文档库 最新最全的文档下载
当前位置:文档库 › 基于P-Laplace算子的小波域图像修补模型

基于P-Laplace算子的小波域图像修补模型

基于P-Laplace算子的小波域图像修补模型
基于P-Laplace算子的小波域图像修补模型

小波变换图像去噪综述

科技论文写作大作业小波变换图像去噪综述 院系: 班级: 学号: 姓名:

摘要小波图象去噪已经成为目前图象去噪的主要方法之一.在对目前小波去噪文献进行理解和综合的基础上,首先通过对小波去噪问题的描述,揭示了小波去噪的数学背景和滤波特性;接着分别阐述了目前常用的3类小波去噪方法,并从小波去噪中常用的小波系数模型、各种小波变换的使用、小波去噪和图象压缩之间的联系、不同噪声场合下的小波去噪等几个方面,对小波图象去噪进行了综述;最后,基于对小波去噪问题的理解,提出了对小波去噪方法的一些展望 关键词:小波去噪小波萎缩小波变换图象压缩 1.前言 在信号数据采集及传输时,不仅能采集或接收到与所研究的问题相关的有效信号,同时也会观测到各种类型的噪声。在实际应用中,为降低噪声的影响,不仅应研究信号采集的方式方法及仪器的选择,更重要的是对已采集或接收的信号寻找最佳的降噪处理方法。对于信号去噪方法的研究可谓是信号处理中一个永恒的话题。传统的去噪方法是将被噪声污染的信号通过一个滤波器,滤除掉噪声频率成分。但对于瞬间信号、宽带噪声信号、非平稳信号等,采用传统方法具有一定的局限性。其次还有傅里叶(Fourier)变换也是信号处理中的重要手段。这是因为信号处理中牵涉到的绝大部分都是语音或其它一维信号,这些信号可以近似的认为是一个高斯过程,同时由于信号的平稳性假设,傅立叶交换是一个很好的信号分析工具。但也有其不足之处,给实际应用带来了困难。 小波变换是继Fourier变换后的一重大突破,它是一种窗口面积恒定、窗口形状可变(时间域窗口和频率域窗口均可改变)的时频局域化分析方法,它具有这样的特性;在低频段具有较高的频率分辨率及较低的时间分辨率,在高频段具有较高的时间分辨率及较低的频率分辨率,实现了时频窗口的自适应变化,具有时频分析局域性。小波变换的一个重要应用就是图像信号去噪。将小波变换用于信号去噪,它能在去噪的同时而不损坏信号的突变部分。在过去的十多年,小波方法在信号和图像去噪方面的应用引起学者广泛的关注。本文阐述小波图像去噪方法的原理,概括目前的小波图像去噪的主要方法,最后对小波图像去噪方法的发展和应用进行展望。 2小波图像去噪的原理 所谓小波变化,即:

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

小波分析发展的综述1

小波分析发展的综述 摘要 小波分析是近年来迅速发展起来的新兴学科,由于它在时间域和时间域里同时具有良好的局部化性质,因而同时具备理论深刻与应用广泛的双重意义小波分析已经基本形成了一个完整的理论体系,并且在很多领域内有了比较深入的研究。 本文将介绍小波分析理论的产生背景,并从几个方面概述了它比较成功的应用实例,最后展望了小波分析研究的发展趋势。 关键词:小波分析;时间域;时间域

Abstract Wavelet analysis is a new kind of disipines which has developed rapidly in recent years, Because it has the good localization property in both time domain and frequency domain, So the wavelet analysis has a double meaning of wide range of combination of theory and application which has basically formed a complete theoretical system, and it have more in-depth study in many areas . This article will introduce the background of wavelet analysis theory,and an overview of several aspects of its successful application examples,Finally, summarize the development trend of wavelet analysis research. Keywords: Wavelet analysis,time domain,frequency domain

