文档库 最新最全的文档下载
当前位置:文档库 › 交流磁悬浮控制器的设计与制作

交流磁悬浮控制器的设计与制作

交流磁悬浮控制器的设计与制作
交流磁悬浮控制器的设计与制作

2013年全国职业院校技能大赛(高职组)

“电子产品设计及制作(电力电子技术应用)”项目竞赛样题题目:交流磁悬浮控制器的设计与制作

一、竞赛任务

按赛题要求,利用所发的技术资料、元器件及器材完成交流磁悬浮控制器的设计、装调和技术文件撰写任务;进行MSP430F5438A的软件设计,完成交流磁悬浮控制器的设计及制作。

1. 根据所给资料分析交流磁悬浮控制器的工作原理和功能要求;

2. 根据赛题所给的交流磁悬浮控制器原理图和印刷线路板约束条件,利用Altium Designer软件绘制交流磁悬浮控制器的印刷线路板图;

3.完成赛项提供的印刷线路板焊接任务;

4.利用赛项提供的机箱及套件完成简单的结构设计,包括开关、电路板、插座的安装及箱内走线的规划;

5.完成交流磁悬浮控制器的安装与调试,使其达到规定的技术指标,实现交流磁悬浮控制器的正常工作;

6.完成MSP430F5438A单片机软件的编程设计,使其达到规定的功能要求;

7.编写设计文件:包括电路原理图、印刷线路板图、系统框图、程序流程图和程序清单;

8.编写工艺文件:包括工艺流程图、元器件清单、电气安装连接图(表)、调试工作单和仪器仪表明细表;

9.编写产品使用说明书;

10.依据赛项所给《电子产品设计及制作赛项竞赛工作报告》撰写基本要求,编写《电子产品设计及制作赛项竞赛工作报告》(简称《竞赛工作报告》)。

二、竞赛时间

竞赛时间为8:00—18:00,总计10小时,含指导教师和选手交流时间、选手用餐时间。

三、功能要求与技术指标

1.原理说明

磁悬浮是根据电磁感应原理和楞次

定律,由交流电流通过线圈产生交变磁

场,交变磁场使闭合的导体产生感生电

流,感生电流的方向,总是使自己的磁场

阻碍原来磁场的变化。因此线圈产生的磁

场和感生电流的磁场是相斥的,若斥力超

过重力,可观察到磁悬浮现象。交流磁悬

浮控制器的设计采用MSP430F5438A单

片机控制,由检测机构反馈高度电信号给

单片机,再由MSP430F5438A单片机产

生一路触发脉冲信号,控制交流调压模块

电路的输出,从而实现对线圈高度的闭环

控制。

图一交流磁悬浮控制器装置机箱参考图形

2.功能实现

交流磁悬浮控制器要求实现对线圈悬浮高度的闭环控制。

交流磁悬浮控制器由MSP430F5438A单片机电路、数码管显示和键盘电路、交流调压电路和串口AD转换电路(ADS7950)等几部分组成。MSP430F5438A控制部分采用TI公司的MSP430F5438A为主控芯片;数码管显示和键盘由MSP430F5438A直接控制和检测;交流调压电路由MSP430F5438A控制实现调压;线圈悬浮通过带动滑动变阻器产生模拟信号,经过串口AD转换电路变换后送入MSP430F5438A,实现对线圈高度的闭环控制。

①印刷线路板绘制

根据赛题所给的交流磁悬浮控制器的原理图和印刷线路板外形要求,利用Altium软件绘制交流磁悬浮控制器的印刷线路板图,线路板设计须采用双层板,线路板分为主控板及人机接口两块板。

线路板约束规则要求:最小间距8mil,最小线宽10mil,过孔最小孔径15mil,过孔最小直径30mil。

印刷线路板外形约束条件、交流磁悬浮控制器原理图及原理图中各元器件封装库文件在所发的光盘中,设计文件在“交流磁悬浮控制器PCB设计文件(Altium)”文件夹中。

②交流磁悬浮控制器的装调

交流磁悬浮控制器的装调工作要求在如图一所示的同规格机箱中完成。安装套件包括机箱、前面板、后面板、固定底板、DCP-200-A (MSP430F5438A核心板)、DCP-202-A(数码管显示和键盘电路)、DCP-206-A(串口AD转换电路(ADS7950))、MCLMK-233-A(交流调压电路)以及必需的电气附件。

其中DCP-200-A(MSP430F5438A核心板)、DCP-202-A(数码管显示和键盘电路)、DCP-206-A(串口AD转换电路(ADS7950))均采用参赛队自带的线路板,MCLMK-233-A (交流调压电路)为散件,由参赛队自己焊接,焊接板13:00上交统一评分,评分后返还。参赛队员需自行完成交流磁悬浮控制器机箱内的结构设计和装调工作。

交流磁悬浮控制器的前面板需安装一个电源开关和训练板DCP-202-A(数码管显示和键盘电路板)。交流磁悬浮控制器前面板的布置如图二所示:

