文档库 最新最全的文档下载
当前位置:文档库 › Gl11-压杆稳定

Gl11-压杆稳定

材料力学第9章压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π= 。 [习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动) 解:压杆能承受的临界压力为:2 2) .(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆,它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ

(f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2).2(l EI P cr π= 为什么并由此判断压杆长因数μ是否可能大于2。 螺旋千斤顶(图c )的底座对丝杆(起顶杆)的稳定性有无影响校核丝杆稳定性时,把它看作下端固定(固定于底座上)、上端自由、长度为l 的压杆是否偏于安全 解:临界力与压杆两端的支承情况有关。因为(a)的下支座不同于(b)的下支座,所以它们的临界力计算公式不同。(b)为一端固定,一端自由的情况,它的长度因素2=μ,其临界力为:2 min 2).2(l EI P cr π= 。但是,(a) 为一端弹簧支座,一端自由的情况,它的长度因素 2≠μ,因此,不能用2 min 2) .2(l EI P cr π= 来计算临界力。 为了考察(a )情况下的临界力,我们不妨设下支座(B )的转动刚度l EI M C 20 ==? ,且无侧向位移,则: )()("w F x M EIw cr -=-=δ 令 2k EI F cr =,得: δ22"k w k w =+ 微分方程的通解为:δ++=kx B kx A w cos sin kx Bk kx Ak w sin cos ' -= 由边界条件:0=x ,0=w ,C F C M w cr δ?== =' ;l x =,δ=w 解得: Ck F A cr δ= ,δ-=B ,δδδ δ+-=kl kl Ck F cr cos sin 整理后得到稳定方程:20/tan == l EI C kl kl

压杆稳定实验

3-9 压杆稳定性实验 工程实际中,失稳破坏往往是突然发生的,危害性很大,因此充分认识压杆的失稳现象,测定压杆的临界载荷,具有十分重要的工程意义。 一、试验目的 1.测定两端铰支细长压杆的临界载荷F cr ,并与理论值进行比较,验证欧拉公式。 2.观察两端铰支细长压杆的失稳现象。 二、设备和仪器 1.力学实验台; 2.百分表(或电阻应变仪); 3.游标卡尺、钢板尺。 三、试样 弹簧钢(60Si 2Mn )制成的矩形截面细长杆,经过热处理。两端制成刀刃,以便安装在试验台的V 形支座内。 四、实验原理 对于轴向受压的理想细长直杆,按小变形理论其临界载荷可由欧拉公式求得: 2 cr 2() EI F L πμ= (3-32) 式中:E 为材料的弹性模量,I 为压杆横截面的最小惯性矩,l 为压杆的长度;μ为长度系数,对于二端铰支情况,μ=1。 当载荷小于F cr 时,压杆保持直线形状的平衡,即使有横向干扰力使压杆微小弯曲,在撤除干扰力以后压杆仍能回复直线形状,是稳定平衡。 当载荷等于F cr 时,压杆处于临界状态,可在微弯情况下 保持平衡。 如以压力F 为纵坐标,压杆中点挠度w 为横坐标。按小变形理论绘出的F -w 图形可由二段折线OA 和AB 来描述,如图3-32所示。 而实际压杆由于不可避免地存在初始曲率,或载荷可能有微小偏心以及材料不均匀等原因,在加载初始就出现微小挠度,开始时其挠度w 增加较慢,但随着载荷增加,挠度也 不断增加,当载荷接近临界载荷时,挠度急速增加,其F -w 曲线如图3-32中OCD 所示。实际曲线OCD 与理论曲线之间 的偏离,表征初始曲率、偏心以及材料不均匀等因素的影响, 这种影响愈大,偏离也愈大。显然,实际曲线的水平渐进线即代表压杆的临界载荷F cr 。 工程上的压杆都在小挠度下工作,过大的挠度会产生塑性变形或断裂。仅有部分材料制成的细长杆能承受较大的挠度使载荷稍高于cr F (图3-32中虚线DE 所示)。 实验测定临界载荷,可用百分表测杆中点处挠度w ,如图3-33a 所示。绘制F -w 曲线,作F -w 曲线的水平渐近线就得到临界载荷F cr 。 当采用百分表测量杆中点挠度时,由于压杆的弯曲方向不能预知,应预压一定量程,以给杆向左、右弯曲留有测量余地。

