物的基因并表达出相应的蛋白,只能通过提取其mRNA并RT-PCR这条颇费周折的途径。

3、SANGER双脱氧链中止法的原理。

将2’,3’–双脱氧核苷酸(ddNTP)参入到新合成的DNA链中,由于参入的ddNTP缺乏3’–羟基,因此不能与下一位核苷酸反应形成磷酸二酯键,DNA 合成反应将终止。

4.什么是逆转录?病毒中的单链RNA如何利用逆转录酶合成双链DNA,并整合到寄主细胞的基因组中?

逆转录是以RNA为模板合成DNA的过程,即RNA指导下的DNA合成。病毒的单链RNA在病毒进入寄主细胞后被释放出来,此RNA带有与模板互补的tRNA引物,病毒的逆转录酶以此RNA为模板,从引物的3’-OH端,按碱基互补原则以5’→ 3’方向合成DNA链(-),形成RNA—DNA杂交分子,然后逆转酶发挥 RNA水解酶活性,水解杂交分子中的RNA链,最后以新合成的DNA链(-)为模板,合成另一条 DNA链(+),形成双链DNA分子(为病毒)整合到寄主基因组中,随寄主细胞的转录,产生病毒 RNA(+),此RNA可翻译病毒蛋白质,可作为后代病毒RNA.

5.什么是cDNA文库?同基因组文库有何差别?

cDNA文库是以特定的组织或细胞mRNA为模板,逆转录形成的互补DNA(cDNA)与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌形成重组DNA克隆群,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织或细胞的cDNA文库。

(1)基因组文库中包含了所有的基因,而cDNA文库只包含表达的基因,缺乏内元和调节序列,因此在研究基因结构时没有多大用处。

(2)cDNA文库代表了mRNA的来源,其中一些特定的转录本丰富而另一些很少,所以存在丰度的差别;而基因组文库在理论上均等地代表了所有基因序列。

(3)从不同细胞类型制备的cDNA文库包含一些共同序列和独特序列,可用于分离差别表达的基因;基因组文库中不能。

(4)基因组文库由于含有不表达序列,因此比cDNA文库大。

(5)mRNA在不同的组织之间存在丰度的差异,因此cDNA文库的在构建时对于mRNA含量较少的就比较困难;而基因组文库不存在这样的问题。

7.PCR与细胞内的DNA复制两者有哪些主要的相同点和不同点?

PCR实际上是在体外模拟DNA体内复制的过程.和体内DNA复制一样,PCR在扩增DNA的时候也会经历DNA双链的解开(变性),寡聚核酸与单链DNA的结合(退火),以及DNA聚合酶开始合成DNA(延伸)的三个过程.但PCR和体内DNA 复制不同,在体内DNA的复制整个过程是由一系列酶所控制的,所以像DNA解链等在体温下就可以完成.而PCR则需要一个高温来完成DNA的解链,所以PCR反应的DNA taq聚合酶是耐高温的酶.此外,无论体内或者PCR反应,DNA的合成都需要一小段寡聚核酸作为引物提供3‘羟基末端,以让DNA聚合酶识别并开始合成DNA.在体内这个3’羟基末端是由寡聚的RNA提供,而在PCR中则由寡聚的DNA提供,因为DNA分子比RNA分子稳定易于储藏和使用.在体内双链DNA聚合方向是5‘-3’的,其中一条链是5‘-3’,而另外一条链虽然也是5‘-3’,但它是由冈崎片段连接起来的,而总体的合成方向是3‘-5’.在PCR反应中,每一条链的合成方向都是5‘-3’,没有类似冈崎片段的东西.在体内,DNA聚合是从复制起始位点开始的,由聚合酶识别复制起始位点.而在PCR反应中,DNA的聚合是从引物结合处开始的,主要是由引物的特异性来控制复制的起始位置.

第七章

1、举例说明什么是原核生物的可诱导调节?

答:可诱导调节是指一些基因在特殊的代谢化合物的作用下,由原来的关闭状态转变为工作状态,即在某些物质的诱导下使基因活化(2分),例如,在只有乳糖培养基中,E.Coli开始生长不好,直到合成了利用乳糖的一系列酶,具备了利用乳糖作为碳源的能力,E.Coli才能在这一培养基中生存下来,E.Coli获得这一能力的原因就是因为在诱导物乳糖的的诱导下,开动了乳糖操纵子基因,表达了它编码的酶——β-半乳糖苷酶,这一类基因称为可诱导基因,这类酶称为诱导酶(3分)。

2、用含中性碳源(例如甘油)的液体基本培养基培养E.Coli不能诱导lacZ操纵子。一小时后在培养基中加入乳糖和再隔一段时间加入过量的葡萄糖分别会对lac操纵子的表达有什么影响?

8、乳糖操纵子的作用机制?

答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A 三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P 和一个调节基因I。

B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列O 处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。

C、CAP 的正性调节:在启动子上游有CAP 结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP 浓度升高,与CAP 结合,使CAP 发生变构,CAP 结合于乳糖操纵子启动序列附近的CAP 结合位点,激活RNA 聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。

D、协调调节:乳糖操纵子中的I 基因编码的阻遏蛋白的负调控与CAP 的正调控两种机制,互相协调、互相制约。

7、衰减作用如何调控大肠杆菌中色氨酸操纵子的表达?

