文档库 最新最全的文档下载
当前位置:文档库 › 函数、导数“任意、存在”型问题归纳

函数、导数“任意、存在”型问题归纳

函数、导数“任意、存在”型问题归纳
函数、导数“任意、存在”型问题归纳

函数导数任意性和存在性问题探究

导学语

函数导数问题是高考试题中占比重最大的题型,前期所学利用导数解决函数图像切线、函数单调性、函数极值最值等问题的方法,仅可称之为解决这类问题的“战术”,若要更有效地彻底解决此类问题还必须研究“战略”,因为此类问题是函数导数结合全称命题和特称命题形成的综合性题目.常用战略思想如下:

题型分类解析

一.单一函数单一“任意”型

战略思想一:“?x A ∈,()()a f x >≥恒成立”等价于“当x A ∈时,max ()()a f x >≥”;

“?x A ∈,()()a f x <≤恒成立”

等价于“当x A ∈时,min ()()a f x <≤”. 例1 :已知二次函数2

()f x ax x =+,若?[0,1]x ∈时,恒有|()|1f x ≤,求实数a 的取值范围. 解:

|()|1f x ≤,∴211ax x -≤+≤;即211x ax x --≤≤-;

当0x =时,不等式显然成立,∴a ∈R.

当01x <≤时,由2

11x ax x --≤≤-得:221111a x x x x --≤≤-, 而min 211

(

)0x x

-=,∴0a ≤. 又∵max 211

()2x x

--=-,∴2,20a a ≥-∴-≤≤,

综上得a 的范围是[2,0]a ∈-. 二.单一函数单一“存在”型

战略思想二:“?x A ∈,使得()()a f x >≥成立”等价于“当x A ∈时,min ()()a f x >≥”;

“?x A ∈,使得()()a f x <≤成立”等价于“当x A ∈时,max ()()a f x <≤”.

例2. 已知函数2

()ln f x a x x =+(a R ∈),若存在[1,]x e ∈,使得()(2)f x a x ≤+成立,求实数a 的取值范围.

解析:()(2)f x a x ≤+?x x x x a 2)ln (2-≥-.

∵[1,]x e ∈,∴x x ≤≤1ln 且等号不能同时取,所以x x -x x ,

因而x x x

x a ln 22--≥

[1,]x e ∈, 令x x x

x x g ln 2)(2--=],1[e x ∈,又2

)

ln ()ln 22)(1()(x x x x x x g --+-=', 当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,

从而0)(≥'x g (仅当x=1时取等号),所以)(x g 在],1[e 上为增函数, 故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 三.单一函数双“任意”型

a

f (x )下限

f (x )上限

f (x )f (x )

战略思想三:?x R ∈,都有

"

f ()f x 的最小值和最大值,1|x - 例3. 已知函数()

2sin()25

x f x ππ

=+,

若对?x R ∈,都有12"()()()"f x f x f x ≤≤成立,则12||x x -的最小值为____.

解 ∵对任意x ∈R ,不等式12()()()f x f x f x ≤≤恒成立, ∴12(),()f x f x 分别是()f x 的最小值和最大值.

对于函数sin y x =,取得最大值和最小值的两点之间最小距离是π,即半个周期. 又函数()2sin()2

5

x f x ππ

=+的周期为4,∴12||x x -的最小值为2.

战略思想四: ,,21A x x ∈?1212()()

"(

)"22

x x f x f x f ++>成立 ?()f x 在A 上是上凸函数?0)(''≤x f

例4. 在2

22,log 2,,cos y x y x y x y x ====这四个函数中,当1201x x <<<时,使

1212()()

"(

)"22

x x f x f x f ++>恒成立的函数的个数是( ) A.0 B.1 C.2 D.3 解:本题实质就是考察函数的凸凹性,即满足条件1212()()

"()"22

x x f x f x f ++>的函数,应是凸函数的性质,画草图即知2log 2y x =符合题意;

战略思想五: ,,21A x x ∈?1212

()()

"

0"f x f x x x ->-成立?()f x 在A 上是增函数

例5 已知函数()f x 定义域为[1,1]-,(1)1f =,若,[1,1]m n ∈-,0m n +≠时,都有

()()

"

0"f m f n m n

->-,若2()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 取值范围.