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

小波变换与小波框架

小波变换与小波框架 小波分析的理论与方法是从Fourier分析的思想方法演变而来的,就象Fourier分析分为积分Fourier变换和Fourier级数一样,小波分析也分为(积分)小波变换和小波级数两部分,(积分)小波变换的主体是连续小波变换,正尺度小波变换和s-进小波变换;而小波级数的主体部分是关于小波框架的理论.小波分析理论深刻,应用广泛,并且仍在迅速发展之中.本文是作者作为初学者,就小波分析这一理论中比较基本和初步的东西所作的一点归纳和整理,其实,有许多结论已经或明或暗的出现于许多文献中了,只是作者觉得它们叙述得不够适合初学者,尤其是不适合没有工程应用背景的人,这是因为小波分析象Fourier 分析一样,起初都是由应用数学家,物理学家和工程师们发展起来的.本文所得结论比较初步,所用方法基本上属于泛函分析中的一些基本内容,只是稍微需要一点关于拓扑群的知识和Fourier分析的基础知识.本文仅考虑Hilbert 空间L~2(R)及其闭子空间中的小波变换和小波框架等问题.本文主要考虑的问题是:L~2(R)上的连续小波变换,正尺度小波变换和s-进小波变换,以及L~2(R)中的小波框架,因为平移框架在小波框架中具有重要作用,所以也考虑了L~2(R)的闭子空间中的平移框架.事实上,通常的小波分析所研究的问题,在一维情形,概括地说,是研究实直线R上的仿射群R~*×R及其子群和子集在L~2(R)上的酉表示U所诱导的L~2(R)(有时是其闭子空间)中的函数的积分变换的性质及应用.下面作稍具体的一点解释:首先,变换上的仿射变换,所有这样的变换全体做成—个群,记为和凡xB—1(。m,幻>儿mE 二,bE用是XxR的子群,(丹xRh 一 U习-,巴-nf小>1;左>0,mE 凤n二厂I是R宇XR的一忏集丞它不是群.分别作定义在集合 R’ x B,

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。

一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像

小波分析理论简介

小波分析理论简介 (一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换 1807年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为T (=π2)的函数 )(t f ,都可以用三角级数表示: )(t f = ∑∞ -∞=k ikt k e C = 20 a + ∑∞=1cos k k kt a + ∑∞ =1 sin k k kt b (1) k C = π 21 ? -π 20 )(dt e t f ikt = * ikt e f , (2) k k k C C a -+= )(k k k C C i b --= (3) 对于离散的时程 )(t f ,即 N 个离散的测点值 m f ,=m 0,1,2,……,N-1, T 为测量时间: )(t f =2 0a + )sin cos (12 1∑-=+N k k k k k t b t a ωω+t a N N 2 2cos 21 ω=∑-=1 0N k t i k k e C ω (4) 其中 ∑-== 1 02cos 2 N m m k N km x N a π ,=k 0,1,2,…,2N (5) ∑-== 1 2sin 2N m m k N km x N b π , =k 1,2,…, 2N -1 (6) ∑-=-= 1 )/2(1N m N km i m k e x N C π ,=k 0,1,2,…,N-1 (7) t N k k ?=π ω2 ,N T t =? (8) 当T ∞→ 时,化为傅立叶积分(即 Fourier 变换): ? ∞ ∞ --= dt e t f f t i ωω)()( =t i e f ω, (9) ωωπ ωd e f t f t i )(21 )(? ∞ ∞ -= (10)

(完整word版)小波变换课件第1章Haar小波

第1章Haar小波分析1.1简介

(近距离---小尺度) (高分辨率) (远距离---大尺度) (低分辨率) 1.2 平均与细节 设1234{,,,}x x x x 是一个信号序列。定义它的平均和细节: 1,0121,012()/2()/2a x x d x x =+? ?=-? 找出了1x 、2x 和1,0a 、1,0d 的关系。 这里,1,0a 是原信号前两个值1x 、2x 的平均。又叫低频成分,反映前两个值1x 、2x 的基本特征或粗糙趋势;1,0d 反映了1x 、2x 的差别,即细节信息,又叫高频成分。 1,1341,134()/2()/2a x x d x x =+? ?=-? 找出了3x 、4x 和1,1a 、1,1d 的关系。 同样,1,1a 是原信号后两个值3x 、4x 的平均,1,1d 反映了3x 、4x 的细节。 我们把1,01,11,01,1{,,,}a a d d 看作是对1234{,,,}x x x x 实施了一次变换的结果。 变换还可以往下进行: 0,01,01,1()/2a a a =+ =1234(()/2()/2)/2x x x x +++ =1234()/4x x x x +++ 0,0a 是对4个信号元素最终的平均,它是原信号最基本的信息;0,01,01,1()/2d a a =-。