图二交流磁悬浮控制器装置前面板示意图

交流磁悬浮控制器的后面板需安装一个带保险丝的AC 220V国标电源座、调压输出插座以及一个±12V电源输入接口,其中+12V电源用于核心板和数码管显示和键盘电路,±12V 用于交流调压电路和串口AD转换电路,调压输出插座用于连接磁悬浮线圈。后面板的布置

如图三所示:

图三交流磁悬浮控制器装置后面板示意图

③交流磁悬浮控制器程序功能要求

交流磁悬浮控制器可通过DCP-202-A(数码管显示和键盘电路)左下角的四个按键(SW1~SW4)设置相关参数,可以实现交流磁悬浮控制器对三相交流电机速度的控制。

SW1和SW2为启动与停止按键,分别用于交流磁悬浮控制器启动和停止的控制;SW3为设定高度增加按键;SW4为设定高度减小按键。具体要求实现如下功能:

⑴设定功能

按上升“↑”键或下降“↓”键可以设定交流磁悬浮的线圈高度,设定范围为00.0毫米至30.0毫米,设定值在右边四个数码管的后面三个显示,单位毫米;

⑵起停功能

按“起动”功能键可实现交流磁悬浮控制器的起动功能,按“停止”功能键可实现交流磁悬浮控制器的停止功能,在开机时控制器要处于停止状态,交流磁悬浮的线圈高度显示“00.0”。启动前后均可设定交流磁悬浮线圈高度。

④人机交互要求

要求前面板数码管显示清晰,稳定,无阴影,频率最高位消隐;根据功能要求显示不同的数值。按键去抖,避免按键错误判断。

3.功能的分步实现

本赛题包含印刷线路板设计、交流磁悬浮控制器系统装调、技术文件编写和交流磁悬浮控制器软件编写几方面内容,参赛队在设计及制作时可分步完成各项内容。

在MSP430F5438A软件设计时,可以采用训练板先行搭建交流磁悬浮控制器系统,实现赛题规定的功能要求,功能要求也应分别实现参数的设定和控制。

四、技术文件要求

要求技术文件的对象是参赛队装调的交流磁悬浮控制器。

技术文件包括设计文件(系统框图、电路原理图、印刷线路板图、程序流程图和程序清单);工艺文件(包括工艺流程图、元器件清单、电气安装连接图(表)、调试工作单和仪器仪表明细表)以及产品使用说明书。

五、上交方式(光盘共两份)

(1)要求各参赛队把PCB电子文档刻录到自带的CD光碟之中(参赛队自带的电脑需有

刻录CD光碟功能),提交的截止时间为竞赛当天下午15:00。

(2)要求各参赛队把技术文件刻录到自带的CD光碟之中,提交的截止时间为竞赛结束时。

六、评分标准

哈工大_控制系统实践_磁悬浮小球

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 2、磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 3、系统实验的参数调试 根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID等),直到获得较理想参数为止。 四、实验要求

1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 答:磁悬浮系统的模型可描述如下 ()()()()()2221d x t m F i,x mg dt i F i,x K x di U t Ri t L dt ?=+??????=? ?????=+??? (1) 又有系统平衡的边界条件如下 ()0F i,x mg += (2) 由级数理论,将非线性函数展开为泰勒级数,在平衡点()00,i x 对系统进行线性化处理。对(1)式作泰勒级数展开并省略高阶项可得 0000(,)(,)(-)(-)i x F i x F i x K i i K x x =++ (3) 又由(2)式可知,对2i F(i,x )K()x =求偏导数得 2000000320022x x i i Ki Ki K F (i ,x )K F(i ,x )x x ==-==, (4) 则由(1)式可得 22000022300 22(-)(-)i x Ki Ki d x m K i i K x x i x dt x x =+=- (5) 对(5)进行拉普拉斯变换并带入编辑方程可得系统的开环传递函数 2001x(s )-i(s )a s -b = (6) 定义系统对象的输入量为功率放大器的输入电压也即控制电压in U ,系

磁悬浮小球仿真报告

磁悬浮小球控制仿真报告 一.仿真要求 采用根轨迹和频域法仿真磁悬浮小球系统 二.系统建模 磁悬浮系统方程可以由下面的方程描述: 22 d x(t)m F(i,x )mg dt =+动力学方程 2 i F(i,x )K( )x = 电学力学关联方程 (,)+=F i x mg 0 边界方程 ()()=+1 di U t Ri t L dt 电学方程 对2x i K x i F )(),(=泰勒展开: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ=== 00i 00i i x x F(i,x)F(i ,x )i ;|,δδ===00 x 00i i x x F(i,x) F (i ,x )x 对2 i F(i,x )K()x =求偏导数得: ==- 20x x 003 02Ki K F (i ,x )x ==0 i i 00202Ki K F(i ,x )x 此系统的方程式如下: x x 2Ki i x 2Ki )x -(x K )i -(i K dt x d m 30 2 02000x 0i 22-=+= 拉普拉斯变换后得:

)()()(s x mx 2Ki s i mx 2Ki s s x 3 2 2002 -= 由边界方程 )20 2 0x i K(mg -= 代入得系统的开环传递函数: 200 x(s)-1 = i(s)a s -b 定义系统对象的输入量为控制电压in U ,系统对象输出量为x 所反映出来的输出电压为out U ,则该系统控制对象的模型可写为: out s s a 2in a 00 U (s)K x(s)-(K /K ) G(s)= ==U (s)K i(s)a s -b 00000 i i a = , b =2g x 特征方程为:200a s -b =0 解得系统的开环极点为:s =取系统状态变量分别为1out 2out x =u ,x =u 系统的状态空间表示法如下: ?11in s ?2200 a 0 1 0x x =+u 2g 2g?K 0-x x x i ?K ???????? ? ? ? ? ? ? ? ??? ? ??????? ][121x x x 0 1y =??? ? ??= 代入实际参数,可以得到 in 2121U 124990x x 0098010 x x ???? ? ?+???? ?????? ??=???? ? ????.. 系统的状态方程可以写为

磁悬浮列车设计方案

自制教具 磁悬浮列车 设计方案 一、制作材料:53cm × 20cm×3cm的木料、2cm×1cm×3mm的强力磁铁一百多块、小型铁钉一包、几片10厘米×5厘米的薄木片、53厘米×20厘米、21厘米×20厘米的玻璃各两快、若干装饰彩纸等材料。 二、制作工具:老虎钳、羊角锤、剪刀、尺子等。 三、制作过程: 1. 准备一块长方体木料,大小大致53cm×20cm×3cm,在53cm ×20cm长方形面上横向留出2条宽2厘米磁铁轨道槽,磁铁轨道槽上方用薄木片盖上,并用铁钉加以固定(这样可以防止强力磁铁在拼装过程中向外挤压,可以使强力磁铁的拼装更加方便。) 2. 磁铁轨道槽钉上薄木片以后,把磁铁按排列单位进行横向组合连续磁铁拼装,并将两条磁铁轨道槽拼装完整。两条轨道的磁铁排列呈左右对称方式。 3. 准备一块厚2cm的木料板,木料板宽度略小于53cm ×20cm×3cm长方体木料,长度自定。留出方式和53cm × 20cm×3cm 长方体木料相同。列车上的底面磁铁轨道拼装方式和53cm ×20cm×3cm长方体木料类似,磁铁方向也横向组合连续拼装,以

增强列车悬浮滑行的稳定性,列车上的两条底面磁铁轨道呈左右对称方式,宽度和53cm × 20cm×3cm长方体木料磁铁轨道相同。 4、依据53cm × 20cm×3cm长方体木料,制作底座,用以安放53cm × 20cm×3cm长方体木料。 5. 准备4块玻璃,长53厘米、宽20厘米,长21厘米、宽20厘米的玻璃各两块,再将这4块玻璃固定到长方体底座木料的前后左右四侧,玻璃下面部分和长方体底座木料对齐,成为列车防滑护栏板。为防止悬浮列车滑出两侧,在列车防滑护栏板左右两侧再固定几块小型防滑玻璃。这样即能保证磁悬浮列车的稳定性,又能保障高效的演示性。 6. 最后在根据个人喜好对磁悬浮列车模型进行装饰,模型即宣告制作完成。 注意:1、拼装要紧密; 2、磁铁片的同极向上; 3、拼装时,钉一次薄木片拼装一次,并钉钉抵住磁铁,防止磁铁向外挤压,用相同方法直至拼装完四条磁铁轨道槽。 使用说明: 1. 将磁悬浮列车模型的列车部分,磁铁面朝下横放入列车底座防滑护栏板之间,即能实现列车的有效悬浮,悬浮高度大约是3厘米。

磁悬浮系统的PID控制

磁悬浮系统的PID控制

本科毕业设计(论文)题目: 磁悬浮系统的PID控制 姓名: 学号: 专业: 指导教师: 职称: 日期: 华科学院

摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 本设计毕业设计在分析磁悬浮系统构成及工作原理的基础上,建立其数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真研究,得出较好的控制参数。最后,本文对以后研究工作的重点进行了思考,提出了自己的见解。 关键词:磁悬浮系统控制器MATLAB软件PID控制

Abstract Magnetic suspension technology, which has a series of advantages such as contact-free, no friction, no wear, no need of lubrication and long life expectancy, is widely concerned and adopted in high-tech areas such as energy, transportation, aerospace, industrial machinery and life science.On the basis of analyzing of magnetic suspension system’s structure and working principle, its system mathematical model was established, this thesis describe PID controller designed and get control scheme. It get the better control parmeters by MATLAB software simulation studies.The key research works for further study are proposed at last. Key Word:Magnetic Levitation Ball System Digital Controller MATLAB PID Control

