文档库 最新最全的文档下载
当前位置:文档库 › 微分方程作业

微分方程作业

微分方程作业
微分方程作业

P10习题

1.用Euler法和改进的Euler法求u’=-5u (0≤t≤1),u(0)=1的数值解,步长h=0.1,0.05;并比较两个算法的精度。

解:function du=Euler_fun1(t,u)

du=-5*u;clear;

h=0.1;tend=1;N=1/h;t(1)=0;u(1)=1;

t=h.*(0:N);

for n=1:N

u(n+1)=u(n)+h*Euler_fun1(t(n),u(n));

end

plot(t,u,'*');hold on

for n=1:N

v(1)=u(n)+h*Euler_fun1(t(n),u(n));

for k=1:6

v(k+1)=u(n)+h/2*(Euler_fun1(t(n),u(n))+Euler_fun1(t(n+1),v(k)));

end

u(n+1)=v(k+1);

end

plot(t,u,'o');

sol=dsolve('Du=-5*u','u(0)=1');

u_real=eval(sol);

plot(t,u_real,'r');

将上述 h 换为0.05得:

由图像知道:

显然改进的Euler法要比Euler法精确度要高;

3.将u‘’=-u(0≤t≤1),u(0)=0,u’(0)=1化为一阶方程组,并用Euler法和改进的的Euler 法求解,步长h=0.1,0.05;并比较两个算法的精度。

解:

function du=fun31(y)

du=y;

function dy=fun32(u)

dy=-u;

clear;

h=0.1;tend=1;N=1/h;t(1)=0;u(1)=0;y(1)=;

t=h.*(0:N);

for n=1:N

u(n+1)=u(n)+h*y(n);

y(n+1)=y(n)+h*(-u(n));

end

plot(t,u,'*');hold on

for n=1:N

v(1)=u(n)+h*fun31(y(n));

w(1)=y(n)+h*fun32(u(n));

for k=1:6

v(k+1)=u(n)+h/2*(fun31(y(n))+fun31(...w(k)));

w(k+1)=y(n)+h/2*(fun32(u(n))+fun32(...v(k)));

end

u(n+1)=v(k+1);

y(n+1)=w(k+1);

end

plot(t,u,'o');

sol=dsolve('D2u=-u','u(0)=0','Du(0)=1';

u_real=eval(sol);

plot(t,u_real,'r');

将上述 h 换为0.05得:

由图像可以知道:

显然改进的Euler 法要比Euler 法精确度要高;

实习题(二)

1.取步长 1.0 h ,分别用Euler 法和改进的Euler 法求下列初值问题的解,并与真解相比较.

(1)????=≤<-=,

1)0(,10,'u x u u u 真解 x x u 21)(+=;

解:

function du=fun1(x,u)

du=u-2*x/u;

clear;

h=0.1;xend=1;N=1/h;x(1)=0;u(1)=1;

x=h.*(0:N);

%——Eluer 法——%

for n=1:N

u(n+1)=u(n)+h*fun1(x(n),u(n));

end

plot(x,u,'*');

hold on

%——改进的Eluer 法——%

for n=1:N

v(1)=u(n)+h*fun1(x(n),u(n));

for k=1:6

v(k+1)=u(n)+h/2*(fun1(x(n),u(n))+fun1(x(n+1),v(k)));

end

u(n+1)=v(k+1);

end

plot(x,u,'o');

hold on

%——真解——%

u_real=sqrt(1+2*x);

plot(x,u_real,'r');

由图像可以知道:

显然改进的Euler 法要比Euler 法精

确度要高;

(2)????=≤<-=,

2)1(,21,'2u x u x u 真解 3

1)ln 38()(x x x u -=;

解:

function du=fun2(x,u)

du=(u/x)-x.^2/u.^2;

clear;

h=0.1;N=1/h;x=1:h:2;x(1)=1;u(1)=2;

for n=1:N

u(n+1)=u(n)+h*fun2(x(n),u(n));

end

plot(x,u,'*');

hold on

for n=1:N

v(1)=u(n)+h*fun2(x(n),u(n));

for k=1:6

v(k+1)=u(n)+h/2*(fun2(x(n),u(n))+fun2(x(n+1),v(k)));

end

u(n+1)=v(k+1);

end

plot(x,u,'o');

hold on

u_real=x.*((8-3.*log(x)).^(1/3));

plot(x,u_real,'r');

由图像可知:

改进的Euler 法和Euler 法都很接近真值。

(3)??

??=≤<-=,1)1(,5.11,22'2u x u x u

真解 3

1223)34()(x x x u -=.