经过二次变换,我们得到了原信号的另一种表示: 0,00,01,01,1{,,,}a d d d 该序列叫做原序列的小波变换,0,00,01,01,1,,,a d d d 叫做小波系数。 还可以反过来表示: 111,0211,0x a d x a d =+? ?=-? 这是用{1a ,1,0d }来恢复原信号1x 、2x ; 321,1421,1x a d x a d =+? ?=-? 用{2a ,1,1d }来恢复原信号3x 、4x 。 也就是反变换。 小波变换过程的塔式算法: 例如,1234{,,,}x x x x ={3,1,-2,4} 最终的小波变换为0,00,01,01,1{,,,}a d d d =31{,,1,3}22 - 1.3 尺度函数与小波函数 (1)Haar 尺度函数 不压缩:不位移 位移一个单位 位移k 个单位 110,0()() t t φφ=0,1(1)()t t φφ-=0,()()k t k t φφ-=1k 1k +t t t 0000

matlab图像去噪算法设计(精)

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪声的效果 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1); title('改进后的图像1'); subplot(2,3,4); imshow(K2); title('改进后的图像2');

小波变换去噪基础知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数(即母小波)和缩放函数(也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换(DWT) 和连续小波转换(CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。

小波算法

传统的第一代小波变换是在欧式空间内通过基底的平移和伸缩构造小波基的,不适合非欧式空间的应用。因此小波的提升方案应运而生,它是构造第二代小波变换的理想方法。 提升的形式给出了小波完全的空间域的完全解释,它具有许多优良的特性:结构简单,运算量低,原位运算,节省存储空间,逆变化可以直接翻转实现,以及可逆的整数到整数变换,便于实现。在高速处理、移动手持设备、低功耗设备应用中具有很大的吸引力。提升小波在1996年由Sweldens提出后,在信号处理领域得到了广泛的应用。在静态图像处理中,提升小波已被选作JPEG2000的变换核。它还提供了多精度的性能,同基于JPEG2000的标准相比,在很低的比特率时具有较好的压缩DCT的JPEG性能,并提供了在同一个编码结构中有效的失真和无失真的压缩。在视频领域,使用提升小波方法自适应地对任意形状的物体进行编码,显著提高了编码效率,在静态图像编码上明显优于MPEG4;视频物体的主观评价效果更好,具有比MPEG4更好的块效应。通过提升小波的梯形结构,提出的渐进性的小波逆变换合成(PIWC)算法来保证一个局域场景的再现只需要使用部分的压缩数据,这样减少了数据访问量和计算开销,实现了在3D环境下从压缩数据中实时再现3D。提升小波用于一维信号消噪和图像消噪也得到了良好的效果。通过将水印加入到提升结构正在处理的小波系数中,进一步增强了安全性。