磁悬浮主轴设计

1前言 1.1 高速切削简介 高速切削的概念被提出后,经过了长期探索研究与发展后,才在近十几年被广泛应用在机械加工过程中。高速切削作为一种新兴的先进机械加工技术,与传统的机械加工技术相比,其具有一系列的优点。它集高效率、高加工精度、低功耗等于一体。高速切削解决了常规切削加工中一些长期存在而无法解决的问题,例如由于机械加工过程中,刀具的切削量很小,产生的切削热比较少并且绝大部分切削热被切屑及时带走,从而提高了刀具的切削寿命;随着切削速度的提高,在单位时间内被加工材料的去除率有了很大的提高,进而减少了切削时间,提高了工件的加工效率;高速切削的进给量小,因而切削力也就相对要小,而且形成的切屑能够在很短的时间内被排出,切削过程所产生的热量在还没有传导至刀具时,就被切屑带走了,这样就降低了刀具及工件上的切削热;由于高速切削可以达到很高的加工精度,所以在某些场合可以实现以车代铣、以铣代磨等工序。这些优点极大地缩短了产品的制造周期,这在竞争日益激烈的当代是很有发展前途的。 1.2 磁悬浮轴承简介 磁悬浮轴承也被人们称为磁力轴承,它是一种靠磁场力来承受载荷或将转子悬浮起来的一种新型的支承形式,根据不同的工作原理可将磁悬浮轴承系统分为三大类:主动磁悬浮轴承、被动磁悬浮轴承和混合式磁悬浮轴承。主动磁悬浮轴承是利用可控电磁力来悬浮主轴转子的,它有主动电子控制系统;被动磁悬浮轴承是利用磁场本身的特性使主轴转子悬浮,它没有主动电子控制系统,其应用最多的是永磁轴承;混合式磁悬浮轴承是由主动磁悬浮轴承和被动磁悬浮轴承以及其他一些必要的辅助支撑共同组合而成的,它既有主动磁轴承的优点也有被动磁轴承的优点。为了便于设计制造,本设计中采用主动磁悬浮轴承磁悬浮轴承具有一系列的优点:定子与转子之间无接触,因而无摩擦,且功耗低,可以使主轴实现高速旋转;无需润滑和密封,因而可以简化系统结构的设计;支撑精度比一般的接触式轴承还高,工作稳定可靠。但是,其支撑刚度比接触式轴承要低,而且结构复杂,需要专门的控制系统,主轴上还要设计增加位移传感器,成本较高。 虽然磁悬浮轴承由多个磁极构成,但是为便于研究【2】,我们仍然可以将其简化为下图所示结构。

磁悬浮小球matlab

磁悬浮系统建模及其PID控制器设计Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 设计报告内容 1. 简述磁悬浮球系统的工作原理; 2. 依据电磁等相关物理定理,列写磁悬浮系统的运动方程;

3. 根据磁悬浮系统的运动方程搭建被控对象在Simulink环境下的仿真模型; 4. 结合单位反馈控制系统的控制原理,为被控对象设计PID控制器。 5. 分析综述比例P、积分I、微分D三个调节参数对系统控制性能的影响。 设计报告正文 1. 简述磁悬浮球系统的工作原理; 磁悬浮控制系统由铁心、线圈、光位移传感器、控制器、功率放大器和被控对象(钢球)等元器件组成。它是一个典型的吸浮式悬浮系统。系统开环结构如图4所示。 图2系统开环结构图 电磁铁绕组中通以一定的电流会产生电磁力,控制电磁铁绕组中的电流,使之产生的电磁力与钢球的重力相平衡,钢球就可以悬浮于空中而处于平衡状态。但是这种平衡是一种不稳定平衡,这是由于电磁铁与钢球之间的电磁力的大小与它们之间的距离)(t x成反比,只要平衡状态稍微受到扰动(如:加在电磁铁线圈上的电压产生脉动、周围的振动、风等),就会导致钢球掉下来或被电磁铁吸住,因此必须对系统实现闭环控制。由电涡流位移传感器检测钢球与电磁铁之间的

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计 专业班级电气工程及其自动化 11**班 学号 201110710247 学生姓名 ** 指导教师 ** 学院名称电气信息工程学院 完成日期: 2014 年 5 月 7 日

磁悬浮系统建模及其PID控制器设计 Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真

一、磁悬浮技术简介 1.概述: 磁悬浮是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早期模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。 1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。 在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。 1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。 1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 2009年时,国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 2. 磁悬浮技术的应用及展望 20世纪60年代,世界上出现了3个载人的气垫车试验系统,它是最早对磁悬浮列车进行研究的系统。随着技术的发展,特别是固体电子学的出现,使原来十分庞大的控制设备变得十分轻巧,这就给磁悬浮列车技术提供了实现的可能。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车模型,以后命名为TR01型,该车在1km 轨道上的时速达165km,这是磁悬浮列车发展的第一个里程碑。在制造磁悬浮列车的

磁悬浮系统建模及其PID控制器设计

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计专业班级电气工程及其自动化11**班 学号 2 学生姓名 ** 指导教师** 学院名称电气信息工程学院 完成日期: 2014年 5 月 7 日

磁悬浮系统建模及其PID控制器设计Magnetic levitation system base don PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业与生命科学等高科技领域有着广泛得应用背景。 随着磁悬浮技术得广泛应用,对磁悬浮系统得控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理得基础上,建立磁悬浮控制系统得数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好得控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作得重点进行了思考,提出了自己得见解。 PID控制器自产生以来,一直就是工业生产过程中应用最广、也就是最成熟得控制器。目前大多数工业控制器都就是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还就是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真 一、磁悬浮技术简介 1、概述: 磁悬浮就是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮得平衡状态,磁悬浮瞧起来简单,但就是具体磁悬浮悬浮特性得实现却经历了一个漫长得岁月。由于磁悬浮技术原理就是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体得典型得机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料得发展与转子动力学得进一步得研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营得若干猜想--也就就是磁悬浮得早期模型。并列出了无摩擦阻力得磁悬浮列车使用得可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行得办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮得概念,同时指出:单靠永久磁铁就是不能将一个铁磁体在所有六个自由度上都保持在自由稳定得悬浮状态。