解:任取1211x x -≤<≤,则12121212

()()

()()()f x f x f x f x x x x x --=

--,

由已知

1212

()()

0f x f x x x ->-,又120x x -<,∴12()()0f x f x -<,

即()f x 在[1,1]-上为增函数.

∵(1)1f =,∴[1,1]x ∈-,恒有()1f x ≤;

∴要使2

()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立, 即要2211t at -+≥恒成立,故2

20t at -≥恒成立, 令2()2g a at t =-+,只须(1)0g -≥且(1)0g ≥, 解得2t ≤-或0t =或2t ≥.

战略思想六: ,,21A x x ∈?t x f x f ≤-|)()(|21(t 为常数)成立?t=min max )()(x f x f - 例6. 已知函数4

3

()2f x x x =-+,则对任意121

,[,2]2

t t ∈-(12t t <)都有≤-|)()(|21t f t f 恒成立,当且仅当1t =____,2t =____时取等号.

解:因为12max min |()()||[()][()]|f x f x f x f x -≤-恒成立, 由4

3

1()2,[,2]2f x x x x =-+∈-,

易求得max

327[()]()216f x f ==

,min 15

[()]()216

f x f =-=-, ∴12|()()|2f x f x -≤.

战略思想七:,,21A x x ∈?|||)()(|2121x x t x f x f -≤-

?t x x x f x f <--|)

()(|

2

121?)0(t |)('|>≤t x f

例7. 已知函数()y f x =满足:(1)定义域为[1,1]-;(2)方程()0f x =至少有两个实根1-和1; (3)过()f x 图像上任意两点的直线的斜率绝对值不大于1.

(1)证明:|(0)|1f ≤; (2)证明:对任意12,[1,1]x x ∈-,都有12|()()|1f x f x -≤. 证明 (1)略;

(2)由条件(2)知(1)(1)0f f -==,

不妨设1211x x -≤≤≤,由(3)知121221|()()|||f x f x x x x x -≤-=-,

又∵121212|()()||()||()||()(1)||()(1)|f x f x f x f x f x f f x f -≤+=--+-

122112112()2|()()|x x x x f x f x ≤++-=--≤--;∴12|()()|1f x f x -≤

例8. 已知函数3

()f x x ax b =++,对于1212,(0,

)3

x x x x ∈≠时总有1212|()()|||f x f x x x -<-成

立,求实数a 的范围.

解 由3

()f x x ax b =++,得'2

()3f x x a =+,

当x ∈时,'()1a f x a <<+,∵1212|()()|||f x f x x x -<-, ∴1212()()

||1f x f x x x -<-, ∴11011a a a ≥-??-≤≤?+≤?

评注 由导数的几何意义知道,函数()y f x =图像上任意两点1122(,),(,)P x y Q x y 连线的斜率

21

1221

()y y k x x x x -=

≠-的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可

以解决形如1212|()()|||f x f x m x x -≤-|或1212|()()|||f x f x m x x -≥-(m >0)型的不等式恒成立问题.

四.双函数“任意”+“存在”型:

战略思想八:12,x A x B ?∈?∈,使得12()()f x g x ≥成立min min ()()f x g x ?≥;

12,x A x B ?∈?∈,使得12()()f x g x ≥成立max max ()()f x g x ?≥.

例9.已知函数2

()25ln f x x x x

=-

-,2()4g x x mx =-+,若存在1(0,1)x ∈,对任意2[1,2]x ∈,总有12()()f x g x ≥成立,求实数m 的取值范围.