解:function du=fun3(x,u)

du=u/(2*x)-x/(2*u^2);

clear;

h=0.1;N=0.5/h;

x=1:h:1.5;

x(1)=1;u(1)=1;

for n=1:N

u(n+1)=u(n)+h*fun3(x(n),u(n));

end

plot(x,u,'*');

hold on

for n=1:N

v(1)=u(n)+h*fun3(x(n),u(n));

for k=1:6

v(k+1)=u(n)+h/2*(fun3(x(n),u(n))+fun3(x(n+1),v(k)));

end

u(n+1)=v(k+1);

end

plot(x,u,'o');

hold on

u_real=(4*x.^(3/2)-3*x.^2).^(1/3);

plot(x,u_real,'r');

由图像可以知道:

显然改进的Euler 法要比Euler 法精

确度要高;

2.试用预报校正格式(1.20)解初值问题

并与Euler 格式比较精度,取h=0.1。作业要求:写出程序,列表或用图形显示结果,并给出图或表所说明的结果。

解:

function du=Euler_fun2(t,u)

du=-u+t+1;

clear;

h=0.1;tend=1;N=1/h;t(1)=0;u(1)=1;

t=h.*(0:N);

for n=1:N

u(n+1)=u(n)+h*Euler_fun2(t(n),u(n));

end

plot(t,u,'*');

hold on

for n=1:N

u0(n+1)=u(n)+h*Euler_fun2(t(n),u(n));

u(n+1)=u(n)+h/2*(Euler_fun2(t(n),u(n))+Euler_fun2(t(n+1),u0(n+1))); end

plot(t,u,'o');

hold on

sol=dsolve('Du=-u+t+1','u(0)=1');

u_real=eval(sol);

plot(t,u_real,'r');

由图像可以知道:

显然预报校正格式要比Euler 法精确度要高;

[]010,1|1

t u u t t u ='=-++∈??=?

P37 例4.1 用四级四阶Runge-Kutta法计算初值问题:

u’=4tu0.5,0≤t≤2,

u(0)=1.

取h=0.1,0.5,1.精确解为 u(t)=(1+t2)2

作业要求:写出程序,列表或用图形显示结果,并给出图或表所说明的结果. 解:

function du=fun4(t,u)

du=4*t*u.^(1/2);

clear;

h=0.1;N=2/h;t=0:h:2;t(1)=0;u(1)=1;

for n=1:N

k1=fun4(t(n),u(n));

k2=fun4(t(n)+0.5*h,u(n)+0.5*h*k1);

k3=fun4(t(n)+0.5*h,u(n)+0.5*h*k2);

k4=fun4(t(n)+h,u(n)+h*k3);

u(n+1)=u(n)+h*(k1+2*k2+2*k3+k4)/6;

end

plot(t,u,'*');

hold on

u_real=(1+t.^2).^2;

plot(t,u_real,'r');

将上述h换为0.5后图像为:

将上述h换为1后图像为:

从上述图像来看:

第一幅图说明四级四阶Runge-Kutta法精度很高;后面两幅图说明了步长h取

的越小越逼近精确值。

常微分方程第三版答案

常微分方程第三版答案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

习题 1. dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解: y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2 x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2 y dy dy=-1 1+x dx 两边积分: - y 1 =-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y= | )1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31 x x + y y 21+dy=31 x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1 +dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x | |-2)(1x y - 则令 x y =u dx dy =u+ x dx du 2 11u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为: tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny= x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2 e x 3 2 e x 3-3e 2 y -=c.

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

《常微分方程》期末试卷

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

《常微分方程》第三次作业

《常微分方程》第三次作业 第3章 一阶线性微分方程组 1.完成定理3.1的证明. 2.完成定理3.1′的证明 3.将下列方程式化为一阶方程组 (1)0)()(=++x g x x f x &&& (2))(d d d d 22t f kx t x c t x m =++ (3)0)()()(321=+'+''+'''y x a y x a y x a y 4.求解方程组 ?????? ?+=+=y t p x t q t y y t q x t p t x )()(d d )()(d d 其中)(),(t q t p 在[a , b ]上连续. 5.设n n ?矩阵函数)(1t A ,)(2t A 在(a , b )上连续,试证明,若方程组 X A X )(d d 1t t = 与X A X )(d d 12t t = 有相同的基本解组,则)(1t A ≡)(2t A . 6.求解下列方程组: (1)???????==y t y x t x 2d d d d (2)???????+=+=x y t y x y t x 54d d 45d d (3)???????+-=+=y x t y y x t x αββαd d d d 7.求解下列方程组: (1)???-=+=x y y y x x 23&& (2)??? ??+-=-+=+-=z y x z z y x y z y x x 222&&& 8.求解下列方程组: (1)???????=+=y t y y x t x 3d d 3d d (2)???? ?????=+=+=333222 11 2d d 2d d 2d d y x y y y x y y y x y (3)?????+=+=2 e 2t x y y x t && (4)???++=++=t y x y t y x x e 823532&&