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

(完整版)基于单片机的磁悬浮小球控制系统设计毕业设计

基于单片机的磁悬浮小球控制系统设计 摘要 随着越来越多的磁悬浮技术应用到现实生活中的各个领域,磁悬浮这个在几年前还是很陌生的一个词现在已经广为人知。磁悬浮以悬浮力产生的原理分类可以分为超导磁悬浮和常导磁悬浮。磁悬浮的控制系统是一个很复杂的问题。本文 研究的重点就是这两种磁悬浮的控制问题。 超导磁悬浮是利用处于超导状态下的超导体具有斥磁力的原理产生的。超导磁悬浮的悬浮物体就是超导体本身,所以超导磁悬浮的控制重点就落在了超导体上。本文从介绍超导磁悬浮的基本应用入手,逐步深入地介绍超导体的基本物理性质,然后介绍超导磁悬浮系统的控制方法、过程和原理。 与超导磁悬浮相比,常导磁悬浮的应用就更为广泛,因为常导磁悬浮的实现过程要简单得多。常导磁悬浮可以分为应用电磁铁的磁悬

浮和引用非电磁性磁铁(稀土永磁铁、普通磁铁等)的磁悬浮。但是由于电磁铁便于控制和利用,所以利用电磁铁的磁悬浮义勇更为广泛。本文在常导磁悬浮方面的研究是从一个实例入手,分析电磁铁式磁悬浮的原理,从而进一步研究电磁铁式磁悬浮的控制方法、过程和原理。 在本文的最后,我利用在大学里所学的知识,结合本文的研究重点——磁悬浮装置的控制问题,做出了一个简单的电磁悬浮装置。这个悬浮装置的原理是利用对电磁铁电流的控制来实现一个铁球在空中的来回反复运动,达到视觉上的悬浮效果。这虽然与实际的电磁铁悬浮控制方原理不同,但是利用这简单手段也能够达到相同的目的。这个实例给了我们一个启示:简单的演示实验装置也能够说明磁悬浮列车等高新技术的工作原理,磁悬浮并不是遥不可及的。 关键词:常导磁悬浮,超导磁悬浮,磁悬浮的控制,演示实验装置,磁悬浮列车

磁悬浮设计文档

项目设计 主题:基于MSP430F5438的交流磁悬浮控制器的设计 完成时间:2013.11.14 学生姓名:刘天月 指导教师:王庐山

○目○录 一、引言 (1) 二、MSP430F5438单片机简介 (1) 三、磁悬浮控制系统结构框图 (2) 四、系统功能实现分析 (2) 五、程序功能说明 (3) 六、程序清单(附) (5)

一、引言 磁悬浮是根据电磁感应原理和楞次定律,由交流电流通过线圈产生交变磁场,交变磁场使闭合的导体产生感生电流,感生电流的方向,总是使自己的磁场阻碍原来磁场的变化。因此线圈产生的磁场和感生电流的磁场是相斥的,若斥力超过重力,可观察到磁悬浮现象。交流磁悬浮控制器的设计采用MSP430F5438A单片机控制,由检测机构反馈高度电信号给单片机,再由MSP430F5438A单片机产生一路触发脉冲信号,控制交流调压模块电路的输出,从而实现对线圈高度的闭环控制。 二、MSP430F5438单片机简介 MSP430系列单片机是美国德州仪器公司研发的一款16位超低功耗单片机[3],因为其具有精简指令集的混合信号处理器,所以称之为混合信号处理器。该系列单片机具有如下特点: ◆处理能力强 MSP430系列单片机是一个16位的单片机,采用了精简指令集(RISC)结构,具有丰富的寻址方式(7 种源操作数寻址、4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令。这些特点保证了可编制出高效率的源程序。 ◆运算速度快 MSP430 系列单片机能在25MHz晶体的驱动下,实现40ns的指令周期。16位的数据宽度、40ns的指令周期以及多功能的硬件乘法器(能实现乘加运算)相配合,能实现数字信号处理的某些算法(如 FFT 等)。 ◆超低功耗 MSP430 单片机之所以有超低的功耗,是因为其在降低芯片的电源电压和灵活而可控的运行时钟方面都有其独到之处。 首先,MSP430 系列单片机的电源电压采用的是1.8-3.6V 电压。因而可使其在1MHz 的时钟条件下运行时,芯片的电流最低会在165μA左右,RAM 保持模式下的最低功耗只有0.1μA。 其次,独特的时钟系统设计。在 MSP430 系列中有两个不同的时钟系统:基本时钟系统、锁频环(FLL 和FLL+)时钟系统和DCO数字振荡器时钟系统。可以只使用一个晶体振荡器(32768Hz),也可以使用两个晶体振荡器。由系统时钟系统产生 CPU 和各功能所需的时钟。并且这些时钟可以在指令的控制下,打开和关闭,从而实现对总体功耗的控制。 由于系统运行时开启的功能模块不同,即采用不同的工作模式,芯片的功耗有着显著的不同。在系统中共有一种活动模式(AM)和五种低功耗模式(LPM0~LPM4)。在实时时钟模式下,可达2.5μA ,在RAM 保持模式下,最低可达0.1μA 。 ◆片内资源丰富 MSP430 系列单片机的各系列都集成了较丰富的片内外设。它们分别是看门狗(WDT)、模拟比较器A、定时器A0(Timer_A0)、定时器A1(Timer_A1)、定时器B0(Timer_B0)、UART、SPI、I2C、硬件乘法器、液晶驱动器、10位/12位ADC、16位Σ-Δ ADC、DMA、I/O端口、基本定时器(Basic Timer)、实时时钟(RTC)和USB控制器等若干外围模块的不同组合。