转录的弱化理论认为mRNA转录的终止是通过前导肽基因的翻译来调节的。因为在前导肽基因中有两个相邻的色氨酸密码子,所以这个前导肽的翻译必定对tRNATrp的浓度敏感。当培养基中色氨酸的浓度很低时,负载有色氨酸的tRNATrp也就少,这样翻译通过两个相邻色氨酸密码子的速度就会很慢,当4区被转录完成时,核糖体才进行到1区(或停留在两个相邻的trp密码子处),这时的前导区结构是2-3配对,不形成3-4配对的终止结构,所以转录可继续进行,直到将trp操纵子中的结构基因全部转录。而当培养基中色氨酸浓度高时,核糖体可顺利通过两个相邻的色氨酸密码子,在4区被转录之前,核糖体就到达2区,这样使2-3不能配对,3-4区可以自由配对形成茎-环状终止子结构,转录停止,trp操纵子中的结构基因被关闭而不再合成色氨酸。所以,弱化子对RNA聚合酶的影响依赖于前导肽翻译中核糖体所处的位置。

5、大肠杆菌乳糖操纵子学说的基本内容有哪些?(与3题答案差不多)

第八章

1.简述DNA的甲基化修饰有哪些生理意义?

答:DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA 甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

2.简述翻译后水平的调控及其加工是如何进行的?

答:真核翻译后水平的调控有哪些(1)翻译后产生的多数蛋白质无生物活性,必须经过切割加工、水解、化学修饰、剪接; (2)某些蛋白质有选择的受到抑制; (3)某些蛋白质必须位于细胞内特定位置,如溶酶体、线粒体、叶绿体; (4)需同其他蛋白质结合,组装成功能单位,如血红蛋白、微管蛋白、核糖体等,都是由多条蛋白质分子结合在一起形成的功能单位

3.真核生物转录后水平的调控机制?

答:真核细胞中,存在着普遍的转录阻遏机制,与基因的激活相拮抗。阻遏蛋白参与的作

用机制可区分为3种:竞争性DNA结合机制、猝灭或遮盖机制及直接作用于通用转录机构的作用机制竞争性DNA结合机制阻遏蛋白结合于基因上游调控区的特定序列,阻止了紧邻的DNA序列与活化蛋白的结合,从而使该基因不能转录

4.试诉真核生物基因表达调控的一般规律?

答:真核基因组比原核大得多,结构更复杂,含有许多重复序列,基因组的大部分序列不是为蛋白质编码的,而为蛋白质编码的基因绝大多数是不连续的。真核生物基本上是采取逐个基因调控表达的形式。真核基因表达调控的环节更多,转录前可以有基因的扩增或重排,并涉及染色质结构的改变、基因激活过程。转录后调控的方式也很多,但仍以转录起始调控为主。正性调控是真核基因调控的主导方面,RNA聚合酶的转录活性依赖于基本转录因子,在转录前先形成转录复合体,其转录效率受许多蛋白因子的影响,协调表达更为复杂。

5.比较原核生物与真核生物基因表达调控的异同点?

答:原核基因表达调控特点:⑴RNA聚合酶只有一种,其σ因子决定RNA聚合酶识别特异性;⑵操纵子模型的普遍性;⑶阻遏蛋白与阻遏机制的普遍性(负性调节占主导);⑷转录和翻译偶联进行;⑸转录后修饰、加工过程简单;⑹转录起始是基因表达调控的关键环节. 真核基因表达调控特点:⑴RNA聚合酶有三种,分别负责三种RNA转录,每种RNA聚合酶由约10个亚基组成;⑵活性染色质结构发生变化;⑶正性调节占主导;⑷转录和翻译分隔进行;

⑸转录后修饰、加工过程较复杂;⑹转录起始是基因表达调控的关键环节.

7.真核生物转录水平的调控机制?P302

答:真核生物真核基因表达在转录水平的调控机制极为复杂。据估计,真核细胞的基因大约有十分之一是用以编码参与转录调控尤其是转录起始调控的蛋白质的。目前,这方面的研究主要集中于通用转录因子在TATA盒上的组装与去组装以及基因特异性激活蛋白对转录的正调控作用两个方面,而对转录的负调控作用尚未予以足够重视。这是由于较晚才发现真核基因表达调控中存在阻遏蛋白,对它的认识尚需一个不断深化的过程,同时也有观点上的束缚:认为既然在真核细胞中通常只有大约7%的基因能被转录,而其它的基因与组蛋白等结合为染色质而受到阻遏,所以经济的调控手段应为激活而非阻遏。但在真核细胞中,确实存在着普遍的转录阻遏机制,与基因的激活相拮抗。阻遏蛋白参与的作用机制可区分为3种:竞争性DNA结合机制、猝灭或遮盖机制及直接作用于通用转录机构的作用机制竞争性DNA结合机制阻遏蛋白结合于基因上游调控区的特定序列,阻止了紧邻的DNA序列与活化蛋白的结合,从而使该基因不能转录。