解析:题意等价于()f x 在(0,1)上的最大值大于或等于()g x 在[1,2]上的最大值.

22

252()x x f x x -+'=,由'()0f x =得,1

2

x =或2x =, 当1(0,)2x ∈时, ()0f x '>,当1(,1)2

x ∈时()0f x '<, 所以在(0,1)上,max 1()()35ln 22

f x f ==-+. 又()

g x 在[1,2]上的最大值为max{(1),(2)}g g ,所以有

1

85ln 2()(1)35ln 2521

135ln 282(115ln 2)()(2)22

m f g m m m f g ?≥-≥??-+≥-???

?????-+≥-≥-???≥???85ln 2m ?≥-, 所以实数m 的取值范围是85ln 2m ≥-.

战略思想九:“?1x A ∈,?2x B ∈,使得12()()f x g x =成立”

?“()f x 的值域包含于.()g x 的值域”.

f (x )下限

f (x )上限

g (x )下限

g (x )上限

例10.设函数32115

()4333

f x x x x =-

-+-. (1)求()f x 的单调区间.

(2)设1a ≥,函数32

()32g x x a x a =--.若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得

10()()f x g x =成立,求a 的取值范围.

解析:(1) '

2

25()33f x x x =--

+,令'()0f x ≥,即225033x x +-≤,解得:5

13

x -≤≤, ∴()f x 的单增区间为5[,1]3-;单调减区间为5

(,]3

-∞-和[1,)+∞.

(2)由(1)可知当[0,1]x ∈时,()f x 单调递增,∴当[0,1]x ∈时,()[(0),(1)]f x f f ∈, 即()[4,3]f x ∈--;

又'

2

2

()33g x x a =-,且1a ≥,∴当[0,1]x ∈时,'

()0g x ≤,()g x 单调递减,

∴当[0,1]x ∈时,()[(1),(0)]g x g g ∈,即2()[321,2]g x a a a ∈--+-,

又对于任意1[0,1]x ∈,总存在0[0,1]x ∈,

使得10()()f x g x =成立?[4,3]--?2

[321,2]a a a --+-,

即2321432a a a

?--+-?--?≤≤,解得:312a ≤≤

例11.已知函数1()ln 1()a

f x x ax a R x

-=-+-∈; (1) 当1

2

a ≤

时,讨论()f x 的单调性; (2)设2

()24g x x bx =-+,当14

a =时,若对1(0,2)x ?∈,2[1,2]x ?∈,使12()()f x g x ≥,求实数

b 的取值范围;

解:(1)(解答过程略去,只给出结论)

当a ≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;

当a=

21

时,函数f(x)在(0,+∞)上单调递减; 当0

(1,)a

-+∞上单调递减;

(2)函数的定义域为(0,+∞),

f '(x )=x 1-a+21x

a -=-2

21x a x ax -+-,a=41时,由f '(x )=0可得x 1=1,x 2=3. 因为a=

41∈(0,2

1

),x 2=3?(0,2),结合(1)可知 函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,

所以f(x) 在(0,2)上的最小值为f(1)= -

2

1. 由于“对?x 1∈(0,2),?x 2∈[1,2],使f(x 1) ≥g(x 2)”等价于 “g(x)在[1,2]上的最小值不大于f(x) 在(0,2)上的最小值f(1)= -2

1

”. (※) 又g(x)=(x -b)2+4-b 2, x ∈[1,2],所以

① 当b<1时,因为[g(x)]min =g(1)=5-2b>0,此时与(※)矛盾; ② 当b ∈[1,2]时, 因为[g(x)]min =4-b 2≥0,同样与(※)矛盾; ③ 当b ∈(2,+∞)时,因为[g(x)]min =g(2)=8-4b.

解不等式8-4b ≤-

21,可得b ≥817

. 综上,b 的取值范围是[8

17

,+∞).