提升算法: 二维离散小波变换最有效的实现方法之一是采用Mallat算法,通过在挺香的水平和垂直方向交替使用低通和高通滤波器实现。这种传统的基于卷积的离散小波变换的计算量很大,计算复杂度高,对存储空间要求高,不利于硬件实现。提升小波的出现有效地解决了这一问题。提升算法相对于MATLAB算法而言,是一种更为快速有效的小波变换实现方法,被誉为第二代小波变换。它不依赖于傅里叶变换,继承了第一代小波的多分辨率的特征,小波变换后的系数是整数,计算速度快,计算时无需额外的存储开销,Daubechies已经证明,任何离散小波或具有有限长滤波器的两阶滤波变换都可以被分解成一系列简单的提升步骤,因此能够用Mallat算法实现的小波,都可以用提升算法来实现。 提升算法给出了双正交小波简单而有效的构造方法,使用了基本的多项式插补来获取信号的高频分量,之后通过构建尺度函数来获取信号的低频分量,“提升”算法的基本思想是,将现有的小波滤波器分解成基本的构造模块,分步骤完成小波变换。 基于提升算法的小波变换称为第二代小波变换。它使我们能够用一种简单的方法去解释小波的基本理论,而第一代小波变换都可以找到等效的提升方案。提升方案把第一代小波变换过程分为以下三个阶段:分解(split),预测(predict)和更新(update)。 (1)分解。将输入信号s(i)分为2个较小的子集s(i-1)和d(i-1),d(i-1)也称为小波子集。最简单的分解方法是将输入信号s(i)根据奇偶性分为2 组,这种分裂所产生的小波称为懒小波(lazy wavelet)。分解过程可

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

基于ADAMS和ANSYS的往复压缩机有限元分析

倍频成分能量加大,其故障特征越来越明显。 (2)理论和实验证明,裂纹转子响应中出现分数次共振现象。转速较低时,裂纹转子响应中出现1X、2X、3X…频率成分,随着转速的升高,高倍频成分减少,但2X、3X倍频成分依旧明显,当转轴高速运行时(超过一阶临界转速),轴心轨迹呈圆形,主要含1X分量,其他分量能量很弱。因此,裂纹响应中是否出现高频分量共振可作为判断裂纹存在的依据。 (3)裂纹方向与偏心之间的夹角β和偏心量e 只影响转子响应的1X分量,对其他分量影响不大。偏心质量越大,其1X分量越大,β从0-π, 1X分量逐渐减小,从π-2π,则相反。参考文献: [1] 李晓峰,卫国爱,史铁林,等.裂纹轴转子系统故障特征分 析[J].华中科技大学学报,2002,30(2):21-23. [2] 和兴锁.含裂纹转子振动响应的理论与实验研究[J].西北 工业大学学报,1995,14(2):229-233. [3] 陈雪峰,李兵,等.基于小波有限元的裂纹故障诊断[J]. 西安交通大学学报,2004,38(3):295-298. [4] G asch R.A survey of the dynamic behavior of a simple rotating shaft with a transverse crack[J].Journal of Sound and Vibra2 tion,1993,160(2):313-332. [5] 曾复,吴昭同,严拱标.裂纹转子的分岔与混沌特性分析 [J].振动与冲击,2000,19(1):40-42. 作者简介:胡照林(1981-),华中科技大学硕士,主要从事旋转机械故障诊断,转子动力学的研究。 文章编号:100622971(2006)0420009203 基于ADAMS和ANS YS的往复压缩机有限元分析 程广庆1,周邵萍2,郑超瑜2,林匡行2 (11上海压缩机厂,上海200070;2华东理工大学,上海200237) 摘 要:以整体连杆为研究对象,建立了往复压缩机连杆动态应力分析的虚拟样机模型,为往复压缩 机连杆应力、应变以及疲劳寿命的评估分析和研究提供了必要的基础。 关键词:往复压缩机;虚拟样机;有限元;柔性体 中图分类号:TH457 文献标识码:A  The Finite Element Analysis of the R eciprocating Compressor B ased on ADAMS and ANSYS CHEN G Guang2qing1,ZHOU Shao2ping2,ZHEN G Chao2yu2,L IN Kuang2xing2 (11S hanghai Com pressor Com pany,S hanghai200070,China; 21East China U niversity of Science and Technology,S hanghai200237,China) Abstract:This paper studies the connect rod and presents virtual prototype of the dynamic stress analysis on the reciprocating compressor.This paper gives the necessary basis of the stress analysis,strain analysis and fatigue life appraisal of the compressor’s rod. K ey w ords:reciprocating compressor;virtual prototype;finite element;flexibility 1 前言 往复活塞压缩机运动部件主要有曲轴、连杆、活塞、等构件,其动力学分析主要包括各构件的运动与受力分析。传统的分析方法是在对各构件进行运动分析的基础上,计算出各自产生的旋转惯性力和往复惯性力,与气体力、摩擦力合成后求解出对 收稿日期:2006-06-20机体的作用力以及曲轴系的静态应力,这是一个十分繁琐的过程。运用机械系统仿真软件ADAMS,通过建立包括活塞、连杆、曲轴在内的整个曲轴系的多体系统动力学模型,不仅可以计算出各构件的运动规律和构件间的作用力,还可以进一步进行动态应力分析。 本文针对往复压缩机的曲轴系,在ADAMS中建立其多体系统动力学模型,着重对连杆部件用ANSYS和ADAMS进行了相应的动态应力分析,为 ? 9 ? 2006年第4期(总第198期) 压缩机技术