压杆稳定实验

《创新型力学实验》 压杆稳定临界载荷测定综合实验 一、实验目的 1. 熟悉动态应变仪的使用方法; 2. 掌握振动信号的测量方法; 3. 测量受压细长杆件失稳时的临界力; 4. 讨论不同杆端约束条件对临界力的影响; 5. 将材料力学方法与振动法测量结果进行比较,讨论两种方法的优缺点; 6. 计算临界力,验证欧拉公式,并分析产生误差的原因。 二、实验仪器设备 动态信号分析仪、压杆稳定综合实验装置、电阻应变片、电涡流传感器、力锤、力传感器读数器、电涡流读数器 矩形截面钢制细长杆件(弹性模量E=180GPa ) 三、实验原理 细长杆作垂直轴线方向的振动时,其主要变形形式是弯曲变形,通常称为横向振动或弯曲振动,简称梁的振动。如果梁是直梁,而且具有对称面,振动中梁的轴线始终在对称面内。忽略剪切变形和截面绕中心轴转动的影响,即所谓的欧拉梁。它作横向振动时的偏微分方程为: ()()()()()t x q t t x y x A x t x y x EI x ,,,222222=???+?? ????????ρ (4-6) EI(x)为弯曲刚度(E 为纵向弹性模量,I(x)为截面惯性矩),()x ρ为密度,A(x)为截面积,q(x,t)为分布干扰力,y(x,t)为挠度。若梁为均质、等截面时,截面积A(x)、弯曲刚度EI(x)、密度()x ρ均为与x 无关的常量,因此,式(4-6)可写成: ()()()()t x q t t x y x A x t x y EI ,,,2 244=???+??ρ (4-7) 如果梁在两端轴向力T 0的作用下自由振动,其振动的偏微分方程为: ()()()0,,,222202222 =???+??-?? ????????t t x y A x t x y T x t x y EI x ρ (4-8)

压杆稳定性实验(含纸桥案例分析)

压杆稳定性实验 潘哲鑫2012011680 祝世杰2012010407 一.实验分析 对于立柱材料而言,损坏往往不是来源于直接受压的损坏,而大都来自于杆件失稳导致的折断或者倾倒。因此研究杆件在受压情况下的失稳特性就非常有意义。 在本实验中,我们使用的是环氧树脂杆,弹性模量59.2E GPa =,500MPa σ=???? 通过测量可知,杆的有效长度为,8412mm L cm d ==直径 实验一:双端铰支的情况下 临界载荷22(KL)K EI P π=其中K=1,故可算得,临界842.9K P N = 考虑杆件达到其许应力的最大值, K K P P A W δσ+=???? 则 3d ())42 K k P W W A P πδσ=-=????其中( 则算得,9.86cm δ= 因此我们根据上述计算结果,进行了实验,为了防止实验材料被破坏,我们仅仅加载到最大横向位移的0.8倍。 可以观察到,当加载的力值迅速升高至临界载荷后,再继续向下加载,杆件上的力并不会变大,取而代之的是杆件向铰支允许的方向的的弯曲。 实验二:一端铰支,一段固支的情况下 临界载荷22(KL)K EI P π=其中K=0.7,故可算得,临界1720.1K P N = 同理可计算得,达到杆件的最大拉伸应力时, 4.78cm δ=,于是在实验中,我们加载到约3cm 处停止。 在第二次实验中,我们遇到一个问题,即当杆件开始弯曲时,由于可能杆件安装时的偏心误差,它弯曲的方向并不是我们希望测量的方向,因此,在弯曲过程中,为了能使其向我

们偏好的方向弯曲,我主动给它提供了一个水平方向的扰动的力,从而使得其改变弯曲的方向。 但这也导致了在我们实验的曲线上加载阶段,并不是完全和理论相符,而一定程度上小于本应该出现的值。而某种程度上,呈现出线性的关系。 不过可以解释为,由于我的外加力的作用,阻碍了杆件通过弯曲来抵抗载荷,因此,杆件此时纵向的形变完全来自于由于轴向应力产生的应变,满足胡克定律,故一定程度上呈现出线性的状态。 二.工程问题中的屈曲 1.欧拉公式的适用范围 本实验中我们的进行的压杆稳定性实验的工件是长细比很大的实心杆件,经过实验发现工件失稳的临界载荷和用欧拉公式计算的值比较接近,但还是有一定的误差。所以对于实际的工程问题,仅仅用欧拉公式指导设计是不够的。首先欧拉公式的导出建立在如下假设之上:○1杆件只发生了小挠度变形 ○2材料只发生了弹性变形 ○3杆件所加的外载荷没有任何偏心 ○4杆件没有任何初始缺陷 对于前两条,在一般情况下是合理的假设,因为如果前两条不能满足的情况下,我们可以认为杆件已经发生了屈曲或者失稳,但是后两条在实际工程中就不得不考虑了。经查阅资料发现,根据大量的实验和工程经验,在设计时一般都以下面的曲线为指导: 首先杆件非常粗短的时候,破坏方式并不是失稳,而是直接被压坏,也就是临界载荷等于屈服强度。杆件长细比很大时,欧拉公式与试验值符合地较好,而对于中等长细比的杆件,其