8.真核基因表达调控的过程?P301

分子生物学简答题

分子生物学:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。 C值反常:也称c值谬误,指c值往往与种系进化复杂性不一致的现象,及基因组的大小与遗传复杂性之间没有必然的联系,某些较低等的生物c值却很大。DNA重组技术:又称基因工程。将不同的DNA片段按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。 GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界为AG,因此,GU表示供体衔接点的5’端,AG 表示接纳点的3’端序列,习惯上,把这种保守序列模式称为GU-AG法则。 RNA干涉:是利用双链小RNA高效,特异性降解细胞内同源MRNA,从而阻断体内靶基因的表达,使细胞内出现靶基因缺失表性的方法。 摆动假说:crick为解释反密码子中子某些稀有成分的配对(如I)以及许多氨基酸中有两个以上密码子而提出的假设。编码链/有义链:在DNA双链中,与mRNA 序列(除t/u替换外)和方向相同的那条DNA,又称有义链 模板链:指双链DNA中能够作为模板通过碱基互补原则指导mRNA前体的合成的DNA链,又称反义链 操纵子:原核生物中由一个或多个相关基因以及转录翻译调控原件组成的基因表达单元。 反式作用因子:能直接或间接识别或结合在各类顺式作用元件中核心序列上参与调控靶基因转录效率的pro。 基因定点突变:向靶DNA片段中引入所需的变化,包括碱基的添加,删除,或改变基因家族:在基因组进化中,一个基因通过基因重复发生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物 基因敲除技术:针对一个序列已知打包功能未知的基因,从DNA水平上设计实验,彻底破坏该基因的功能或消除其表达机制,从而推测该基因的生物学功能 基因组DNA文库:某一生物体全部或部分基因的集合,将某个生物的基因组DNA 或cDNA片段与适当的载体体外重组后,转化宿主细胞,所谓的菌落或噬菌体的集合即为…… 基因治疗:是将具有治疗价值的基因即“治疗基因“装配于带有在人体细胞中表达所必备元件的载体中,导入人体细胞,通过靶基因的表达来治疗遗传疾病 聚合酶链反应:指通过模拟体内DNA复制方式在体外选择性的将DNA某个特定区域扩增出来的 魔斑核苷酸:在应急反应过程中,由大量GTP合成的ppGpp和pppGpp,它们的主要作用可能是影响RNA聚合酶与启动子结合的专一性,诱发应急反应,帮助细菌度过难关 弱化子:原核生物操纵子中能明显减弱甚至终止转录作用的一段核苷酸序列 同工tRNA:几个代表AA,能够被一个特殊的氨酰—tRNA合成酶识别的Trna 顺式作用元件:存在于基因旁侧序列中能影响基因表达的序列,包括启动子,增强子等,本身不编码任何pro,仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控 原位杂交技术:用标记的核苷酸探针,经放射自显影或非放射检测体系,在组织,细胞及染色体水平上对核苷酸进行定位和相对定量研究的手段 转座/移位:遗传信息从一个基因座转移至另一个基因座的现象,由可移问位因子介导的遗传物质的重排 管家基因:维持细胞正常生长发育的必需基因,所以细胞中均需表达的一类基因转座子:是存在染色体上的可自主复制和移位的基本单位,参与转座子易位及DNA 链整合的酶称为转座酶 原癌基因:正常细胞中与病毒癌基因具有显著同源性的基因,本身没有致癌作用,但是经过致癌因子的催化下激活成为致 癌基因,使正常细胞向恶性转化。 SP序列:mRNA中用于结合原核生物核糖 体的序列 无义突变:在蛋白质的结构基因中,一个 核苷酸的改变可能是代表某个AA的密码 子变成终止密码子(UAG UGA UAA),使 pro合成提前终止,合成无功能或无意义 的多肽,这称— 错义突变:由于结构基因中某个核苷酸的 变化使一种AA的密码子变成另外一种AA 的密码 指导RNA:与已正确编码的RNA序列互补 的一小段RNA,被用来作为向未经编辑的 RNA中插入碱基的模板。 上游启动子元件:将TATA区上游的保守 序列称为— 启动子:与基因表达启动相关的顺式作用 原件,是结构基因的重要成分。它是一段 位于转录起始位点5’端上游区大约 100~200bp以内的具有独立功能的DNA序 列,能活化RNA聚合酶,使之与模板DNA 准确地相结合并具有转录起始的特异性。 细菌转化:是一种细菌菌株由于捕获了来 自供体菌株的DNA而导致性状特征发生 遗传改变的过程,提供转化DNA的菌株叫 做供体菌株,接受转化DNA的菌株被称作 受体菌株。 实时定量PCR技术:利用带荧光检测的 PCR仪对整个PCR过程中扩增DNA的累积 速率绘制动态变化图。 基因工程:在体外将核算分子插入病毒, 质粒或其他载体分子,构成遗传物质的新 组合,使之进入新的宿主细胞内并获得持 续稳定增殖能力和表达。 应答原件:能与某个(类)专一蛋白因子 结合,从而控制基因特异表达的DNA上游 序列。 增强子:是指能使与它连锁的基因转录频 率明显增加的DNA序列(1.5分)。它可 以在启动子的上游,也可以在启动子的下 游,绝大多数增强子具有组织特异性(1.0 分)。 分子伴侣:是结合其他不稳定蛋白质并稳 定其构象的一类蛋白质(1.0分)。通过 与部分折叠的多肽协调性地结合与释放, 分子伴侣促进了包括蛋白质折叠、寡聚体 装配、亚细胞定位和蛋白质降 负调控:阻遏蛋白结合在操作子位点,阻 止基因的表达。没有调节蛋白时操纵元内 结构基因是表达的,而加入调节蛋白后结 构基因的表达活性被关闭,这种调节称为 负调节。 应急因子:是指与核糖体相结合的蛋白质 RelA,当空载的tRNA进入A位时,它催 化GTP形成pppGpp或催化GDP形成 ppGpp。 信号肽:在蛋白质合成过程中N端有 15~36个氨基酸残基的肽段,引导蛋白质 的跨膜。 密码的简并性:由一种以上密码子编码同 一个氨基酸的现象称为密码的简并性 移码突变(frame-shift mutation):在 mRNA中,若插入或删去一个核苷酸,就 会使读码发错误,称为移码,由于移码而 造成的突变、称移码突变 简答题 1原核生物与真核生物基因组的不同? 答:原核基因组:常仅由一条环状双链DNA 分子组成,结构简单;基因组中只有一个复 制起点;具有操纵子结构,转录的RNA为多 顺反子;有重叠基因(1、基因内基因 2、部 分重叠基因 3、一个碱基重叠);无内含子; 编码pro的DNA在基因组中所占比例较大; 结构基因为单贝 真核基因组:真核基因组庞大,一般都远 大于原核生物;真核基因组存在大量的重复 序列;真核基因组的大部分为非编码序列, 占整个基因组序列的90%以上;真核基因组的 转录产物为单顺反子;真核生物为断裂基因、 有内含子结构;真核基因组存在大量的顺式 作用原件;真核基因组中存在大量的DNA多 态性;真核基因组具有端粒结构。 2比较RNA转录与DNA复制的异同? 答:相同:都以DNA链作为模板;合成方向 均为5’—3’;聚合反应均是通过核苷酸之间 形成的3’,5’—磷酸二酯建使核苷酸链延长 不同:复制转录 模板:两条链均复制;模板链转录(不对称 转录) 原料:dNDP ; NTP 酶:DNA聚合酶;RNA聚合酶 产物:子代双链DNA;mRNA,tENA,rRNA 配对:A---T ,G---C; A—U,T---A,G---C 引物:RNA引物;无 试比较转录与复制的区别。