五.双函数“任意”+“任意”型

战略思想十:12,x A x B ?∈?∈,使得12()()f x g x ≥成立min max ()()f x g x ?≥ 例

12.已知函数32149()3,()332

x c

f x x x x

g x +=

--+=-

,若对任意12,[2,2]x x ∈-,都有12()()f x g x <,求c 的范围.

解:因为对任意的12,[2,2]x x ∈-,都有12()()f x g x <成立,

∴max min [()][()]f x g x <,∵'2

()23f x x x =--,

令'()0f x >得3,1x x ><-x >3或x <-1;'

()0f x <得13x -<<; ∴()f x 在[2,1]--为增函数,在[1,2]-为减函数. ∵(1)3,(2)6f f -==-,∴max [()]3,f x =.∴1832

c

+<-

,∴24c <-. 例13.已知两个函数2

3

2

()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈; (1) 若对[3,3]x ?∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ?∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ?∈-,都有12()()f x g x ≤成立,求实数k 的取值范围; 解:(1)设3

2

()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:

[3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥. '2()66126(2)(1)h x x x x x =--=-+;

当x 变化时,'

(),()h x h x 的变化情况列表如下:

因为(1)7,(2)20h k h k -=+=-,所以,由上表可知min [()]45h x k =-, 故k-45≥0,得k ≥45,即k ∈[45,+∞).

小结:①对于闭区间I ,不等式f(x)k 对x ∈I 时恒成立?[f(x)]min >k, x ∈I.

②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max

≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价.

(2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max ≥0. 由(1)可知[h(x)]max = k+7,因此k+7≥0,即k ∈[7,+∞).

(3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max =120-k. 仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min =-21. 由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x 1,x 2是两个互不影响的独立变量.

从上面三个问题的解答过程可以看出,对于一个不等式一定要

看清是对“?x ”恒成立,还是“?x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜..

六.双函数“存在”+“存在”型

战略思想十一:12,x A x B ?∈?∈,使得12()()f x g x ≤成立min max ()()f x g x ?≤;

12,x A x B ?∈?∈,使得12()()f x g x ≥成立max min ()()f x g x ?≥.

例14.已知函数3

()l n

144x f x x x

=-+-,2()24g x x bx =-+.若存在1(0,2

)x ∈,[]21,2x ∈,使12()()f x g x ≤,求实数b 取值范围.

解析:

22113(1)(3)

()444x x f x x x x

--'=

--=-,

()f x

∴在(0,1)上单调递增,在(1,2)上单调递减,min 1

()(1)2

f x f ∴==-.

依题意有min max ()()f x g x ≤,所以max 1()2

g x ≥-

.又22

()()4g x x b b =--+,

从而??

??

?-≥-≥21)2(21)1(g g ,解得817≤b . 战略思想十二:“12,x A x B ?∈?∈,使得12()()f x g x =成立”等价于

“()f x 的值域与()g x 的值域相交非空”.

例15.已知函数3

2

()(1)(2)()f x x a x a a x a R =+--+∈,191

()63

g x x =

-.是否存在实数a ,存在[]11,1x ∈-,[]20,2x ∈,使得112'()2()f x ax g x +=成立?若存在,求出a 的取值范围;若不存在,说明理由.

解析:在[]0,2上()19163g x x =

-是增函数,故对于[]0,2x ∈,()1,63g x ??

∈-????

. 设()()()22322h x f x ax x x a a '=+=+-+,

当[]1,1x ∈-时,∈)(x h [3

12-2

--a a ,52-2

+-a a ].

要存在]1,1[1-∈x ,]2,0[2∈x 使得()()12h x g x =成立,

只要[312-2

--a a ,52-2

+-a a ]Φ≠-?]6,3

1[

考虑反面, [312-2

--a a ,52-2

+-a a ]Φ=-?]6,3

1[

则 21

523

a a -

>--或6<312-2--a a

,解得1a >-

1a <-,

从而所求为1133

a --

≤≤-+.