基于模拟电路的磁悬浮控制系统

基于模拟电路的磁悬浮控制系统 摘要:本文首先简要地介绍磁浮轴承的发展历程和国内外研究、应用状况,接着利用电磁学、电子学和控制理论对磁悬浮的原理进行了分析,建立了系统的数学模型。对电路参数进行分析,设计了基于模拟电路的磁悬浮控制系统。该系统采用电磁永磁混合支持,提高了系统稳定性并降低了系统功耗。 关键词:混合磁悬浮,霍尔传感器 0 引言 人类希望利用磁场力对物体进行无接触支撑的想法由来已久。20世纪初,科学家首次在实验室利用电流的磁效应实现了物体在空中自由悬浮。然而由于磁悬浮技术是一门涉及多种学科的综合性技术,其发展受到了多方面的制约。随着近几十年电子技术、控制工程、信号处理元器件、电磁理论、新型电磁材料及转子动力学的发展,磁悬浮技术才得到了长足的发展。特别是进入上世纪80年代,超导技术首先应用于磁悬浮。超导技术与磁悬浮技术的结合,新材料,新工艺,新器件的出现以及现代控制技术的发展,使电磁悬浮技术趋于成熟,磁悬浮技术有精度高、非接触和消耗能量少等优点。在能源紧张的今天,研究磁悬浮系统具有重要的实际意义。磁悬浮技术不仅可以应用于磁悬浮列车,而且在磁悬浮轴承、磁悬浮飞轮储能、航天器与电磁炮的磁悬浮发射、磁悬浮精密平台、磁悬浮冶炼等方面也有广泛应用。磁悬浮技术有着广阔的商业前景,适合商业应用。例如,磁悬浮可以用于广告牌悬浮、地球仪悬浮,科技展览、沙盘展示(空中楼阁)、悬空高档礼品等。因此,磁悬浮是一种能带动众多高新技术发展的具有广泛前景的应用技术。基于模拟电路的磁悬浮控制系统可以用来研究电磁式磁悬浮固有的开环不稳定性和非线性性。 1 磁悬浮系统的组成及原理分析 磁悬浮旋转装置主要由永磁体、铁芯、线圈、磁场传感器、功率放大器和控制器等组成。其结构如图a所示

磁悬浮导轨毕业设计

安徽工程大学毕业论文 基于Solidworks的磁悬浮导轨 摘要 随着微机电系统(MEMS)及纳米技术的发展,对精密工作台的位移精度和动态特性等提出越来越高的要求。这就要求作为精密工作台的重要组成部分的导轨具有较高的位移分辨率、定位精度以及动态特性。 本论文针对传统导轨直接接触的固态导轨面之间存在着不可避免的摩擦力导致忽跳忽停的爬行现象,研究一种导向性能优异的磁悬浮导轨。考虑到传统磁悬浮导轨采用的电磁和超导磁悬浮技术不适合用于微定位系统环境,设计采用永磁悬浮导轨。同时,为悬浮的动导轨施加各个方向可调约束力,保证动导轨稳定运行。对磁材料进行深入对比,选择合适的材料。在结构设计时进行了力学平衡优化设计。最后利用solidworks软件,将所设计的磁悬浮导轨做成三维模型。 关键词:磁悬浮导轨;永磁铁;力学平衡

Research on the Structure of Maglev Guideway Based on Solidworks Abstract With the development of MEMS and nana technology, the demands of precision worktable on positioning precision and dynamic characteristic are even higher. This requires as an important part of precision worktable of guide rail has high displacement resolution, positioning accuracy and dynamic characteristics。 Since the inevitable friction force of solid state guide rail surface, traditional guide rail has the crawling phenomenon , that is,to jump or to stop. Thus a new magnetic suspension guide rail is studied with fine guidance acharacter. Since the technologies of traditional magnetic suspension guide rail and superconductivity magnetic suspension doesn’t fit the micro positioning system environment, the permanent maglev guide rail is designed. At the same time, each direction adjustable binding force is designed to achieve steady kinestate of the guide rail. A kind of appropriate material is chose through contrast of several magnetism materials. The optimization design is carried on mechanical balance. Three-dimensional model of maglev guideway is made by Solidworks software finally. Keywords: maglev guideway ,everlasting magnet, mechanics balance