第九章 压杆稳定答案

第九章 压杆稳定 1、图示铰接杆系ABC 由两根具有相同截面和同样材料的细长杆所组成。若由于杆件在平面ABC 内失稳而引起破坏,试确定荷载F 为最大时的θ角(假设2 0π θ≤ ≤ 解:由平衡条件 0=∑y F ,θcos F F NAB = 0=∑x F ,θsin F F NBC = 使F 为最大值条件使杆AB 、BC 的内力同 时达到各自的临界荷载。设AC 间的距离为l ,AB 、BC 杆的临界荷载分别为 () θθππcos sin 222 2F l EI l EI F AB NAB === () θθππsin cos 2222F l EI l EI F BC NBC === 由以上两式得 解得 4/πθ=。 2、一承受轴向压力的两端铰支的空心圆管,外径mm D 52=,内径 mm d 44=,mm l 950=。材料的MPa b 1600=σ, MPa p 1200=σ,GPa E 210=。试求此杆的临界压力和临界应力。 解: 6.41101200102106 9 221=???==πσπλp E 支承可视为两端铰支,故 1=μ, 回转半径为 mm mm d D i 017.04/44524/2222=+=+=

斜撑杆得柔度 9.55017.0/95.01=?==l μλ 因1λλ>,为大柔度杆,故可用欧拉公式计算临界荷载,临界压力为cr F 和临界应力cr σ分别为: ()() ()KN N l EI F cr 40295.01044.0052.064 102102 4 4 922 2 =?-? ??= =π πμπ MPa A F cr cr 666== σ 3、蒸汽机车的连杆如图所示,截面为工字型,材料为Q235钢,连杆所受最大轴向压力为kN 465。连杆在xy 平面内发生弯曲,两端可视为铰支,在xz 平面内发生弯曲,两端可视为固定。试确定工作安全系数。 解 连杆横截面的几何特性: A =[14×9.6-(9.6-1.4)×8.5]cm 2=64.7cm 2 I y =407 cm 4 I z =1780 cm 4

浙大压杆稳定实验报告

一、实验目的:1、观察压杆的失稳现象; 2、测定两端铰支压杆的临界压力; 3、观察改变支座约束对压杆临界压力的影响。 二、设备及装置: 1. 带有力传感和显示器的简易加载装置或万能电子试验机; 2. 数字应变仪; 3. 大量程百分表及支架; 4. 游标卡尺及卷尺; 5. 试样,压杆试样为由弹簧钢制成的细长杆,截面为矩形,两端加工成带有小 圆弧的刀刃。在试样中点的左右两端各贴仪枚应变片。 6. 支座,支座为浅V 性压杆变形时两端可绕Z 轴转动,故可作为铰支架。 三、实验原理和方法: 1、理论计算:理想压杆,当压力P 小于临界压力cr P 时,压杆的直线平衡是稳定的。这时压力P 与中点挠度δ的关系相当于右图中的直线OA 。当压力到达临界压力cr P 时,压杆的直线平衡变为不稳定,它可能转为曲线平衡。按照小挠度理论,P 与δ的关系相当于图中水平线AB 。两端铰支细长杆的临界压力由欧拉公式计算 2cr 2 P EI l π= ,其中I 为 横截面对z 轴的惯性矩。 2、实测时:实际压杆难免有初弯曲,材料不均匀和压力偏心等缺陷,由于这些缺陷,在P 远小于cr P 时,压杆已经出现弯曲。开始,δ很不明显,且增长缓慢,如图中的OCD 段。随着P 逐步接近cr P ,δ将急剧增大。只有弹性很好的细长杆才可以承受大挠度,压力才可能略微超过cr P ,实测时,在压杆两侧各贴一应变片,测定P-ε曲线,对前后应变ε取增量 ε?,当ε?大于上一个的ε?的2倍时即认为此时的压力为临界压力。 3、加载分两个阶段,在理论值cr P 的70%~80%之前,可采取大等级加载,载荷超过cr P 的80%以后,载荷增量应取得小些。在整个实验过程中,加载要保持均匀、平稳、缓慢。

