文档库 最新最全的文档下载
当前位置:文档库 › 光学4F系统

光学4F系统

光学4F系统
光学4F系统

光学4f系统

1. 4f系统简介

4f系统是一种特殊的、应用较广的光学系统。当输入两束相干的偏振光时,经过特殊的光学装置,余弦光栅、变换平面等,使输入的光在屏幕上产生衍射谱。精密的横向移动余弦光栅,可以连续的改变两束光的衍射级数的相位差,达到衍射光强相减或相加的目的。最简单的来说就是:有两个焦距为f的透镜,相距2f,物距为f,相距也为f,所以是4f系统。只有距离大于4f的系统才能做变焦系统。

系统如图1-1所示,

(x1 y1)(x2 y2)

(x0 y0)

L1、L2为一对已很好消像差的透镜,其焦距相等,同轴共焦地放置。待处理的物理放在L1的前焦面(x0 ,y0)上。(x1,y1)是L1的后焦面也是L2的前焦面。(x1,y1)是整个系统的频谱面或称为变换平面。(x2,y2)是系统的像平面。用相干平行光入射到置于物平面(x0,y0)上的平面物体上,例如放置一正交光栅。则在频谱面(x1,y1)上便出现光栅的频谱,一组呈正交分布的,分立有一定扩展的频谱分量,在象平面(x2,y2)上出现光栅的象。

4f系统的变换过程,使人们可以物理地实现对光信息进行频谱分析和在频域进行处理。只要在频谱面(即变换平面)上,加入一定形状的滤波器,阻止某些频率的信息通过,或使某些频率引进一定的相位变化,就可以按照人们的需要提取某些信息,改造象的结构,获得

需要的输出图像,所以4f 系统又称为光学计算机,广泛用于空间滤波,特征识别等光学信息处理实验中。

2. 4f 系统在飞秒激光器中的应用

飞秒激光是一种以脉冲形式运转的激光,是目前在实验室条件下所能获得的脉宽最窄的脉冲。它以其极高的时间、空间分辨率,极高的峰值功率在基础科学和技术科学中都有着广泛的应用。由于通过压缩获得的超短脉冲往往有很宽的基座,或者对脉冲的形状也有特定的要求,因此需要通过整形技术对脉冲进行整形。目前,许多方面都已经应用飞秒脉冲整形系统,产生特定形状的光脉冲。

利用4f 系统进行飞秒脉冲整形的基本原理是频域和时域是互为傅里叶变换的,所需要的输出波形可有滤波实现。图2-1是脉冲整形的基本装置,它是由一对衍射光栅、一对透镜和一个脉冲整形模板组成的4f 系统。超短激光脉冲照射到光栅和透镜上被色散成空间上互相分离的光频成分。在两透镜中间位置上插入一块空间模式的模板或可编程的空间光调制器,以此调制空间色散的各光频成分的振幅和相位。光栅和透镜对可以看作是零色散脉冲压缩结构。

透镜

透镜

SLM

图2-1 飞秒脉冲整形装置

短脉冲中的各光频成分由第一个衍射光栅实现色散分离,然后在第一个透明的焦平面聚焦成一个小的、衍射有限的光斑。这里的各光频成分在一维方向上空间分离,从光栅上反射后在不同角度散开,在经过第一个透镜,于其后焦平面上实现了空间分离。第一个透镜实现了一次傅里叶变换,而第二个透镜和光栅则把这些分离的所有频率成分重新组合成一个简单的相互碰撞的光束。这样就得到了一个整形输出脉冲,这个输出脉冲的形状由两个透镜之间所插入的空间光调制器的调制方式决定。

第一个透镜实现第一个光栅平面到模板平面之间的傅里叶变换,第二个透镜实现模板平面到第二个光栅平面之间的傅里叶变换。这两个连续的傅里叶变换的效应是,如果两个透镜之间没有放置脉冲整形模板,则输入脉冲穿过这个系统后是不变的。透镜组在这里要满足零色散的条件,因此两个透镜应是经过特殊设计、对于输入脉冲的光谱是无色差的。SLM是液晶空间光调制器。