: 1,目的不同,所使用的酶、原料及其它辅助 因子不同,转录是合成RNA,复制是合成DNA; 2,方式不同:转录是不对称的,只在双链DNA 的一条链上进行,只以DNA的一条链为模板, 复制为半不连续的,分别以DNA的两条链为 模板,在DNA的两条链上进行;3,复制需要 引物,转录不需要引物;,4复制过程存在校 正机制,转录过程则没有;5转录产物需要加 工,复制产物不需要加工;6复制与转录都经 历起始、延长、终止阶段,都以DNA为模板, 新链按碱基互补原则,5'→3’方向合成。 3、 RNA转录的基本过程? 转录的基本过程包括:模板识别、转录起始、 转录的延伸和终止。 模板识别:RNA聚合酶与启动子DNA双链相互 作用并与之结合; 转录起始:RNA聚合酶结合在启动子上以后, 是启动子附近的DNA双链解旋并解链,形成 转录泡以促使底物核糖核苷酸与模板DNA的 碱基配对,当RNA链上第一个核苷酸键产生 标志着转录的起始,一旦RNA聚合酶成功地 合成9个以上核苷酸并离开启动子区,转录 就进入正常的延伸阶段。 转录的延伸:RNA聚合酶释放因子离开启动子 后,核心酶沿模板DNA链移动并使新生成RNA 链不断伸长,在解链区形成RNA—DNA杂合物。 转录终止:当RNA链延伸到转录终止位点时, RNA聚合酶不再形成新的磷酸二酯建,DNA— RNA杂合物分离,转录泡瓦解,DNA恢复成双 链状态,DNA聚合酶和RNA链都从模板上释放 出来,转录终止。 4.DNA复制的过程和机制? 答:分三个阶段:即复制的起始、延伸、终 止。 复制的起始:DNA解旋解链,形成复制叉,引 发体组装,然后在引发酶的催化下以DNA链 为模板合成一段短的RNA引物。 延伸:DNA链的延伸由DNA聚合酶催化以亲代 DNA链为模板引发体移动,从5’—>3’方向 聚合子代DNA链,前导键的合成以5’—>3’ 方向随着亲本双链体的解开而连续进行复 制,后随链在合成过程中,一段亲本DNA单 恋首先暴露出来,然后以与复制叉移动相反 方向,按5’—>3’方向合成一系列冈崎片段。 终止:当子链延伸到终止位点时,DNA复制终 止,切除RNA引物,填充缺口,在DNA连接 酶的催化下将相邻的DNA片段连接起来形成 完整的DNA长链。 5、真核生物与原核生物在翻译的起始过程中 有哪些区别? 答:真核生物的起始tRNA是met-tRNA met 原核是fmet-tRNA fmet; 真核生物核糖体小亚基识别mRNA的帽子结 构,而原核生物通过与mRNA的SD序列结合; 真核生物小亚基先与met-tRNAmet结合再与 mRNA结合,而原核生物小亚基先与mRNA结合 再与fmet-tRNAfmet结合;真核生物有较多 的起始因子参与,且核糖体较大为80S,而原 核生物有较少的起始因子参与,且核糖体较 小为70S 6.简述蛋白质生物合成过程。,以大肠杆菌为 例: (1)氨基酸的活化:游离的氨基酸必须经过活 化以获得能量才能参与蛋白质合成,由氨酰 -tRNA合成酶催化,消耗1分子ATP,形成氨 酰-tRNA。 (2)肽链合成的起始:由起始因子参与,mRNA 与30S小亚基、50S大亚基及起始甲酰甲硫氨 酰-tRNA(fMet-tRNAt)形成70S起始复合物, 整个过程需GTP水解提供能 (3)肽链的延长:起始复合物形成后肽链即开 始延长。首先氨酰-tRNA结合到核糖体的A 位,然后,由肽酰转移酶催化与P位的起始 氨基酸或肽酰基形成肽键,tRNA f 或空载tRNA 仍留在P位.最后核糖体沿mRNA5’→3’方 向移动一个密码子距离,A位上的延长一个氨 基酸单位的肽酰-tRNA转移到P位,全部过程 需延伸因子EF-Tu、EF-Ts,能量由GTP提供 (4)肽链合成终止,当核糖体移至终止密码 UAA、UAG或UGA时,终止因子RF-1、RF-2 识别终止密码,并使肽酰转移酶活性转为水 解作用,将P位肽酰-tRNA水解,释放肽链, 合成终止。 7.试比较真核生物与原核生物mRNA转录的主 要区别。 答:转录单元:原核生物常为多顺反子转录, 真核生物常为单顺反子转录。酶:RNA聚合酶 核心酶加p因子,原核生物为RNA聚合酶Ⅱ 聚合酶加转录因子。转录产物:真核生物不 需加工与翻译相偶联真核生物需加工与翻译 分开。转录过程:无核小体的结局和组装的 过程,原核生物有核小体的结局和组成的过 程。转录终止“原核生物两种方式分别是依 赖P因子的终止和不依赖P因子的终止,真 核生物转录的终止加尾修饰同步进行。反应 部位:原核生物在类核,真核生物在核内。 8.比较原核和真核生物mRNA的区别? 答:(1)、原核生物mRNA5’端无帽子结构,3’ 端没有或只少较短的polyA结构,真核生物 5’端存在帽子结构,3’端具有polyA尾巴. (2)、许多原核生物mRNA可能以多顺反子形 式存在,而真核生物几乎都是单顺反子(3)原 核生物mRNA的半衰期短,转录与翻译是紧密 相连的,两个过程不仅发生在同一细胞间里, 而且几乎是同步进行的,真核生物mRNA的录 翻译是发生在不同空间和时间范畴内的。(4) 原核生物以AUG作为起始密码有时以GUG, UUG作为起始密码,真核几乎永远以AUG作为 起始密码。 9.乳糖操纵子调控机理 答:是大肠杆菌中控制半乳糖苷酶诱导合成 的操纵子。包括调控元件P(启动子)和O(操 纵基因)阻遏子(I),以及结构基因lacZ(编 码半乳糖苷酶)、lacY(编码通透酶)和lacA (编码硫代半乳糖苷转乙酰基酶)。转录时 RNA聚合酶首先与启动子结合,通过操纵区向 右转录,转录从O区中间开始,按Z→Y→A 方向进行,每次转录出来的一条mRNA上都带 有这3个基因,转录的调控是在启动区和操 纵区进行的。 1、无乳糖时,调节基因lacI编码阻遏蛋白, 与操纵子基因O结合后抑制结构基因转录, 不产生代谢乳糖的酶。 2、只有乳糖存在时,乳糖可以与lac阻遏蛋 白结合,而使阻遏蛋白不与操纵基因结合, 诱导结构基因转录,代谢乳糖的酶产生以代 谢乳糖。 3、葡萄糖和乳糖同时存在时,葡萄糖的降解 产物能降低cAMP的含量,影响CAP与启动基 因结合,抑制结构基因转录,抑制代谢乳糖 的酶产生。 10、色氨酸操纵子及机制? 答:负责色氨酸的生物合成,当培养基中有 足够的色氨酸时,这个操纵子自动关闭,缺 乏时操纵子打开,trp基因表达,色氨酸或与 其代谢有关的某种物质在阻遏过程中起作 用。由于trp体系参与生物合成而不是降解, 它不受葡萄糖或cAMP-CAP的调控。 弱化作用:当色氨酸达到一定浓度、但还没 有高到能够活化R使其起阻遏作用的程度时, 产生色氨酸合成酶类的量已经明显降低,而 且产生的酶量与色氨酸的浓度呈负相关。先 导序列起到随色氨酸浓度升高降低转录的作 用,这段序列就称为衰减子或弱化子。在trp 操纵元中,对结构基因的转录阻遏蛋白的负 调控起到粗调的作用,而衰减子起到细调的 作用。 11.原核生物和真核生物复制的差异? 答:原核真核 复制起点:一般为单复制起点;一般为多复 制起点 主要的酶:DNA聚合酶Ⅲ;DNA聚合酶& 单链复制叉复制速度:快;慢 复制的延伸:无核小体的解聚及诚信组装; 有核小体…… 终止:两个复制叉相遇终止复制(环形DNA); 端粒酶复制末端完成复制(线性DNA) 12原核细胞和真核细胞在合成蛋白质的 起始过程有什么区别。 .(1)起始因子不同:原核为IF-1,IF-2, IF-2,真核起始因子达十几种。 (2)起始氨酰-tRNA不同:原核为 fMet-tRNA f ,真核Met-tRNAi (3)核糖体不同:原核为70S核粒体, 可分为30S和50S两种亚基,真核为80S 核糖体,分40S和60S两种亚基