PID控制器设计磁悬浮小球控制系统

MATLAB课程设计 课程名称:采用PID控制器设计磁悬浮小球控制系统 学院:电气工程学院 学号:P101813409 姓名:徐敏敏 班级:10级自动化一班 指导教师:杨成慧老师

目录 摘要........................................................1 1.引言.........................................................2 2.系统分析与设计..................................... 5 2.1系统建模及仿真..............................................5 2.2建立磁悬浮小球系统框图....................................7 2.3 PID控制系统..........................................8 2.4 仿真结果分析..............................................13 2.5 总结.....................................................13 2.6 答谢.....................................................13 3.参考文献.......................................................14

摘要: 本文通过对一个磁悬浮小球的分析,简单的描述了磁悬浮列车的原理。控制要求通过调节电流使小球的位置始终保持在平衡位置。通过对磁悬浮小球系统进行数学建模,求出它的系统传递函数,采用PID算法设计调节器,对小球的稳定性进行了分析和仿真,在MATLAB平台仿真获得适当的PID参数范围,进行频域分析,使得磁悬浮小球系统处在平衡状态,在仿真过程中对PI,PD,及PID三种方式进行了比较和分析,对其加入扰动信号,即正弦扰动信号,观察输出波形,对扰动进行分析。本文通过对磁悬浮小球系统的分析,体现了MATLAB的强大功能,突出了它在运算以及作图仿真方面的优势。 关键字: MATLAB, PID控制器, 磁悬浮小球系统,稳定性 1.引言 磁悬浮列车的原理并不深奥。它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。将“磁性悬浮”这种原理运用在铁路运输系统上,使列车完全脱离轨道而悬浮行驶,成为“无轮”列车,时速可达几百公里以上。这就是所谓的“磁悬浮列车”,亦称之为“磁垫车”。由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒

磁悬浮控制系统设计——自动控制原理大作业

原题 原题图片 物理背景描述 对于上图所示的磁悬浮系统,如果钢球在参考位置附近有很小的位移时,影像探测器上的电压e(伏特)由球的位移x(米)决定,即e=100x。 作用在钢球上向上的力f(牛顿)由电流i(安培)以及位移共同决定,其近似关系为f= 0.5i+20x 功率放大器为压流转换装置,其输入输出关系为i=u+V0。 钢球质量m=20(克),地球表面的重力加速度为g=9.8(牛顿/千克)。 其中V0为恒定偏置电压,以保持钢球处于平衡状态时的位移x=0。 问题的描述 以电压u为控制信号,位移x为输出信号,建立系统的传递函数;以影像探测器输出电压e为反馈信号,并给定参考位移(输入)信号r,构成闭环负反馈系统。试设计适当的控制器,使得闭环系统满足下列性能指标: 跟踪阶跃信号的稳态误差为零,跟踪单位斜坡信号的稳态误差小于0.01; 单位阶跃响应的超调量不大于30%,过渡过程时间不大于1秒(?=2%)。

求控制器的传递函数。 问题推导 1.当x=0,r=0时: e=0,u=0; i=V0; f=0.5V0; 0.5V0?mg=m d 2x dt2 =0; mg=0.5V0 2.系统闭环传递函数: u=r?e; i=r?e+V0=r+V0?100x; f=0.5r+0.5V0?50x+20x=0.5r+0.5V0?30x; F=f?mg=0.5r+0.5V0?30x?mg=m d 2x dt2 ; m d2x dt2 +30x=0.5r+0.5V0?mg; (mg=0.5r) m d2x dt2 +30x=0.5r;取拉氏变换 G(s)=x(s) r(s)=0.5 ms2+30 ; (m=0.02kg) G(s)=25 s2+1500 3.系统开环传递函数 前向通道传递函数: F=f?mg=m d2x dt2 ; 20x+0.5i?mg=m d2x dt2 ; 20x+0.5u+0.5V0?mg=m d2x dt2 ; (mg=0.5r) m d2x dt2 ?20x=0.5r; 取拉氏变换 G(s)=x(s) r(s)=0.5 ms?20 ; (m=0.02kg) G(s)=25 s2?1000开环传递函数:

2019-2020年电磁悬浮系统课程设计报告.docx

研究生课程考核试卷 科目:现代控制理论教师: 姓名:学号: 专业:类别: 上课时间: 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师 (签名) 重庆大学研究生院制