3. 另一种脉冲整形系统

目前还有一种常见的飞秒脉冲整形系统,它由4个棱镜组成。系统如图3-1所示。

图3-1

飞秒激光脉冲经过第一个棱镜,棱镜将不同波长的光按照不同的角度折射出去,长波长成分与短波长成分具有明显的光程差,此时通过两个对称的棱镜,如上图二、三棱镜所示,短波长光比长波长光折射角度大,这样腔内光脉冲中不同波长的光对应不同的行进光程,这样就相当于进行了色散补偿,最后经过第四棱镜输出脉冲。我们可以采取调整棱镜对间距和棱镜插入量来进行色散补偿。

集成光学讨论题

聚合物电光波导调制器的研究 一.概述 聚合物电光调制器具有卓越的性能和潜在的巨大应用前景,因此自上世纪九十年代以来就开始受到人们的广泛关注。迄今,由于材料研究方面的进展,聚合物调制研究已经取得了巨大进步,但是仍然存在诸如器件稳定性问题和高损耗问题。 在学习了《集成光学》这门课程之后,受到老师和其他上台演示的同学的启发,我对聚合物电光调制器产生了浓厚的兴趣,思考如何能解决器件损耗的问题,在查阅了大量的资料后发现,有一种“包层调制”的方法可以降低器件损耗,即高损耗的电光聚合物材料被用于波导的包层,而其芯层则使用低损耗的非电光的有机或无机材料,由于线性电光效应,信号电场在包层中与其中的光导模消逝场发生耦合,将信号场的能量搭载到光载波上,从而实现信号调制。由于包层中弱的导模功率,因此可以预期包层调制下的材料光损耗是可以降低的,通过优化设计与分析发现适当降低波导芯层的尺寸可以弥补因包层调制引起的调制效率的下降。本文将简单介绍聚合物电光波导调制器的发展、研究、应用以及“包层调制”的基本概念。 二.光调制的基本概念和调制器的种类 1.光调制的一些基本概念 光调制就是将电信号加载到光波上并使得光波的可观测量,如位相、频率、振幅偏偏振,发生变化的过程。最简单直接的调制就是激光光源的内调制,它是利用调制信号直接控制激光器的振荡参数,使输出光特性随信号而变。在直接调制半导体激光二极管的过程中,不仅输出光强度随调制电流发生变化,而且输出光的频率也会发生波动,也就是说在幅度调制的同时还受到频率调制,特别是在信号频率进入微波时的高速调制情况下,这个现象称为“啁啾”特性。由于啁啾的存在,不仅使单个纵模的线宽展宽,而且在单模光纤中传播时,在色散的作用下将使信号的非线性失真加剧,从而限制了通讯系统的中继距离一般小于 80km。与内调制相对照,还存在另一种调制方式--外调制。所谓外调制,就是在激光器的外部设置调制器,利用调制信号作用于调制元件时所产生的物理效应(如电光、声光或磁光等),使通过调制器的激光束的某一参量随信号变化。相比于内调制,外调制方法不仅调制速率高,带宽大,而且无频率啁啾,因此成为当今大容量、长中继的WDM光纤通讯系统和高速光处理系统的标准方法。 调制时光波的任何一个特性参数(位相、频率、振幅、偏振)都可以被调制,相应地,光调制方式可以分为相位调制、振幅调制、频率调制、偏振调制。由于通常的光探测器的输出信号直接与入射光波的强度有关,探测器可以直接从强度调制波还原出调制信号。而相位调制或频率调制等必须采用外差接收来解调,在技术上比较复杂和困难,所以强度调制用的多。 2.光调制器的种类 按照调制器的工作原理,光调制器可以分为电光调制器、声光调制器、磁光调制器、电致吸收调制器。 电光调制器是利用介质的线性电光效应(Electro-optic Effect, EO )来工作的。由于电光效应,介质的折射率变化随信号电压线性改变,介质折射

集成光学考试总结讲解学习

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必 要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较