第十一章压杆稳定

第十一章 压杆稳定 是非判断题 1 压杆失稳的主要原因是由于外界干扰力的影响。( ) 2 同种材料制成的压杆,其柔度愈大愈容易失稳。( ) 3 细长压杆受轴向压力作用,当轴向压力大于临界压力时,细长压杆不可能保持平衡。( ) 4 若压杆的实际应力小于欧拉公式计算的临界应力,则压杆不失稳( ) 5 压杆的临界应力值与材料的弹性模量成正比。( ) 6 两根材料、长度、截面面积和约束条件都相同的压杆,则其临界力也必定相同。( ) 7 若细长杆的横截面面积减小,则临界压力的值必然随之增大。( ) 8 压杆的临界应力必然随柔度系数值的增大而减小。( ) 9 对于轴向受压杆来说,由于横截面上的正应力均匀分布,因此不必考虑横截面的合理形状问题。 ( ) 填空题 10 在一般情况下,稳定安全系数比强度安全系数要大,这是因为实际压杆总是不可避免地存在 以及 等不利因素的影响。 11 按临界应力总图,1λλ≥的压杆称为 ,其临界应力计算公式为 ;1 2λλλ≤≤的压杆称为 ,其临界应力计算公式为 ;2λλ≤的压杆称为 ,其临界应力计算公式为 。 12 理想压杆的条件是① ;② ;③ 。 13 压杆有局部削弱时,因局部削弱对杆件整体变形的影响 ;所以在计算临界压力时,都采 用 的横截面面积A 和惯性矩I 。 14 图示两端铰支压杆的截面为矩形,当其失稳时临界压力F cr = ,挠曲线位于 平 面内。 z C 题15图 15 图示桁架,AB 和BC 为两根细长杆,若EI 1>EI 2,则结构的临界载荷F cr = 。 16 对于不同柔度的塑性材料压杆,其最大临界应力将不超过材料的 。 17 提高压杆稳定性的措施有 , ,以及 和 。 18 细长杆的临界力与材料的 有关,为提高低碳钢压杆的稳定性,改用高强度钢不经济, 原因时 。 19 b 为细长杆,结构承载能力将 。 B P

压杆稳定实验报告

压杆稳定实验 姓名: 学号: 班级: 同组者: 一.实验目得 1.观察压杆失稳现象; 2.通过实验确定临界载荷Fcr,并与理论结果比较; 3.自主设计实验步骤,进行实验结果处理与撰写实验报告。 二.实验设备与仪器 1.压杆失稳试验装置; 2.电阻应变仪; 三.实验试件 板条材料65Mn弹簧钢,调质热处理,达到,,弹性模量、

电桥图: 四.实验步骤 1、测板条长L,宽B,厚H;

2、拧螺母加压力,为防粘片开胶,压头下移最大1mm,对3中安装状态,各实验两遍,用百分表测压头得位移,用应变仪测压力与纯弯应变,画曲线,定失稳压力,算相对理论值得误差. 五.数据处理 压条尺寸:, 1、两端固支 压条长度:L=430mm、 (1)数据列表: 19 321481 709 4 —105 -259 —4 27 -4 71 -474 —47 5 - 478 -4 80 —48 1 -482 8562 38 85 6 38 64 3872 曲线为: 由图线可得失稳压力、

理论失稳压力为: 相对误差: 2、一端铰支,另一端固定 压条长度:L=464mm、: (1)数据列表: 14 9 335 523 662 772 865 961 1 —99 -148-171 -180 —178 -189 -19 3 -196-199 -200 8 616 曲线为: 由图线可得失稳压力P=1614N、

理论失稳压力为: 相对误差: 3、两端铰支 压条长度:L=498mm、 (1)数据列表: 5527 588667 752 839921 -48 -72—83 -90-96 -98-98 -99 -99 -100 47868 816 曲线为: 由图线可得失稳压力P=814N、

第九章压杆稳定答案

第九章压杆稳定答案

第九章压杆稳定答案

第九章压杆稳定 1、图示铰接杆系ABC 由两根具有相同 截面和同样材料的细长杆所组 成。若由于杆件在平面ABC 内失稳而引 起破坏,试确定荷载 F 为最 大时的,角(假设0 —岂二)。 解:由平衡条件 二 F y = 0, F NAB = F COST 二:Fx = 0, F NBC = F si nr 使F 为最大值条件使杆 AB 、BC 的内力 AC 间的距离为 I , AB 、BC 杆的临界荷载分别为 H 2EI 兀 2EI FNAB =—応—? 由以上两式得 2、一承受轴向压力的两端铰支的空心圆管,外径 D 二52mm ,内径 d 二 44mm ,l = 950mm 。材料的二 b = 1600MPa ,匚 p = 1 200MPa , E 二210GPa 。试求此杆的临界压力和临界应力。 9 10 10 1200 106 支承可视为两端铰支,故 J =1, F NBC 寻 里二F S 卄 I BC (I cos° 2 同时达到各自的临界荷载。设 二 41.6 解:

回转半径为 i - . D2d2 /4 - 522442/4mm = 0.017mm 斜撑杆得柔度 ■ - '