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学试题及答案

分子生物学试题及答案

分子生物学试题及答案一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。

除了5’ 3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。3.原核生物中有三种起始因子分别是(IF-1)、( IF-2 )和(IF-3 )。4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。 5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、( DNA重组技术)三部分。 7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:( hnRNA在转变为mRNA 的过程中经过剪接,)、

分子生物学简答题

1.(1)说明基因组的大小和基因组复杂性的含义 基因组的大小:指在基因组中DNA的总量 基因组复杂性:指基因组中所有单一序列的总长度 (2)这个基因组的大小怎样?4000bp (3)这个基因组的复杂性如何?450 bp 2.试比较原核生物与真核生物的翻译 原核生物与真核生物的翻译比较如下:仅述真核生物的,原核生物与此相反。 ①起始Met不需甲酰化 ②无SD序列,但需要一个扫描过程 ③tRNA先于mRNA与核糖体小亚基结合 ④起始因子比较多 ⑤只一个终止释放因子 3.试比较真核生物与原核生物mRNA转录的主要区别 原核生物:操纵子RNA聚合酶核心酶加δ因子不需加工与翻译相偶联类核 真核生物:单基因RNA聚合酶Ⅱ聚合酶加转录因子需加工故与翻译相分离核内 4.激活蛋白(CAP)对转录的正调控作用 环腺苷酸(cAMP)受体蛋白CRP,cAMP与CRP结合后所形成的复合物称激活蛋白CAP。当大肠杆菌生长在缺乏葡萄糖的培养基中时,CAP合成量增加,CAP具有激活乳糖(Lac)等启动子的功能。一些依赖于CRP的启动子缺乏一般启动子所具有的典型的-35区序列特征(TTGACA)。因此RNA聚合酶难以与其结合。 CAP的存在(功能):能显著提高酶与启动子结合常数。主要表现以下二方面: ①CAP通过改变启动子的构象以及与酶的相互作用帮助酶分子正确定向,以便与-10区结合,起到取代-35区功能的作用。 ②CAP还能抑制RNA聚合酶与DNA中其它位点的结合,从而提高与其特定启动子结合的概率。 5.原核生物与真核生物启动子的主要差别 原核生物 TTGACA——TATAA T——起始位点 -35 -10 真核生物 增强子——GC——CAAT——TA TAA——5mGpp——起始位点 -110 -70 -25 6.比较DNA复制和RNA转录的异同 相同点:DNA复制和RNA转录在原理上是基本一致的,体现在: ①这两种合成的直接前提是核苷三磷酸,从它的一个焦磷酸键获得能量促使反应走向合成 ②两种合成都是一个酶为四种核苷酸工作 ③两种合成都是以DNA为模板 ④合成前都必须将双链DNA解旋成单链 ⑤合成的方向都是5-3 7.假设从一种生物抽提了核酸,你将用什么简便的方法,区别它是DNA或RNA?是单股或双股? 我们可用紫外分光光度计对抽提的核酸进行鉴定。因为不同的核苷酸有不同的吸收特性,纯品DNA在260nm与280nm的OD值之比为1.8,纯DNA应为2.0。根据OD值之比即可判断是DNA还是RNA。