小波变换-课程设计

基于小波变换的图像融合技术 简介 图像融合是多传感器信息融合领域的一个重要分支,它是指将来自同一目标的不同传感器的信息通过一定的算法融合到一幅图上,从而获得比在单幅图上更完整、更精确的信息。图像融合在军事(如军事侦察、识别伪装)和非军事(如医疗诊断、遥感、计算机技术等)领域得到广泛的应用[1]。 这里使用基于小波变换的塔式结构的优点是小波变换具有紧凑性、正交性、很好的方向性,这使得小波变换可以很好地提取不同尺度上的显著特征,相对于高斯一拉普拉斯金字塔技术而言,不仅可以产生更好的融合结果,而且进行反向变换时稳定性更好;另外小波变换的塔式结构还使得不管原图像的长度是否2的幕次方,最终变换后的图像与原图像尺寸相同,这使得开发实用的并行算法系统成为可能。 1.图像的小波变换 1.1 图像多尺度分解 由于图像对象尺寸大小的不一,以及人类视觉系统对物体尺度的自适应性,在图像数据中引入一个尺度维,把图像在不同尺度下进行分解。直观地来讲,客观的物体根据其与观察者的距离远近不同而呈现出不同的表现形式,比如,人在不同的距离观察同一目标对象时,在距离较远时,看到的是对象的整体轮廓,在近距离观察时,看到的是关于对象的更多的细节,便是对图像进行了多尺度分解。 1.2图像二维离散小波变换 图像的二维离散小波分解和重构过程如下图所示,分解过程可描述为:首先对图像的每一行进行 1D-DWT,获得原始图像在水平方向上的低频分量 L 和高频分量 H,然后对变换所得数据的每一列进行 1D-DWT,获得原始图像在水平和垂

直方向上的低频分量 LL、水平方向上的低频和垂直方向上的高频 LH、水平方向上的高频和垂直方向上的低频 HL 以及水平和垂直方向上的的高频分量 HH。重构过程可描述为:首先对变换结果的每一列进行以为离散小波逆变换,再对变换所得数据的每一行进行一维离散小波逆变换,即可获得重构图像。由上述过程可以看出,图像的小波分解是一个将信号按照低频和有向高频进行分离的过程,分解过程中还可以根据需要对得到的 LL 分量进行进一步的小波分解,直至达到要求。 图1.1 图像二维离散小波变换分解与重构示意图 1.3matlab仿真结果 一维数据一次分解: function [L H]=haar_dwt(f) %显然,我没有做边界处理,图片最好是2^n*2^n型的 n=length(f); n=n/2; L=zeros(1,n); %低频分量 H=zeros(1,n); %高频分量 for i=1:n L(i)=(f(2*i-1)+f(2*i))/sqrt(2); H(i)=(f(2*i-1)-f(2*i))/sqrt(2); end end 对图像的一次离散小波变换 function [LL LH HL HH]=haar_dwt2D(img) [m n]=size(img); for i=1:m %每一行进行分解 [L H]=haar_dwt(img(i,:)); img(i,:)=[L H];

相关文档