电磁悬浮系统课程设计报告 1.设计要求 简易电磁悬浮系统的物理模型如下图所示。其中电源提供高频交流电压从而使得电磁铁线圈流过高频交流电流,产生高频交变的电磁场,进而在金属小球表面产生涡流,涡流形成的电磁场与线圈产生的电磁场之间产生相互作用力。通过控制电磁铁线圈中流过的电流,使之产生的电磁力与金属球的重力相平衡,金属球则可稳定的在空中保持悬浮。电磁力与线圈电流i的平方成正比,与电磁铁和小球之间的距离x成反比,即 2 Ki F h 其中K为电磁力系数。 假设系统的参数为M=0 g,K=0.0001,L=0.01H,R=1Ω,g=9.8m/ s2。当电流i=7A时,小球位于平衡点h=0.01m处,试求: (1)以线圈电压v为输入量,电磁铁和小球之间的距离x为输出量,通过近似线性化处理建立系统的状态空间表达式; (2)对系统作稳定性分析,判断小球能否位于平衡点; (3)假设系统的控制要求为:偏离平衡点后能够自动回到平衡点,其中稳定时间<0.5s、超调量<5。试设计带状态观测器状态反馈系统,并绘制模拟仿真图; (4)根据模拟仿真图,绘制系统综合前后的响应曲线,判断系统在外加扰动的情况下小球能否回到平衡点。

2.系统分析与设计 设控制对象处于悬浮的平衡位置,电磁铁绕组上的电流为i,当它对控制对象产生的吸力F和控制对象的重力Mg相平衡时,控制对象将处于一种平衡状态,静止在该位置上。 假设在平衡位置悬浮体受到一个向下的扰动,悬浮体就会偏离其平衡位置向下运动,此时传感器检测出悬浮体偏离其平衡位置的位移并将位移相对应的电压输出至控制器,控制器将这一位移信号变换为控制信号,功率放大器又将该控制信号变换为控制电流。相对于平衡位置,此时的控制电流增大,因此,电磁铁的吸力F变大了,从而使控制对象返回到原来的平衡位置。 如果控制对象受到一个向上的扰动并向上运动,此时控制器使得功放的输出电流减小,电磁铁的吸力F变小了,控制对象也能返回到原来的平衡位置。因此,不论控制对象受到向上或向下的扰动,只要在控制器的控制下相应地及时改变控制电流的值,控制对象始终能处于稳定的平衡状态。 控制系统组成如图2.1所示。 图2.1 磁悬浮控制系统组成 2.1状态空间表达式 1)求原系统的状态空间表达式 由题中条件可以得到原系统KVL的如下关系式: di =+ v iR L dt 当系统稳定时,即小球悬浮静止时有: 2 Ki F Mg == h 取向下为正方向,a为小球向下的加速度,对小球在竖直方向受力分析:

对磁悬浮列车运行控制系统的思考

交通运输学院运输1302班11252086 丁耀宗

对磁悬浮列车运行控制系统的思考 ——《列车运行控制系统》课程考察报告 11252086 丁耀宗1综述 高速磁悬浮列车作为一种新型交通工具,以其快捷、安全、舒适、无磨擦、低噪声、低能耗、易维护、无污染等优点吸引着人们的眼球。磁悬浮列车是一种靠磁悬浮力来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不同于其他列车需要接触地面,因此只受来自空气的阻力。磁悬浮列车的速度可达每小时400公里以上,比轮轨高速列车的380多公里还要快。20世纪末以来,德国、发达国家以及中国都相继开始筹划进行磁悬浮运输系统的开发。我国第一辆磁悬浮列车2003年1月开始在上海运行。磁悬浮列车的普及应用,除了硬件技术问题,首要的就是解决其控制系统的问题。 高速磁悬浮运行控制系统就如同人的大脑,负责安排整个交通系统安全可靠有效的运转,使磁悬浮列车的特点充分展现出来。目前,仅日本和德国对高速磁悬浮运行控制系统的研究技术比较成熟。 2 磁悬浮列车性能简介 高速磁悬浮列车的推力是利用交流同步直线电机(LSM)的原理产生的,该电机与其对应的交流同步旋转电机结村、工作原理

基本相似。它的转子是置于列车底部的直流激励的磁极,定子为沿着线路轨道铺设的三相定子绕组,设置在地面上的变频设备在线路上可分段给定子绕组供电。当三相绕组通入三相对称正弦电流时。在气隙中便形成正弦分布并以同步速度平移的行波磁场,当磁场足够大时则吸引转子而使列车以同步速度行驶。只要安装在路边的变电所内的变频设备把电馈入长定子电缆中,在线路上就会产生使列车移动的磁场,而且频率越高,移动的速度也越大。 由于一个变电所的供电能力有限,因此整个线路被分成数个供电分区,每个分区对应一个变电所,一个变电所只能给一辆列车供电。为提高系统的效率和功率因数,供电分区内的电缆又被分为一个个的小分区,只向有车运行的那个小分区供电,这样也可减小能耗,节约能源,但需要分区转换装置。供电分区供电的模式对磁悬浮列车运行控制也产生了直接的影响。 3磁悬浮列车控制系统特点需求分析 磁悬浮运行控制系统的基本任务和传统轮轨列车类似,就是要根据运行计划,办理列车运行进路,保证进路正确安全;实时控制和监督列车运行速度,防止列车超速;调整列车追踪问隔,保证运行安全,提高运输效率;提供旅客服务信息,提高服务质量。这些要求在磁悬浮交通中需要由地面的运行控制系统自动完成,而在轮轨交通中这些功能主要起辅助司机驾驶的作用。 基于磁悬浮列车的上述特点和工作原理,其列车运行控制系统必须满足以下几点基本要求:

相关文档
相关文档 最新文档