压杆稳定实验报告

压杆稳定实验 一、实验目的: 1、观察压杆的失稳现象 2、测定两端铰支压杆的临界压力 二、实验原理和方法: 1、理论计算:理想压杆,当压力P 小临界压力cr P 时,压杆的直线平衡是稳定的。当压力到达临界压力cr P 时,压杆的直线平衡变为不稳定,它可能转为曲线平衡。两端铰支细长杆的临界压力由欧拉公式计算 ,其中I 为横截面对z 轴的惯性矩。 2、实测时:实际压杆难免有初弯曲,材料不均匀和压力偏心等缺陷,由于这些缺陷,在P 远小于cr P 时,压杆已经出现弯曲。开始,δ很不明显,且增长缓慢。随着P 逐步接近cr P , δ将急剧增大。只有弹性很好的细长杆才可以承受大挠度,压力才可能略微超过cr P ,实测 时,在压杆两侧各贴一应变片,测定P-ε曲线,当施加压力增量很小而变形突增时即可得出临界压力。 三、实验结果: 1、理论计算 参数记录:b=15.30mm, h=1.80mm, l=391mm, E=210GPa 由欧拉公式计算得出临界压力的理论值为:100.81N 2、实验数据记录: 力-应变曲线图

四、实验结果分析: 数据处理得到以下“力-应变曲线图”。通过曲线可以发现临界压应力为81N左右。其结果小于根据公式计算得出的理论值。 分析实测值小于理论值的原因有: 1、该试件已被使用多次,由于疲劳效应,更容易产生变形。 2、两端V形支座的底线不在压杆的同一纵向对称平面内,则有一扭矩产生,会使得压杆更容易失稳,故实测临界压力降低。 3、有可能是V形支座的底线不在压杆的同一纵向对称平面内,也有可能是材料的不均匀程度较大,压力偏心现象严重,导致临界压力实测值远低于理论值。

第十章 压杆稳定

第十章 压杆稳定 学时分配:共6学时 主要内容:两端铰支细长压杆的临界压力,杆端约束的影响,压杆的长度系数μ,临界应力欧拉公式的适用范围;临界应力总图、直线型经验公式λσb a cr -=,使用安全系数 法进行压杆稳定校核。 $10.1压杆稳定的概念 1.压杆稳定 若处于平衡的构件,当受到一微小的干扰力后,构件偏离原平衡位置,而干扰力解除以后,又能恢复到原平衡状态时,这种平衡称为稳定平衡。 2.临界压力 当轴向压力大于一定数值时,杆件有一微小弯曲,一侧加一微小干扰且有一变形。任一微小挠力去除后,杆件不能恢复到原直线平衡位置,则称原平衡位置是不稳定的,此压力的极限值为临界压力。 由稳定平衡过渡到不稳定平衡的压力 的临界值称为临界压力(或临界力),用 τ c P 表示。 3.曲屈 受压杆在某一平衡位置受任意微小挠动,转变到其它平衡位置的过程叫屈曲或失稳。 $10.2细长压杆临界压力的欧拉公式 1.两端铰支压杆的临界力 选取如图所示坐标系xOy 。距原点为x 的任意截面的挠度为v 。于是有 Pv M -= 2.挠曲线近似微分方程: 将其代入弹性挠曲线近似微分方程,则得 ()Pv x M EIv -=='' 令 EI P k = 2 则有 0'2''=+v k v 该微分方程的通解为 kx B kx A v cos sin += c r c r

式中A 、B ——积分常数,可由边界条件确定 压杆为球铰支座提供的边界条件为 0=x 和l x =时,0=v 将其代入通解式,可解得 0=B ,0sin =kl A 上式中,若A=0,则0=v ;即压杆各处挠度均为零,杆仍然保持直线状态,这与压杆处于微小弯曲的前提相矛盾。因此,只有 0sin =kl 满足条件的kl 值为 πn kl =),2,1,0(Λ=n 则有 l n k π= 于是,压力P 为 2222 l EI n EI k P π= = 1=n 得到杆件保持微小弯曲压力-临界压力τc P 于是可得临界压力为 2 2l EI P c πτ= 此式是由瑞士科学家欧拉(L. Euler )于1744年提出的,故也称为两端铰支细长压杆的 欧拉公式。 此公式的应用条件:理想压杆;线弹性范围内;两端为球铰支座。 $10.3其他条件下压杆的临界压力 欧拉公式的普遍形式为 22)(l EI P cr μπ= 式中μ称为长度系数,它表示杆端约束对临界压力影响,随杆端约束而异。l μ表示把压杆折算成相当于两端铰支压杆时的长度,称为相当长度。 两端铰支,1=μ;一端固定另一端自由2=μ;两端固定,2 1=μ;一端固定令一 端铰支,7.0=μ。