把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

现代光学总结

现代光学总结 现代光学课已经匆匆结束,经过李老师半年的授课让我受益匪浅,现对所学内容总结如下: 一、光线光学 1.1费马原理: 费马原理:光线将沿着两点之间的光程为极值的路线传播。 费马原理导出定律:反射定律、折射定律、凸透镜凹透镜成像等....... 1.2哈密顿光学: 哈密顿光学:根据费马原理推得描述光线传播路径的方程,并且把分析力学中的一套研究质点运动轨迹的方法搬到光学中来,这种方法称为哈密顿光学。 适用范围:适合于研究光在折射率连续分布(非均匀)的介质中的传播。 1.3几何光学到波动光学的过渡: 光线量子力学:光纤通讯、集成光学—→光线量子化理论,适用于限制在有限厚介质薄膜中定向运动的光场量子化。 光线量子力学原理:在光线力学的基础上,接量子力学的一般原则,对力学量量子化,可以得到光线量子力学的基本方程。 光线量子力学的意义: ①解释光纤通讯、光集成的理论和技术,光在致密介质中传输的新现象发生,新的工艺技术、新的元器件的出现 ②可看成光的一种理论模型——“流线”波粒二象性。 二、波动光学 2.1单色平面波: (1)单色平面波的波函数:一般地,当平面波沿任意方向传播时,其正向传播的电矢量可表示为: 或 (2)单色平面波等相面及相速度: 波矢量k 与位置坐标矢量r 的点乘 反映了电磁波在空间传播过程中的相位延迟大小,故 通常将 为常数的空间点的集合称为等相(位)面。 等相面沿其法线方向移动的速度 称为相速度,其大小为: (3)单色平面波K 、E 、B 的关系: 平面波的电场强度矢量E 与波矢量k 正交,故平面电磁波是横波。 磁感应强度 B 也与与波矢量 k 正交,也表明平面电磁波是横磁波。 同时E 矢量与 B 矢量也正交,表明平面电磁波是横电磁波。E ,B ,k 三者相互正交,构成右手螺旋关系。 (4)平面波的能量密度和能流密度: 尽管电矢量与磁矢量的振幅相差很大,但平面电磁波的电场能量与磁场能量相等,各占总能量的一半。 ikr r E e 0E()=E r E cos k r 0()=()k r φνdr v dt φ=k r

光学系统集成

Integration of Optical Systems These application notes are relevant to both off-the-shelf and custom integration for imaging, as well as non-imaging systems. Please feel free to discuss any of the content in these notes or any other integration questions with our Applications Engineers. DEFINING THE APPLICATION The first step to solving any optical problem is to assess the application. What am I trying to accomplish? For an optical system it is important to first determine whether you need an imaging system or non-imaging system because the performance requirements are different for each type. Imaging System Imaging systems transfer a representation of the object to a detector, such as a camera or your eye. Some examples of imaging systems are: electronic imaging for inspection, image projection systems and relay systems. The goal of an imaging system is to provide sufficient image quality to enable extraction of desired information about the object from the image. Note that what may be adequate image quality for one application may prove inadequate in another. Some of the components of imaging quality are resolution, image contrast, perspective errors, geometric errors (such as distortion) and depth of field. Non-Imaging System Non-imaging systems collect, disperse, resize, focus, or collimate light. Some examples of non-imaging systems are: illumination projection, fiber coupling and laser projection. The performance of a non-imaging system can be quantified by its throughput, field efficiency, spot size (focusing systems) and angular resolution. Throughput is a measure of the energy transmitted through the lens system. Field efficiency is the system's ability to accommodate a large detector area or source size. Angular resolution is generally used to specify the minimum angular separation needed between two objects in order for the lens system to resolve them. Spot size is used to evaluate a focusing lens's performance. The next step is to determine the primary parameters of your system. Then, you can begin a design form for your application. Below are the primary parameters defined. Conjugate Distances The distance from the lens to the object/source (object distance) and the distance from the lens to the detector/image (image distance). For example, in an infinite conjugate design one of these distances approaches infinity. Conjugate Sizes

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较 把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