分子生物学问答题

1.什么是转座? 转座因子在一个DNA分子内部或者两个DNA之间不同位置 间的移动。 2.病毒基因组有哪些特点?答:不同病毒基因组大小相差较大;不同病 毒基因组可以是不同结构的核酸;除逆转录病毒外,为单倍体基因组;病毒基因组有的是连续的,有的分节段;有的基因有内含子;病毒基因组大部分为编码序列;功能相关基因转录为多顺反子mRNA有基因重叠现象。 3.原核生物基因组有哪些特点?答:基因组由一条环状双链DNA组成; 只有一个复制起始点;大多数结构基因组成操纵子结构;结构基因无重叠现象;无内含子,转录后不需要剪接;基因组中编码区大于非编码区;重复基因少,结构基因一般为单拷贝;有编码同工酶的等基因;基因组中存在可移动的DNA序列;非编码区主要是调控序列。 4.真核生物基因组有哪些特点?答:每一种真核生物都有一定的染色 体数目;远大于原核基因组,结构复杂,基因数庞大;真核生物基因转录为单顺反子;有大量重复序列;真核基因为断裂基因;非编码序列多于编码序列;功能相关基因构成各种基因家族。 5.基因重叠有什么意义?答:利用有限的核酸储存更多的遗传信息,提 高自身在进化过程中的适应能力。 6.质粒有哪些特性? 答:在宿主细胞内可自主复制;细胞分裂时恒定地 传给子代;所携带的遗传信息能赋予宿主特定的遗传性状;质粒可以转移。 7.什么是顺式作用元件? 答:基因中能影响基因表达,但不编码RNA 和蛋白质的DNA序列。顺式作用元件主要包括启动子、增强子、负调控元件等。 8.简述原核基因表达的特点。答:(1)只有一种RNA聚合酶。(2)原核 生物的基因表达以操纵子为基本单位。(3)转录和翻译是偶联进行的。(4)mR

分子生物学习题与答案

第0章绪论 一、名词解释 1.分子生物学 2.单克隆抗体 二、填空 1.分子生物学的研究内容主要包含()、()、()三部分。 三、是非题 1、20世纪60年代,Nirenberg建立了大肠杆菌无细胞蛋白合成体系。研究结果发现poly(U)指导了多聚苯丙氨酸的合成,poly(G)指导甘氨酸的合成。(×) 四、简答题 1. 分子生物学的概念是什么? 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 3. 分子生物学研究内容有哪些方面? 4. 分子生物学发展前景如何? 5. 人类基因组计划完成的社会意义和科学意义是什么? 6.简述分子生物学发展史中的三大理论发现和三大技术发明。 7. 简述分子生物学的发展历程。 8. 二十一世纪生物学的新热点及领域是什么? 9. 21世纪是生命科学的世纪。20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域? 答案: 一、名词解释 1.分子生物学:分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究。

2.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 二、填空 1.结构分子生物学,基因表达与调控,DNA重组技术 三、是非题 四、简答题 1. 分子生物学的概念是什么? 答案: 有人把它定义得很广:从分子的形式来研究生物现象的学科。但是这个定义使分子生物学难以和生物化学区分开来。另一个定义要严格一些,因此更加有用:从分子水平来研究基因结构和功能。从分子角度来解释基因的结构和活性是本书的主要内容。 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 3. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来

分子生物学简答题教学教材

试述乳糖操纵子的阻遏作用、诱导作用及正调控。 阻遏作用:阻遏基因lacl转录产生阻遏物单体,结合形成同源四体,即阻遏物。它是一个抗解链蛋白,当阻遏物与操纵基因O结合时,阻止DNA形成开放结构,从而抑制RNA聚合酶的功能。lacmRNA的转录起始受到抑制。 诱导作用:按照lac操纵子本底水平的表达,每个细胞内有几个分子的β-半乳糖苷酶和β-半乳糖苷透过酶。当加入乳糖,在单个透过酶分子的作用下,少量乳糖分子进入细胞,又在单个β-半乳糖苷酶的作用下转变为诱导物异构乳糖,诱导物通过与阻遏物结合,改变它的三维构象,使之因不能与操纵基因结合而失活,O区没有被阻遏物占据从而激发lacmRNA 的合成。 调控作用:葡糖糖对lac操纵子的表达的抑制是间接的,不是葡萄糖本身而是其降解产物抑制cAMP的合成。cAMP-CAP复合物与启动子区的结合是lacmRNA转录起始所必须的,因为该复合物结合于启动子上游,能使DNA双螺旋发生弯曲。有利于形成稳定开放型启动子-RNA聚合酶结构。如果将葡萄糖和乳糖同时加入培养基中,lac操纵子处于阻遏状态,不能被诱导 试述E.coli的RNA聚合酶的结构和功能。 2个α亚基、一个β亚基、一个β’亚基和一个亚基组成的核心酶,加上一个亚基后则成为聚合酶全酶 α亚基:核心酶组装、启动子识别 β和β’亚基:β和β’共同形成RNA合成的催化中心 因子:存在多种因子,用于识别不同的启动子 试述原核生物DNA复制的特点。 1.原核只有一个起始位点。 2.原核复制起始位点可以连续开始新的复制,特别是快速繁殖的细胞。 3.原核的DNA聚合酶III复制时形成二聚体复合物。 4.原核的DNA聚合酶I具有5'-3'外切酶活性 DNA解旋酶通过水解ATP 产生能量来解开双链DNA 单链结合蛋白保证被解链酶解开的单链在复制完成前保持单链结构 DNA拓扑异构酶消除解链造成的正超螺旋的堆积,消除阻碍解链继续进行的这种压力,使复制得以延伸 真核生物hnRNA必须经过哪些加工才能成为成熟的mRNA,以用作蛋白质合成的模板? (1)、在5’端加帽,5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7Gppp)。 (2)、3’端加尾,多聚腺苷酸尾巴。准确切割,加poly(A)(3)、RNA的剪接,参与RNA剪接的物质:snRNA、snRNP(4)、RNA的编辑,编辑(editing)是指转录后的RNA 在编码区发生碱基的突变、加入或丢失等现象。 (5.)、RNA的再编码,mRNA有时可以改变原来的编码信息,以不同的方式进行翻译 (6.)、RNA的化学修饰,人细胞内rRNA分子上就存在106种甲基化和95种假尿嘧啶产物。