第十三章-压杆稳定

第十三章 压杆稳定 1 基本概念及知识要点 1.1 基本概念 理想受压直杆、理想受压直杆稳定性 、屈曲、 临界压力。 1.2 临界压力 细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。 1.3 稳定计算 为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算: st cr n F F n ≥= -稳定条件 2 重点与难点及解析方法 2.1临界压力 临界压力与压杆的材料、截面尺寸、约束、长度有关,即和压杆的柔度有关。因此,计算临界压力之前应首先确定构件的柔度,由柔度值确定是用欧拉公式、经验公式还是强度公式计算临界压力。 2.2稳定计算 压杆的稳定计算是材料力学中的重要内容,是本课程学习的重点。 利用稳定条件可进行稳定校核,设计压杆截面尺寸,确定许用外载荷。 稳定计算要求掌握安全系数法。 解析方法:稳定计算一般涉及两方面计算,即压杆临界压力计算和工作压力计算。临界压力根据 柔度由相应的公式计算,工作压力根据压杆受力分析,应用平衡方程获得。 3典型问题解析 3.1 临界压力

mm .h A I i min 55113 2===mm .a A I i 31632===例题13.1材料、受力和约束相同,截面形式不同的四压杆如图图13-1所示,面积均为3.2×103mm 2,截面尺寸分别为(1)、b=40mm 、(2)、a=56.5mm 、(3)、d=63.8mm 、(4)、D=89.3mm,d=62.5mm 。若已知材料的E =200GPa ,σs =235MPa ,σcr =304-1.12λ,λp =100,λs =61.4,试计算各杆的临界荷载。 [解] 压杆的临界压力,取决于压杆的柔度。应根据各压杆的柔度,由相应的公式计算压杆的临界压力。 (1)、两端固定的矩形截面压杆,当b=40mm 时 λ> λP 此压杆为大柔度杆,用欧拉公式计算其临界应力 (2)、两端固定的正方形截面压杆,当a=56.5mm 时 所以 9.12910 55.113 5.031=??==-i l μλkN 37521 21=?=?=A E A F cr cr λπ σ 0.7d 图13-1

第10章 压杆稳定

第10章压杆稳定 10.1 压杆稳定的概念 在前面讨论压杆的强度问题时,认为只要满足直杆受压时的强度条件,就能保证压杆的正常工作。这个结论只适用于短粗压杆。而细长压杆在轴向压力作用下,其破坏的形式与强度问题截然不同。例如,一根长300mm的钢制直杆(锯条),其横截面的宽度11mm和厚度0.6mm,材料的抗压许用应力等于170MPa,如果按照其抗压强度计算,其抗压承载力应为1122N。但是实际上,约承受4N 的轴向压力时,直杆就发生了明显的弯曲变形,丧失了其在直线形状下保持平衡的能力从而导致破坏。它明确反映了压杆失稳与强度失效不同。 1907年8月9日,在加拿大离魁北克城14.4Km横跨圣劳伦斯河的大铁桥在施工中倒塌。灾变发生在当日收工前15分钟,桥上74人坠河遇难。原因是在施工中悬臂桁架西侧的下弦杆有二节失稳所致。 杭州某研发生产中心的厂房屋顶为园弧形大面积结构,屋面采用预应力密肋网架结构,密肋大梁横截面(600mm×1400mm),屋面采用现浇板,板厚120mm 。2003年2月18日晚19时,当施工到26~28轴时,支模架失稳坍塌,造成重大伤亡事故。 为了说明问题,取如图10.1a所示的等直细长杆,在其两端施加轴向压力F,使杆在直线形状下处于平衡,此时,如果给杆以微小的侧向干扰力,使杆发生微小的弯曲,然后撤去干扰力,则当杆承受的轴向压力数值不同时,其结果也截然不同。当杆承受的轴向压力数值F小于某一数值F cr时,在撤去干扰力以后,杆能自动恢复到原有的直线平衡状态而保持平衡,如图10.1a、b所示,这种能保持原有的直线平衡状态的平衡称为稳定的平衡;当杆承受的轴向压力数值F逐渐增大到(甚至超过)某一数值F cr时,即使撤去干扰力,杆仍然处于微弯形状,不能自动恢复到原有的直线平衡状态,如图10.1c、d所示,则不能保持原有的直线平衡状态的平衡称为不稳定的平衡。如果力F继续增大,则杆继续弯曲,产生显著的变形,发生突然破坏。 图10.1 上述现象表明,在轴向压力F由小逐渐增大的过程中,压杆由稳定的平衡转变为不稳定的平衡,这种现象称为压杆丧失稳定性或者压杆失稳。显然压杆是否失稳取决于轴向压力的数值,压杆由直线形状的稳定的平衡过渡到不稳定的平衡