现代光学前沿

2015 年 春 季学期研究生课程考核 (读书报告、研究报告) 关于玻色爱因斯坦凝聚的研究综述 1. 概念 设在体积为V 的容器中存在由N 个同种玻色粒子组成的理想气体。理想玻色气体处于热平衡状态时服从玻色—爱因斯坦统计。如果以n (εi) 表示热平衡时处于能级εi 的某一量子态中的平均粒子数,则n (εi ) 可表示为 ()1 (1) i i KT n e εμε-=- 式中μ为粒子的化学势,对于玻色系统它要满足μ≤0; k 为玻耳兹曼常量。系统的总粒子数为 ()() 11i i i i KT N n e εμε-==-∑∑ 用N0表示处于最低能级(ε0 = 0) 的粒子数,用N ′表示处于较高能级中的粒子数,则总粒子数可表为 0N N N =+' 而001KT N G e μ=- 其中G 0 为ε0 = 0 能级的微观态数,可设G 0 = 1。 0()11i i KT N e εμ≠-='-∑ 应对εi ≠0 的所有微观态求和。 利用上式,近似地用积分代替求和,并考虑到函数的单调性可知,在某一特定的温度, N ′有一个上限Nmax ,则 32max 22() 2.612mkT N SV N h π≤?=' 式中S 表示粒子的一个空间运动状态对应S 个不同的自旋态, m 为玻色子的质量,h 为普朗克常量。这个特定的温度称为临界温度,用TC 表示。当T < TC 时,N ’( T) < N ,其余的N – N ’( T)个粒子都进入到最低能级(ε0 = 0) 中去。此时可推得

32 ()c T N N T =' 032][1()c T N N T =- 这个结果表明:当系统的温度低于临界T C 时,粒子将迅速在最低能级集结,使N 0 成为与N 可以比拟的量,若T = 0,则N 0 = N ,即全部粒子都转移到最低能级,这个现象就是玻色—爱因斯坦凝聚。 2. 国内外研究动态 早在1924 年,爱因斯坦在理论上就预言,当温度足够低时理想玻色子就会出现玻色—爱因斯坦凝聚现象。此后,许多科学家都想在实验上证实这一预言的存在,但由于当时实验条件和实验技术有限,在爱因斯坦预言后70 年内都无法在实验上证实这一点。到了上世纪80 年代末和90 年代初,美国国家标准与技术研究所的埃里克·康奈尔博士和科罗拉多大学的卡尔·维曼教授带领一批学生和博士后(称为J ILA 小组) 从事玻色—爱因斯坦凝聚研究达6 年之久,终于在1995 年7 月,在原子铷的蒸汽中实现了这种凝聚;同年8 月,美国Rice 大学的Hulet 小组报道了在锂原子中观察到了玻色—爱因斯坦凝聚;11月,美国麻省理工学院的Ketterle 小组又报道了钠原子的玻色—爱因斯坦凝聚结果。这3 个实验可称为玻色—爱因斯坦凝聚研究历史上的重要里程碑。3 个实验各有特点。J ILA 小组的工作最早完成,是首创的。在他们的实验中原子铷首先被激光冷却,然后载入磁陷阱通过强力蒸发被进一步冷却到创记录的低温(170nk) 下,从而获得凝聚物,这正是人们期望已久的新物态—玻色—爱因斯坦凝聚态。Ketterle 小组的特点是快速冷却,能在7s 内使相空间密度增大6 个数量级。他们的凝聚物中包含着更多的原子,密度超过1014/ cm3 。以上两个小组都是在具有正散射长度(α> 0) 的原子气体中实现玻色—爱因斯坦凝聚的,而Rice 大学的Hulet 小组是在具有负散射长度(α< 0) 的锂原子中找到玻色—爱因斯坦凝聚的证据,这是他们的一大特色。 1995 年后,世界上有许多实验室都投入实现玻色—爱因斯坦凝聚的研究。至今已有近30 个研究小组宣称他们实现了玻色—爱因斯坦凝聚(其中包括日本的三个小组) 。其中绝大部分是采用铷原子蒸汽为样品,这是因为铷原子在冷却中涉及的跃迁波长在780mm 附近,可采用半导体激光器作为冷却用的激光,运转稳定,实验周期短。1998 年6 月,美国麻省理工学院小组实现了氢原子的玻色—爱因斯坦凝聚。氢原子曾被认为是实现玻色—爱因斯坦凝聚的最理想材料,50 年代起就有人提出以它首选。因为它较轻,在相同的温度下有较长的热波长,容易达到玻色—爱因斯坦凝聚的要求。但氢原子系统在形成玻色—爱因斯坦凝聚的过程中,由于二体偶极弛豫会随温度的下降而迅速减少系统的原子数,产生一些特殊困难,以致实验上反而落在别的原子系统之后,MIT 小组在氢原子中实