(完整版)分子生物学简答题全

简答题 6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。 答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关 酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链 SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进 而导致其彻底降解。 反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全 被抑制。 8.简述真核基因表达的调控机制。 答:(1)DNA和染色质结构对转录的调控: ①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作 用,④基因重排,⑤染色质的丢失,⑥基因扩增; (2)转录起始调控: ①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用 调节),②反式作用因子与顺式作用原件结合对转录过程进行调控; (3)转录后调控: ①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA 稳定性调控; (4)翻译起始的调控: ①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编 码区的调控,⑤小分子RNA; (5)翻译后加工调控: ①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。 9.简述mRNA加工过程。 答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因 子的辅助)。 (3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。内含子两端的结构通常是5′-GU……AG-3′。选择性剪接的作 用机制包括;A使用不同的剪接位点,B选择使用外显子,C、反式剪接,D、使用 不同的启动子,E、使用不同的多腺苷酸化位点)。 (4)RNA的编辑(发生于转录后水平,改编mRNA序列,C→U或A→G,增加遗传信息容量)。 10.简述生物的中心法则。 答:中心法则(genetic central dogma),是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。

分子生物学简答题

分子史上得经典事件? 答:1953watson 与crick 提出得DNA分子双螺旋模型在科研过程中,要具有清醒得宏观洞察力、非凡得科学想像力与严密得逻辑思维能力,选择正确得研究路线,广泛借鉴她人得研究成果并加以综合性得科学思考。 分子生物学得理论基础就是?主要得研究策略有?(第一章) 答:1958年,克里克提出两个学说,奠定了分子生物学得理论基础。第一个学说就是“序列学说”,它认为一段核酸得特殊性完全由它得碱基序列决定,碱基序列编码一个特定蛋白质得氨基酸序列,蛋白质得氨基酸序列决定了蛋白质得三维结构。第二个学说就是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或就是从蛋白质传回核酸。研究策略:体内与体外实验得结合将遗传与DNA联系起来。体内(In v ivo)实验:在活体内进行得实验,包括在培养得细胞或组织。体外(In vitro)实验:在细胞提取物中,或者就是人工合成得细胞成分混合物中。 分子与其她学科关系?生物学离不开生物学技术? 答:分子生物学就是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来得。现代生物学得发展越来越多得应用分子生物学得理论与方法进行研究。 什么就是分子生物学? 广义得概念:分子生物学就是研究核酸、蛋白质等生物大分子形态、结构特征及其重要性、规律性与相互关系得科学、 狭义得概念:从分子水平研究生物大分子得结构与功能从而阐明生命现象本质得科学,主要指遗传信息得传递(复制)、保持(损伤与修复)、基因得表达(转录与翻译)与调控等,也称之为基因得分子生物学。 DNA分子在结构上为什么最适合作为遗传信息载体?(第二章第一节) 化学性质比较稳定,DNA复制时严格遵守碱基互补配对原则,且为半保留复制;四种脱氧核糖核苷酸可以组成不同得长链,可以携带大量遗传信息。 DNA提取操作要点就是?(第二章第一节) 提取原则:保持一级结构得完整性,将其她生物大分子得污染降到最低。 提取流程:破碎细胞;DNA释放到水相;去垢剂或蛋白变性剂抽提;除去蛋白等杂质。DNA沉淀, DNA溶解与保存。 DNA提取与鉴定得相关操作中需要注意什么? 1)DNA分子较大应注意防止机械张力将其打断,所以操作要轻柔,离心速度要控制。 2)要灭活DNA酶,采用0、01M得EDTA或者柠檬酸钠处理,或者用去垢剂(SDS)、蛋白变性剂(苯酚、氯仿等)就可以基本灭活,此外,55 ℃处理也经常用于灭活残余得DNA酶、3)除去蛋白质等杂质时酚抽提要彻底,上清要去尽,吸取上清时不要带有沉淀。 4)鉴定时注意电泳时得电压,电泳缓冲液得浓度,pH;选用合适得凝胶以及凝胶得浓度。 简述RNA得功能、 (1)RNA就是一些病毒得遗传物质。 (2)与蛋白质合成有关,mRNA 在功能上就是基因与蛋白合成机器之间得中介;tRNA在功能 上就是mRNA上密码子与氨基酸之间得衔接分子。 (3)有些RNA具有催化活性(核酶)。例如研究发现,四膜虫得26srRNA得单个内含子在体外具有自我剪接功能;RNase P中得RNA组分在体外能对tRNA前体进行加工。(4)RNA可以通过多种途径调节基因表达。调解途径包括不同得RNA折叠,核糖开关,与非编 码RNA有关得RNA干扰现象、X染色体随机失活现象等、 获得高质量RNA得操作应注意什么?