第10章 压 杆 稳 定分析

第10章压杆稳定 提要:本章着重讨论受压直杆的稳定性计算。通过对两端铰支细长压杆的稳定性分析,阐明压杆的平衡稳定性的基本概念,明确压杆的临界力的意义及其确定方法,并进一步讨论了不同支承情况对临界力的影响及其欧拉公式的统一形式。通过临界应力总图明确了压杆的柔度的物理意义,并揭示了压杆的强度和稳定性之间的关系,从而明确了欧拉公式的适用范围。介绍了运用长、中柔度杆稳定计算公式进行简单的压杆稳定校核的方法。 10.1 压杆稳定的概念 在绪论中已指出,衡量构件承载能力的指标有强度、刚度、稳定性。关于杆件在各种基本变形以及常见的组合变形下的强度和刚度问题在前述各章节中已作了较详细的阐述,但均未涉及到稳定性问题。事实上,杆件只有在受到压力作用时,才可能存在稳定性的问题。 在材料的拉压力学性能实验中,当对高为20mm,直径为10mm的短粗铸铁试件进行压缩试验时,其由于强度不足而发生了破坏。从强度条件出发,该试件的承载能力应只与其横截面面积有关,而与试件的长度无关。但如果将该试件加到足够的长度,再对其施加轴向压力时,将会发现在杆件发生强度破坏之前,会突然向一侧发生明显弯曲,若再继续加力就会发生折断,从而丧失承载能力。由此可见,这时压杆的承载能力并不取决于强度,而是与它受压时的弯曲刚度有关,即与压杆的稳定性有关。 在工程建设中,由于对压杆稳定问题没有引起足够的重视或设计不合理,曾发生了多起严重的工程事故。例如1907年,北美洲魁北克的圣劳伦斯河上一座跨度为 548米的钢桥正在修建时,由于两根压杆失去稳定,造成了全桥突然坍塌的严重事故。又如在19世纪末,瑞士的一座铁桥,当一辆客车通过时,桥桁架中的压杆失稳,致使桥发生灾难性坍塌,大约有200人遇难。还有在1983年10月4日,地处北京的中国社会科学研究院科研楼工地的钢管脚手架距地面5~6处突然外弓,刹那间,这座高达54.2米,长17.25米,总重565.4kN的大型脚手架轰然坍塌,5人死亡,7人受伤,脚手架所用建筑材料大部分报废,而导致这一灾难性事故的直接原因就是脚手架结构本身存在严重缺陷,致使结构失稳坍塌。实际上,早在1744年,出生于瑞士的著名科学家欧拉(L. Euler)就对理想压杆在弹性范围内的稳定性进行了研究,并导出了计算细长压杆临界压力的计算公式。但是,同其它科学问题一样,压杆稳定性的研究和发展与生产力发展的水平密切相关。欧拉公式面世后,在相当长的时间里之所以未被认识和重视,就是因为当时在工程与生活建造中实用的木桩、石柱都不是细长的。直到1788年熟铁轧制的型材开始生产,然后出现了钢结构。特别是19世纪,随着铁路金属桥梁的大量建造,细长压杆的大量出现,相关工程事故的不断发生,才引起人们对压杆稳定问题的重视,并进行了不断深入的研究。 除了压杆以外,还有许多其它形式的构件也同样存在稳定性问题,如薄壁球形容器在径向压力作用下的变形(图10.1(a));狭长梁在弯曲时的侧弯失稳(图 10.1(b));两铰拱在竖向载荷

材料力学习题册答案-第9章-压杆稳定

第 九 章 压 杆 稳 定 一、选择题 1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。 A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变; D 、弯曲变形继续增大。 2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C ) A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。 A 、长度 B 、横截面尺寸 C 、临界应力 D 、柔度 4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。 A 、长度,约束条件,截面尺寸和形状; B 、材料,长度和约束条件; C 、材料,约束条件,截面尺寸和形状; D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。答案:( a ) 6、两端铰支的圆截面压杆,长1m ,直径50mm 。其柔度为 ( C ) A.60; B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。 8、细长压杆的( A ),则其临界应力σ越大。 A 、弹性模量E 越大或柔度λ越小; B 、弹性模量E 越大或柔度λ越大; C 、弹性模量E 越小或柔度λ越大; D 、弹性模量 E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C ) A 、λ≤ P E πσ B 、λ≤s E πσ C 、λ≥ P E π σ D 、λ≥s E π σ

压杆稳定小结

压杆稳定小结 1、 压杆稳定的概念 稳定平衡是指干扰撤去后可恢复的原有平衡;反之则为不稳定平衡。 压杆稳定性是指压杆保持或恢复原有平衡状态的能力。 压杆的临界压力是指压杆由稳定平衡转变为不稳定平衡时所受轴向压力的界限值,用cr F 来表示。 2、 细长中心受压直杆的临界力 在线弹性和小变形条件下,根据压杆的挠曲线近似微分方程,结合压杆的边界条件,可推导得到使压杆处于微弯状态平衡的最小压力值,即压杆的临界压力欧拉公式可写成统一的形式: 2 2 ) (l EI F cr μπ= 式中μ为长度因数。几种常见细长压杆的临界力可见,杆端约束越强,杆的长度因数越小。l μ为相当长度,可理解为压杆的挠曲线两个拐点之间的直线距离。 (d) (d)表13-1 (d) 表13-1