成都工业学院电子科学与技术集成光学复习资料

第一章概论 1.1集成光学的概念 集成光学的理论基础是光学和光电子学,涉及波动光学与信息光学、非线性光学、半导体光电子学、晶体光学、薄膜光学、导波光学、耦合模与参量作用理论、薄膜光波导器件和体系等多方面的现代光学内容;其工艺基础则主要是薄膜技术和微电子工艺技术。 1.2集成光学的特点 离散光学元件系统的缺点:体积和重量大、稳定性差和光束的调准困难。 集成光学系统的优点: ①光波在光波导中传播,光波容易控制和保持其能量 ②集成化带来的稳固定位。对振动和温度等环境因素的适应性比较强,最大优点。 ③器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 ④功率密度高。 ⑤体积小、重量轻。 集成光路代替集成电路的优点: 1.带宽增加; 2.光子器件中光子运动速度比电子器件中运动速度高得多,且没有导线电容和 电感对频率的限制; 3.实现“波分多路复用”; 4.实现多路开关; 5.尺寸小,重量轻,功耗小 6.成批制备经济性好,可靠性高。 7.降低成本(制造、应用、维护、升级) 1.4 研究集成光学的意义(开放题) 1.信息光电子技术改变着人类的生存和发展方式,在未来的信息社会中必将扮演重要的角色,成为21世纪的基石和支柱之一。 2.信息光电子技术也是保障国防安全的核心技术之一。 3.光电子技术在信息领域的应用中迅速发展且有独特的优势。 4.集成光学集中并发展了光学和微电子学的固有技术优势,将传统的由分立器件构成的庞大的光学系统变革为集成光学系统。 5.集成光学系统作为现代光电子学的一个重要分支,研究集成光学十分重要。

第二章平面介质光波导和耦合模理论 用于集成光学中的光波导根据结构分为平板波导和条形波导。 平面波导(仅在x方向具有折射率差) 条形光波导(在x、y方向上限制光场) 平板波导由三层介质构成: 波导层:中间层,介质折射率n1最大 覆盖层:上包层,折射率n3<n1 衬底层:下包层,折射率n2<n1。 n2=n3,称为对称型平板波导。反之,称为非对称型波导。 在集成光学中使用的最多的是埋入型波导。 2.1 平板光波导的射线光学分析 n1>n2≥n3 传导波条件: n2<n eff≤n1n eff——导波有效折射率 βmax=k1=n1k0βmax——导波沿z方向传播的最大传播常数仅出现衬底辐射的条件: n3<neff≤n2 同时出现衬底辐射和覆盖层辐射的条件: 0≤neff<n3

集成光学器件

一、光纤陀螺用集成光学芯片(Y波导调制器) 1.1 芯片结构: 1.2 工作原理: 光纤陀螺用Y波导集成光学器件在光纤陀螺系统中作信号处理用,经光源发出的光由器件的Y分支波导分成两束光,分别沿顺时针和逆时针方向通过光纤线圈后,又由Y分支波导合束为一束光,最后达光电探测器。当线圈静止不动时,两束光到达Y 分支合束器时的光相位相等,当线圈转动时,两束光之间将产生一个与线圈转速成比例的相位差,即塞格纳克效应。在推挽电极上上施加调制电压,利用衬底材料的电光效应改变光波导的折射率,从而改变两束光在光波导中传播的光程,引入一个相位差,补偿效应,于是通过外加调制信号可以检测相位差,从而检测光纤线圈的转速。 1.3 应用领域: 用于飞机、轮船、导弹、汽车等运动物体姿态控制的光纤陀螺系统中; 电流传感系统中,利用法拉第效应测量通过光纤环路的电流大小。