分子生物学简答题全

简答题 6.为什么利用RNAi抑制一个基因得表达较利用反义RNA技术更为彻底。 答:RNAi就是外源或内源性得双链RNA?进入细胞后引起与其同源得mRNA特异性降解、dsRNA进入细胞后,在Dicer作用下,分解为21-22bp得SiRNA、SiRNA结合 相关酶,形成RNA介导得沉默复合物RISC、RISC在A TP作用下,将双链SiRNA 变成单链SiRNA,进而成为有活性得RISC,又称为slicer、slicer与靶mRNA结合, 导致其断裂,进而导致其彻底降解. 反义RNA就是与靶mRNA互补得RNA,它通过与靶mRNA特异结合而抑制其翻译表 达,反义RNA就是与靶mRNA就是随机碰撞并通过碱基互补配对,所以,mRNA不一 定完全被抑制。 8。简述真核基因表达得调控机制。 答:(1)DNA与染色质结构对转录得调控: ①DNA甲基化,②组蛋白对基因表达得抑制,③染色质结构对基因表达得调控作 用,④基因重排,⑤染色质得丢失,⑥基因扩增; (2)转录起始调控: ?①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用调节), ②反式作用因子与顺式作用原件结合对转录过程进行调控; (3)转录后调控: ①5'端加帽与3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA 稳定性调控; (4)翻译起始得调控: ①阻遏蛋白得调控,②对翻译因子得调控,③对AUG得调控,④mRNA 5’端非编码 区得调控,⑤小分子RNA; (5)翻译后加工调控: ①新生肽链得水解,②肽链中氨基酸得共价修饰,③信号肽调控. 9。简述mRNA加工过程。 答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。(2)3′端加入Poly(A)尾(A、组蛋白得成熟mRNA无需加polyA尾;B、加尾信号包 括AAUAAA与富含GU得序列;C、加尾不需模板;D剪切过程需要多种蛋白质因子 得辅助)。 (3)mRNA前体得剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟得有功能得mRNA分子.内含子两端得结构通常就是5′—GU……AG-3′。选择性剪接得作 用机制包括;A使用不同得剪接位点,B选择使用外显子,C、反式剪接,D、使用不 同得启动子,E、使用不同得多腺苷酸化位点)。 (4)RNA得编辑(发生于转录后水平,改编mRNA序列,C→U或A→G,增加遗传信息容量)。 10.简述生物得中心法则。 答:中心法则(genetic centraldogma),就是指遗传信息从DNA传递给RNA,再从RN A传递给蛋白质,即完成遗传信息得转录与翻译得过程。也可以从DNA传递给DNA,即完成DNA得复制过程。 11。简述真核生物基因结构及特点。 答:真核细胞得基因也就是由编码区与非编码区两部分组成得; (1)编码区: 外显子—-能编码蛋白质得序列。 特点:间隔得、不连续得。即能编码蛋白质得序列被不能编码蛋白质得序列分隔 开来,成为一种断裂得形式不能编码蛋白质得序。?内含子——列。 (2)非编码区: 有调控作用得核苷酸序列.?启动子——就是基因结构中位于编码区上游得核苷酸序列,就是RNA聚合酶结合点,能准确地识别转录得起点并开始转录,有

分子生物学论述题

分子生物学论述题库 1. 什么是cDNA文库同基因组文库有何差别 2. 以人类基因组和拟南芥基因组为例说明你对生物基因组全序列测定工作的科学意义的认识。 3. 建立一个基因文库后,如何鉴定一个携带目的基因的克隆 4. 简述真核与原核细胞中翻译起始的主要区别。 5. 怎样将一个平末端DNA片段插入到EcoRⅠ限制位点中去 6 人类基因组计划完成的社会意义和科学意义是什么 7 什么是操纵子(operon)试说明色氨酸操纵子(Trp operon)在原核基因表达调控中的 调控机制和重要作用。 8. 简要解释顺式作用元件与反式作用因子,并举二例说明他们的相互作用方式。 9 试说明真核细胞与原核细胞在基因转录,翻译及DNA的空间结构方面存在的主要差异,表现在哪些方面 10 限制性核酸内切酶有哪几种类型哪一种类型的限制酶最适合于基因工程,为什么请简要说明理由。 11 Apoptosis的生物学意义及其调控基因。 12 基因转移的概念及基因转移载体应具备的条件。 13 原癌基因的功能及其转化为癌基因的机理。 14 人主要组织相容性抗原在细胞识别中的作用及原理。 15 染色体重排对生物体的影响及其主要类型。 16 噬菌体显示技术原理及其在生物学研究中的意义。 17 什么是原癌基因它们怎样被反转录病毒激活 18什么是tumor supperssor gene举例说明它的调控功能。 19 细胞染色体的异常如何导致癌基因的激活 20 G蛋白的结构特点信其功能 21 apoptosis的特征与其生理及病理意义 22已知它的调控基因有哪些 23试述保证DNA复制精确性的机理 24什么是蛋白质的一级、二级、三级、四级结构它们依靠什么样的链和力建立起这些结构它们之间的关系是什么(15分) 25简述重组DNA技术的定义、原理和主要过程,结合你的专业举出一个应用该技术的实例并说明其意义。(15分) 26简述癌基因与抑癌基因的定义,各举一例说明其在肿瘤发生中的作用。(15分) 27 以乳糖操纵子(或称为乳糖操纵元)和色氨酸操纵子为例简述原核细胞基因表达调

相关文档