高考数学(理)总复习:利用导数解决函数零点问题

题型一 利用导数讨论函数零点的个数 【题型要点解析】 对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是: (1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图; (4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )= ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=????? f (x ),f (x )≥ g (x ),g (x ),f (x )0)的零点个数. 【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1 =0或x 2=2 a ,∈a >0,∈x 1

即不等式2a ≤1x 3+3 x 在x ∈[1,2]上有解. 设y =1x 3+3x =3x 2+1 x 3(x ∈[1,2]), ∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∈y =1x 3+3 x 在x ∈[1,2]上单调递减, ∈当x =1时,y =1x 3+3 x 的最大值为4, ∈2a ≤4,即a ≤2. (3)由(1)知,f (x )在(0,+∞)上的最小值为f ?? ? ??a 2=1-4a 2, ∈当1-4 a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+ ∞)上无零点. ∈当1-4 a 2=0,即a =2时,f (x )min =f (1)=0. 又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4 a 2<0,即00, ∈存在唯一的x 0∈?? ? ??1,1e ,使得φ(x 0)=0, (∈)当0

函数与导数知识点总结

函数与导数 1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性; ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的定义域是内函数的值域。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件; ⑵是奇函数; ⑶是偶函数; ⑷奇函数在原点有定义,则; ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义: ①在区间上是增函数当时有; ②在区间上是减函数当时有; ⑵单调性的判定 1 定义法: 注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分); ③复合函数法(见2 (2)); ④图像法。 注:证明单调性主要用定义法和导数法。 7.函数的周期性 (1)周期性的定义: 对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。 所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周(2)三角函数的周期: ⑶函数周期的判定 ①定义法(试值)②图像法③公式法(利用(2)中结论) ⑷与周期有关的结论

导数与函数的切线及函数零点问题专题

导数与函数的切线及函数零点问题 高考定位 高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B 级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)在高考试题导数压轴题中涉及函数的零点问题是高考命题的另一热点. 真 题 感 悟 (2016·江苏卷)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2. ①求方程f (x )=2的根; ②若对任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 解 (1)①由已知可得2x +? ?? ??12x =2, 即2x +1 2 x =2.∴(2x )2-2·2x +1=0, 解得2x =1,∴x =0. ②f (x )=2x +? ?? ??12x =2x +2-x , 令t =2x +2-x ,则t ≥2. 又f (2x )=22x +2-2x =t 2-2, 故f (2x )≥mf (x )-6可化为t 2-2≥mt -6, 即m ≤t +4t ,又t ≥2,t +4 t ≥2 t ·4 t =4(当且仅当t =2时等号成立), ∴m ≤? ? ???t +4t min =4,即m 的最大值为4. (2)∵0<a <1,b >1,∴ln a <0,ln b >0. g (x )=f (x )-2=a x +b x -2,

g′(x)=a x ln a+b x ln b且g′(x)为单调递增,值域为R的函数.∴g′(x)一定存在唯一的变号零点, ∴g(x)为先减后增且有唯一极值点. 由题意g(x)有且仅有一个零点, 则g(x)的极值一定为0, 而g(0)=a0+b0-2=0,故极值点为0. ∴g′(0)=0,即ln a+ln b=0,∴ab=1. 考点整合 1.求曲线y=f (x)的切线方程的三种类型及方法 (1)已知切点P(x0,y0),求y=f (x)过点P的切线方程:求出切线的斜率 f ′(x ),由点斜式写出方程. (2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0,y0),通过方程k=f ′(x )解得x0,再由点斜式写出方程. (3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x ,再由点斜式或两点式写出方程. 2.三次函数的零点分布 三次函数在存在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1<x2的函数f (x)=ax3+bx2+cx+d(a≠0)的零点分布情况如下: 3.(1)研究函数零点问题或方程根问题的思路和方法 研究函数图象的交点、方程的根、函数的零点,归根到底还是研究函数的图