1.5 产品实物图与外形尺寸: 1.6 使用方法与注意事项 a 该器件工作于单偏振状态,入光的偏振态必须与器件保持一致。 b为了防止器件的电损伤,调制器的电极电压应低于30V。 c 注意事项 d 光纤施力过大易断裂,不宜拉扯,扭折,弯曲半径不得小于30mm。 e 管壳与光纤间不允许施加过大应力。使用时,应同时拿起管壳与光纤,切勿使管壳与光纤交接处发生弯曲,以防光纤断裂影响器件性能。 f 存储器件环境湿度低于50%,且不含有对器件有害的材料。 g 应避免使器件承受强烈的热冲击,避免使器件受热不均匀。 h 光纤连接回路的连接处应避免施加应力。 1.7 发展方向: 进一步降低损耗(≤4dB(典型值 3.5dB),拓宽工作温度到-65?C~+85?C,提高批量化生产能力达5000只/年。提高集成度:在同一芯片上制作多个Y波导调制器。 1.8 特点:

现代光学的发展历程

现代光学的发展历程 陈礼强 (08级物理学二班 0811010056) 摘要简单介绍了光学的发展简史,系统地概述了光学发展的现代光学时期,对现代光学的几个代表性方面做了大概的介绍,例如激光光学、成像光学、全息术和光信息处理等。 关键词现代光学;激光;全息术;信息光学。 前言 20世纪中叶随着新技术的出现,新的理论也不断发展,由于光学的应用十分广泛已逐步形成了许多新的分支学科或边缘学科。几何光学本来就是为设计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也越来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构、分子结构等)方面曾起了关键性的作用,人们把数学、信息论与光的衍射结合起来,发展起一门新的学科——傅里叶光学把它应用到信息处理、像质评价、光学计算等技术中去。特别是激光的发明,可以说是光学发展史上的一个革命性的里程碑,由于激光具有强度大、单色性好、方向性强等一系列独特的性能,自从它问世以来,很快被运用到材料加工、精密测量、通讯、测距、全息检测、医疗、农业等极为广泛的技术领域,取得了优异的成绩。此外,激光还为同位素分离、储化,信息处理、受控核聚变、以及军事上的应用,展现了光辉的前景。 光学的发展 光学是物理学的一个分支, 是一门古老的自然学科, 已经有数千年发展历史。在十七世纪前后, 光学已初步形成了一门独立的学科。以牛顿为代表的微粒说和与之相应的几何光学;以及以惠更斯为代表的波动说和与之相应的波动光学

构成了光学理论的两大支柱。到十九世纪末, 麦克斯韦天才地总结和扩充了当时已知的电磁学知识, 提出了麦克斯韦方程组, 把波动光学推到了一个更高的阶段。[2]然而, 人们对光的更进一步的认识是与量子力学和相对论的建立分不开的。一方面, 十九世纪及其以前的光学为这两个划时代的物理理论的建立提供了依据。另一方面, 这两个理论的建立, 更加深了人类对光学有关现象的深入了解。从十七世纪到现在,光学的发展经历了萌芽时期、几何光学时期、波动光学时期、量子光学时期、现代光学时期等五大历史时期。 而现代光学时期主要从20世纪中叶开始它包括了激光光学、非线性光学、纤维光学、薄膜光学与集成光学、信息光学、傅里叶变换光学、光电子学等新的光学分支学科。特别是激光问世以后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。激光具有极好的单色性、高亮度和良好的方向性,所以自发现以来得到迅速的发展和广泛应用,引起了光学领域和科学技术的重大变革。由于激光技术的发展突飞猛进,目前激光已经广泛应用于打孔、切割、导向、测距、医疗、通讯等方面,在核聚变等方面也有广阔的应用前景。同时光学也被相应地划分成不同的分支学科,组成一张庞大的现代光学学科网络。[1] 光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。普通照相只能记录某一给定方向上的物体表面的光振幅的时间平均值, 即光强分布,而无法记录光的位相, 物体各点的远近和侧面不能在一张光强分布的平面图上反映出来, 这样普通照片就失去了物休原有的立体结构, 全息照相则不然, 只

现代光学设计外文翻译

现代光学设计外文翻译 毕业设计(论文)外文资料翻译 系:电子工程与光电技术系 专业:______________ 光电信息科学与工程 姓名:____________________________________ 学号:____________________________________ 外文出处:Smith W J. Modern lens (由外文写)

des i gn[M]?_________________ New York: McGraw-Hill, 2005. 附件:1?外文资料翻译译文;2?外文原文。 指导教师评语:

注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 现代光学设计 2. 1评价函数 到底什么是大家所说的自动光学设计,当然,自动并不是指电脑能够自己来完成设计。实际上它所描述的是使用计算机对光学系统进行优化的程序,并通过评价函数(它不是一个真正的优化函数,实际上是一个缺陷函数)定义的优化方案。不管前面的免责声明,我们将在下面的讨论中使用被大家普遍接受的术语。 从广义上说,评价函数可以描述为计算特性,其目的是用一个单纯的数字来完整地描述一个给定的透镜的质量或者功能。这显然是一个极其困难的事情。典型的评价函数是许多图像缺陷值的平方之和,通常这些图像的缺陷通过视场中的三个位置参数来进行评价(除非该系统包括一个非常大或非常小的视场角)。使用缺陷的平方来计算可以确保一个负值的缺陷不会抵消其它的正值的缺陷。 缺陷可以是许多不同种类的,它们中的大多数通常都涉及到图像的质量。任何可以被计算的光学特性都会被分配一个目标值,然而,当实际值偏离这一目标值时该特性被视为存在缺陷。一些不太复杂的程序利用三阶(赛德尔)像差来计算缺陷; 这提供了一种快速而有效的方式来调整设计。这种方法虽然没有真正优化图像质量,但他们在普通镜头的纠正上有很好地效果。另一种类型的评价函数的原理是追迹从一个对象发出的大量光线。将所有的出射光线相交的图心与图像平面的交点的径向距离视作图像缺陷。因此,评价函数是光斑在几个视场角的有效尺寸总和的均方根(RMS)。这种类型的评价函数的效率较为低下,因为它需要追迹大量的光线,但它所具有的优点也正是在于它追踪了大量的光线,因此从某种意义上说它所包含的数据量很大,对于光线的反映十分的完整全面。还有一种评价函数,它计算出古典像差的值,并将其转换(或计算)成等效的波振面的形变。(几种常见的像差转换系数见附录F- 12第二段)。这种方式非常有效,它的优点是节省了计算时间,优化设计的功能更好。还有一种类型的评价函数的使用波阵面的方差来定义的缺陷项。这种类型的评价函数中使用各种“大卫灰色”程序,当然这是市面上可以买到的对畸变产生平衡的最好的评价函数之一。 凡涉及到图像质量的特性都可以通过镜头设计程序控制。具体的结构参数如:半径,

现代光学设计报告

一、 绪论 本文利用Zmax 程序优化设计一个He-Ne 激光光束聚焦物镜,它在单色光波长下工作,成像质量要达到衍射受限水平。设计过程中,先用具体的计算结果初步讨论玻璃的选择和透镜片数的考虑,然后选择不同的评价函数,以及不同的初始结构,最终找到多个像质较优的解。 具体设计任务的要求如下: ①焦距f ’=60mm ; ②相对孔径2 1'=f D ; ③物距∞=l ,视场角 0=ω; ④工作波长m μλ6328.0=; ⑤此镜头只需要消球差,几何弥散圆直径小于0.002mm ; ⑥镜头结构尽量简单,争取用两块镜片达到要求。 二、 镜头片数及玻璃选择的考虑和初步分析 1、单片低折射率材料的情况 先看看单片低折射率材料物镜它的像质是什么样的, 选一个普通的K9,折射率n=1.51466 ,利用Zemax 程序设计一个焦距f ’=60mm ,相对孔径2 1'=f D ,视场角 0=ω的激光光束物镜,光阑放在透镜的第一面,入瞳直径为30mm ,物镜初始结构可以由公式)11)(1('12 1r r n f --=计算得出,可以取一个对称结构即21r r -=,可以得到物镜半径为61.7592mm 。取第一个面半径为变量,第二个面半径用来保证焦距为60mm (图2-1)。评价函数选用“TRAY ”,指定为0.3、0.5、0.7、0.85以及全孔径(图2-2)。 图2-1 低折射率材料物镜初始结构参数

图2-2 选用TRAY评价函数 2-3可以看出,初始像差很大,需要优化。 我们先看看初始像差数据,由图 优化后得到相应的结构数据、像差曲线和点列图分别由下面的图表示。

图2-5 低折射率材料物镜优化后的像差曲线

相关文档