3、 压杆的临界应力总图 (1) 压杆的临界应力 压杆在临界力作用下,其横截面上的平均应力称为压杆的临界应力, cr cr F A σ= (2) 欧拉公式的适用范围 线弹性范围,()22cr cr p 22 F EI E A l A ππσσλμ===≤ 即 p λλ≥ = 时,欧拉公式才能适用。通常称p λλ≥的压杆为大柔度压杆或细长压杆。 (3) 压杆的柔度(或长细比) i l μλ= 是一无量纲的量。一般情况下,由于杆端约束(μ)或惯性半径(i )的不同,压杆在不同的纵向平面内具有不同的柔度值,压杆失稳首先发生在柔度最大的纵向平面内。

(4) 临界应力总图 压杆的临界应力随柔度λ变化的λσ-cr 图称为临界应力总图。 大柔度杆p λλ≥,临界应力低于比例极限,可按欧拉公式计算,2 2 λπσE cr = ; 中柔度杆p s λλλ≤≤,临界应力超过比例极限,可按经验公式计算,如直线公式: λσb a cr -=,其中a 、b 为与材料有关的常数。或钢结构设计中采用的抛物线公式,以及折减弹性模量理论进行计算; 小柔度杆s λλ≤(或b λ),临界应力达极限应力:塑性材料s cr σσ=,脆性材料 cr b σσ=,属于强度问题。 其中,p p E σπλ2=,s s a b σλ-=为材料常数,仅与压杆的材料有关。 4、 压杆的稳定计算 (1) 压杆的稳定条件 采用稳定安全因数法,压杆的稳定条件为: []st st n n ≥ 或 []st st cr F n F F =≤ ][ 或 []st st cr n σσσ=≤][ 式中,[]st n 为规定的稳定安全因素。st n 为工作安全因数,由下式确定: 图13-12

建筑力学第11章压杆稳定

第11章压杆稳定 [内容提要]稳定问题是结构设计中的重要问题之一。本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。 11.1 压杆稳定的概念 工程中把承受轴向压力的直杆称为压杆。前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。 为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。 P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值 cr P时,杆件虽位置上保持平衡。但如果继续增加荷载,当轴向压力等于某个临界值,即P= cr 然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。 P= cr

工程力学答案解析-压杆稳定

11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。(1)圆形截面,25,1 d l == mm m;(2)矩形截面2400,1 h b l === m m;(3)16号工字钢,2 l=m l 解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力: (1)圆形截面,25,1 d l == mm m: 2 29 2 22 0.025 20010 6437.8 1 cr EI P l π π π ? ??? === N kN (2)矩形截面2400,1 h b l === m m 当压杆在不同平面约束相同即长度系数相同均为1 μ=时,矩形截面总是绕垂直短边的轴先失稳 2 0.040.02 min(,) 12 y z y I I I I ? ===,故: 2 29 2 22 0.040.02 20010 1252.7 1 cr EI P l π π ? ??? === N kN (3)16号工字钢,2 l=m 查表知:44 93.1,1130 y z I I == cm cm,当压杆在不同平面约束相同即长度系数相同均为1 μ=时 4 min(,)93.1 y z y I I I I ===cm,故: 2298 22 2001093.110 459.4 2 cr EI P l ππ- ???? === N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa,比例极限σP=200MPa。 解:(1)计算压杆能采用欧拉公式所对应的 P λ 2 2 99.35 P P P E π σλ λ =→=== (2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于 P λ可采用欧拉公式计算临界力。故

压杆稳定计算

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。 图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借

助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。因此,该杆原有直线平衡状态是不稳定平衡。 3)界于前二者之间,存在着一种临界状态。当压力值正好等于F cr时,一旦去掉横向干扰力,压杆将在微弯状态下达到新的平衡,既不恢复原状,也不再继续弯曲,如图16-6c所示。因此,该杆原有直线平衡状态是随遇平衡,该状态又称为临界状态。 临界状态是杆件从稳定平衡向不稳定平衡转化的极限状态。压杆处于临界状态时的轴向压力称为临界力或临界载荷,用F cr表示。 由上述可知,压杆的原有直线平衡状态是否稳定,与所受轴向压力大小有关。当轴向压力达到临界力时,压杆即向失稳过渡。所以,对于压杆稳定性的研究,关键在于确定压杆的临界力。 16.2 两端铰支细长压杆的临界力

相关文档