常微分方程作业答案

1.第1题 设就是n 阶齐次线性方程的线性无关的解, 其中就是连续函数、则 A、的朗斯基行列式一定就是正的; B、的朗斯基行列式一定就是负的; C、的朗斯基行列式可有零点, 但不恒为零; D、的朗斯基行列式恒不为零、 A、A B、B C、C D、D 您的答案:B 题目分数:2 此题得分:2、0 2.第2题 满足初始条件与方程组的解为 ( )、 A、; B、 ; C、 ; D、、

A、、 B、、 C、、 D、、 您的答案:B 题目分数:2 此题得分:2、0 3.第6题 下列四个微分方程中, 三阶常微分方程有( )个、 (i) , (ii) , (iii) , (iv) 、 A、1 B、2 C、3 D、4 您的答案:C 题目分数:2 此题得分:2、0 4.第8题 就是某个初值问题的唯一解,其中方程就是, 则初始条件应该就是( )、 A、,

B、, C、, D、、 A、A B、B C、C D、D 您的答案:A 题目分数:2 此题得分:2、0 5.第9题 可将一阶方程化为变量分离方程的变换为 A、; B、 ; C、; D、、 A、、 B、、 C、、 D、、 您的答案:C 题目分数:2 此题得分:2、0 6.第15题

可将六阶方程化为二阶方程的变换就是( )、 A、; B、 ; C、 ; D、、 A、、 B、、 C、、 D、、 您的答案:B 题目分数:2 此题得分:2、0 7.第16题 设,及就是连续函数,与就是二阶变系数齐次线性方程 的两个线性无关的解, 则以常数变易公式 作为唯一解的初值问题就是

A、B、 C、D、 A、、 B、、 C、、 D、、 您的答案:B 题目分数:2 此题得分:2、0 8.第18题 设与就是方程组的两个基解矩阵, 则 A、存在某个常数方阵C使得, 其中; B、存在某个常数方阵C使得, 其中 ; C、存在某个常数方阵C使得, 其中; D、存在某个常数方阵C使得, 其中、 A、、 B、、

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

最新常微分方程期末考试题大全(东北师大)

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

秋华师《常微分方程》在线作业

秋华师《常微分方程》在线作业

————————————————————————————————作者:————————————————————————————————日期:

奥鹏17春16秋华师《常微分方程》在线作业 一、单选题(共20 道试题,共60 分。) 1. 微分方程y''+y=sinx的一个特解具有形式()。 A. y*=asinx B.y*=acosx C.y*=x(asinx+bcosx) D.y*=acosx+bsinx 正确答案: 2. y'''+sinxy'-x=cosx的通解中应含()个独立常数。 A. 1 B. 2 C.3 D. 4 正确答案: 3.微分方程xyy''+x(y')^3-y^4-y'=0的阶数是()。 A. 3 B. 4 C. 5 D. 2 正确答案: 4.微分方程y'''-x^2y''-x^5=1的通解中应含的独立常数的个数为()。 A. 3 B. 5 C. 4 D. 2 正确答案: 5. 过点(1,3)且切线斜率为2x的曲线方程y=y(x)应满足的关系是()。 A.y'=2x B. y''=2x C. y'=2x,y(1)=3 D. y''=2x,y(1)=3 正确答案: 6.方程dy/dx=3y(2/3)过点(0,0)有(). A. 无数个解 B. 只有一个解 C.只有两个解 D.只有三个解

正确答案: 7. 方程y'-2y=0的通解是()。 A. y=sinx B. y=4e^(2x) C.y=Ce^(2x) D.y=e^x 正确答案: 8. 下列函数中,是微分方程y''-7y'+12y=0的解()。 A. y=x^3 B. y=x^2 C. y=e^(3x) D.y=e^(2x) 正确答案: 9.按照微分方程通解定义,y''=sinx的通解是()。 A. -sinx+C1x+C2 B. -sinx+C1+C2 C. sinx+C1x+C2 D.sinx+C1x+C2 正确答案: 10.方程组dY/dx=F(x,Y),x∈R,Y∈R^n的任何一个解的图象是()维空间中的一条积分曲线. A. n B.n+1 C.n-1 D. n-2 正确答案: 11.下列函数中,哪个是微分方程dy-2xdx=0的解()。 A. y=2x B.y=x^2 C. y=-2x D.y=-x 正确答案: 12. 微分方程cosydy=sinxdx的通解是()。 A. sinx+cosx=C B.cosy-sinx=C C. cosx-siny=C D.cosx+siny=C 正确答案: 13. 微分方程2ydy-dx=0的通解为()。 A. y^2-x=C B. y-x^(1/2)=C C. y=x+C D. y=-x+C 正确答案:

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

常微分方程作业答案

1.第1题 设是n 阶齐次线性方程的线性无关的解, 其中是连续函数. 则 A. 的朗斯基行列式一定是正的; B. 的朗斯基行列式一定是负的; C. 的朗斯基行列式可有零点, 但不恒为零; D. 的朗斯基行列式恒不为零. 您的答案:B 题目分数:2 此题得分: 2.第2题 满足初始条件和方程组的解为 ( ). A. ; B. ; C. ; D. . A.. B.. C.. D.. 您的答案:B 题目分数:2 此题得分: 3.第6题 下列四个微分方程中, 三阶常微分方程有( )个. (i) , (ii) ,

(iii) , (iv) . 您的答案:C 题目分数:2 此题得分: 4.第8题 是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ). A. , B. , C. , D. . 您的答案:A 题目分数:2 此题得分: 5.第9题 可将一阶方程化为变量分离方程的变换为 A. ; B. ; C. ; D. . A..

B.. C.. D.. 您的答案:C 题目分数:2 此题得分: 6.第15题 可将六阶方程化为二阶方程的变换是( ). A.; B. ; C.; D.. A.. B.. C.. D.. 您的答案:B 题目分数:2 此题得分: 7.第16题 设,及是连续函数,和是二阶变系数齐次线性方程的两个线性无关的解, 则以常数变易公式作为唯一解的初值问题是 A. B. C. D. A.. B.. C.. D.. 您的答案:B 题目分数:2

此题得分: 8.第18题 设和是方程组的两个基解矩阵, 则 A. 存在某个常数方阵C使得, 其中; B. 存在某个常数方阵C使得, 其 中; C. 存在某个常数方阵C使得, 其中; D. 存在某个常数方阵C使得, 其中. A.. B.. C.. D.. 您的答案:A 题目分数:2 此题得分: 9.第20题 微分方程的一个解是( ). A. , B. , C. , D. . A.. B.. C.. D.. 您的答案:D 题目分数:2 此题得分: 10.第22题 设有四个常微分方程: (i) , (ii) , (iii) , (iv) .

常微分方程习题

第一章习题 1-1求下列两个微分方程的公共解。 (1)422x x y y -+=' (2)2422y y x x x y --++=' 解 两方程的公共解满足条件 4224222x x y y y x x x -+=--++, 即 022224=-+-y x y x , 0))(122(22=-++y x y x , 所以2 x y =或2212 x y +-=。 代入检验可知2 212 x y +-=不符合,所以两方程的公共解为2x y =。 评注:此题是求解方程满足一定条件的解,即求两个微分方程的公共解。在求解时由于令其导数相等,很容易产生增解,因而要对所求结果回代原方程进行检验,舍去增解。 1-2 求微分方程02 =-'+'y y x y 的直线积分曲线。 解 设直线积分曲线为b ax y +=,则a y =',代入原方程得 02≡--+b ax xa a , 即0)()(2 ≡-+-b a a a x , 所以 ???=-=-0 02b a a a , 可得0==b a 或1==b a 。 因而所求直线积分曲线为0=y 或1+=x y 。 评注:此题是求解方程的部分解,采用的是待定系数法。待定系数法是求解常微分方程常用的方法之一,有待定常数法和待定函数法。本题首先设出满足题设条件的含有待定常数

的解,然后代入原方程来确定待定常数,解决此类问题的关键在于正确地设出解的形式。 1-3 微分方程32224xy y y x =-',证明其积分曲线是关于坐标原点成中心对称的曲线。 证 设)(x y ?=满足微分方程,只须证明)(x y --=?也满足方程即可。 作变换x t -=,则证明)(t y ?-=满足方程即可,代入方程两端,并利用)(x y ?=满足此方程,得 左=)())((42222t dx dt t t ??-', )()1)((42222t t t ??--'= )()(4222t t t ??-'=)(3t t ?==右 故)(t y ?-=也满足方程32224xy y y x =-'。 评注:为了验证)(x y --=?也满足方程,利用积分曲线的性质,进行变量代换x t -=,将)(x y --=?变换成)(t y ?-=后,问题就很容易解决了。 1-4 物体在空气中的冷却速度与物体和空气的温差成正比,如果物体在20分钟内由100℃冷却至60℃,那么,在多长时间内,这个物体由100℃冷却至30℃?假设空气的温度为20℃ 解 设物体在空气中时刻t 的温度为)(t T T =,则依牛顿冷却定理得 )20(--=T k dt dT , 其中k 是比例常数。 两边积分,得通解为kt Ce T -+=20。 由于初始条件为:,100)0(=T 故得80=C ,所以kt e T -+=8020。 将60,20==T t 代入上式后即得:202ln = k , 即 20202ln )2 1(80208020t t e T ?+=+=-。 故当30=T 时,有20)2 1(802030t ?+=,从中解出60=t (分钟),因此,在一小时内,可使物体由100℃冷却至30℃。

(完整版)常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

相关文档
相关文档 最新文档