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

数学高考导数难题导数零点问题导数整理2017

含参导函数零点问题的几种处理方法方法一:直接求出,代入应用对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 1)因式分解求零点(1123)?Rx?1(?(a?)x)f(x?a?2ax 例1 讨论函数的单调区间232)?2?1)(x?1)x?2?(axf'(x)?ax?(2a)(xf'可以因式分的符号问 题。由解析:即求 方法二:猜出特值,证明唯一对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 112x3ax1)x??x(a?f(x)?(x?a?1)e?R?a,讨论函数,的极值情况例4 23x2x)1e?x?a?(x?a)(?(x?a)ex?(a?1)x?f'(x)?a)f'(x其它的零点就的一个零点为,解析:,只能解 出x0?1?e?x的根,不能解。是 2Ra?x?a)ln x,f(x)?(例5(2011高考浙江理科)设函数a?ex)xy?f(的极值点,求实数(Ⅰ)若为2exf()?4ea],3e(0,x?为自然对数),(Ⅱ)求实数恒有的取值范围,使得对任意的成立(注:方法三:锁定区间,设而不求对于例5,也可以直接设函数来求,2e)?0?4f(xa e1?1?x?30?x 有实时,对于任意的数题,恒有意,首②当先①当,由立成a e22e22,?e?a) 4e ln(3e)f(3e)?(3)1???a)(2ln xf'(x)?(x?e?e?3?a3,但这时解得由 x)e3ln(ln(3e)a??12ln x ax?0?'(x)f=0外还有会发现的解除了的解,显然无法用特殊值猜出。 xa??(x)2ln x?1h h(1)?1?a?0h(a)?2ln a?0,,令,注意到x2e?3e ln(3e)1a)f02(ln3e?h(3e)?2ln(3e?2ln(3e)?1?)?1?且。= e33e)e3ln(3f'(x)?0(1,a)h(x)h(x)(1,3e]内,及(13e在)至少还有一个零点,又在故+∞)内 单调递增,所以函数0在(,x1?x?a。,则有唯一零点,但此时无法求出此零点怎么办。我们 可以采取设而不求的方法,记此零点为从 00x?(x,a)(0,x))x?x(0,)x f x)0f()x f0f,x)f'(x f a?(a??)'('(f在时,;当而,当时,,即;当时, 000?2e?x(1,3)xa(ef?)(x4)a(??,恒成立,只要内单调递增,在对内单调递增。所以要使内单调递减,在0,. 22?f(x)?(x?a)ln x?4e,(1)?000成 立。?22f(3e)?(3e?a)ln(3e)?4e,(2)??a2320??2ln x?1?)h(xx f1a?2ln x?xe ln4xx?4,注意到函1)得, 又(,知3)将(3)代入(0000000x0231p x?exx ln2x ln x?x在(1.+ +∞)。再由()内单调递增,故数3)以及函数内单调递增,可得在[1,+∞02e2e2e?a?3e??a?3e3e3e??e13p a?。所以的取值范围为)解得,综上,a。由(2ln(3e)ln(3e)ln(3e23ea??3?。

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文) 一、映射与函数 1、映射 f :A →B 概念 (1)A 中元素必须都有________且唯一; (2)B 中元素不一定都有原象,且原象不一定唯一。 2、函数 f :A →B 是特殊的映射 (1)、特殊在定义域 A 和值域 B 都是非空数集。函数 y=f(x)是“y 是x 的函数”这句话的数学 表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象, 也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直 y 轴的直线公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素, 因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。当x 1

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

函数与导数知识点

函数与导数知识点 【重点知识整合】 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数()y f x =相 应地有增量)()(00x f x x f y -?+=?, 如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在 0x x →处的导数,记作0 x x y =',即 0000 ()() ()lim x f x x f x f x x ?→+?-'=?. 注意:在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写 成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.导数的几何意义: 导数 0000 ()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处 变化的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00 x f x )处的切线的斜率.因此,如果)(x f y =在点0 x 可导,则曲线)(x f y =在点()(,00 x f x )处的切线方程为 000()()()y f x f x x x -='- 注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不相同的,后者A 必为切点,前者未必是切点. 3.导数的物理意义: 函数()s s t =在点 0t 处的导数0(),s t '就是物体的运动方程()s s t =在点0t 时刻的瞬时速度v ,即0().v s t '= 4.几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=; 1(ln )x x '= ; 1 (log )log a a x e x '=; ()x x e e '= ; ()ln x x a a a '=. 5.求导法则: 法则1: [()()]()()u x v x u x v x ±'='±'; 法则2: [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=; 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ???.

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

导数和函数零点问题

导数和函数零点问题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-= (1)求函数)(x f 的解析式;

高中数学函数与导数章节知识点总结

高中数学导数章节知识点总结 考点1:与导数定义式有关的求值问题 1:已知 等于 A. 1 B. C. 3 D. 1.已知 ,则 的值是______ . 考点2:导数的四则运算问题 1:下列求导运算正确的是 A. B. C. D. 2:已知函数,为 的导函数,则 的值为______. 考点3:复合函数的导数计算问题 1:设 ,则 A. B. C. D. 2:函数的导函数 ______ 考点4:含)('a f 的导数计算问题 1:已知定义在R 上的函数 ,则 A. B. C. D. 2:设函数满足,则 ______. 考点5:求在某点处的切线方程问题 1:曲线在点处的切线方程为 A. B. C. D. 2:曲线在处的切线方程为_________________. 考点6:求过某点的切线方程问题 1:已知直线过原点且与曲线相切,则直线斜率 A. B. C. D. 2:若直线过点)1,0(-且与曲线x y ln =相切,则直线方程为:

考点7:根据相切求参数值问题 1:已知直线与曲线相切,则a 的值为 A. 1 B. 2 C. D. 2:若曲线在点处的切线平行于x 轴,则 ________. 考点8:求切线斜率或倾斜角范围问题 1:点P 在曲线3 2)(3 +-=x x x f 上移动,设P 点处的切线的倾斜角为α,则α的取值范围是 ( ) A. ?? ????2,0π B. ),4 3[)2,0[πππY C.),43[ ππ D. ]4 3,2(π π 2:在曲线的所有切线中,斜率最小的切线方程为_______ 考点9:求曲线上点到直线距离的最值问题 1:已知P 为曲线x y C ln :=上的动点,则P 到直线03:=+-y x l 距离的最小值为( ) A. 2 B. 22 C.2 D. 3 考点10:求具体函数的单调区间问题 1:函数x e x x f )1()(+=的单调递增区间是 A. ),2[+∞- B. ),1[+∞- C. D. 2:函数x x x f ln )(=的单调减区间为 考点11:已知单调性,求参数范围问题 1:已知函数 在区间 上是增函数,则实数m 的取值范围为 A. B. C. D. 2:若函数在区间上单调递增,则实数a 的取值范围是______. 考点12:解抽象不等式问题 1:已知函数是函数 的导函数, ,对任意实数都有,则不等 式 的解集为 A. B. C. D. 2:函数的定义域为R ,且 , ,则不等式 的解集为______ . 考点13:求具体函数的极值问题 1:函数 ,则 A. 为函数的极大值点 B. 为函数的极小值点 C. 为函数 的极大值点 D. 为函数 的极小值点

第16讲-导数与函数的零点(解析版)

第16讲-导数与函数的零点 一、 经典例题 考点一 判断零点的个数 【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }. (1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x -4ln x 的零点个数. 解 (1)∵ f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3. (2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2 ,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(x ),g (x )的取值变化情况如下表: X (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) + 0 - 0 + g (x ) 极大值 极小值 当03时,g (e 5)=e 5-3e 5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.

相关文档
相关文档 最新文档