文档库 最新最全的文档下载
当前位置:文档库 › 一种高压直流断路器的电路构成及其试验方法

一种高压直流断路器的电路构成及其试验方法

一种高压直流断路器的电路构成及其试验方法
一种高压直流断路器的电路构成及其试验方法

高压直流断路器技术发展与工程实践

摘要:发展直流电网技术需要能够快速分断电流、经济可靠的高压直流断路器解决直流故障隔离问题。通过对比直流系统故障隔离的几种技术方案,表明应用直流断路器隔离直流故障可在保障换流设备安全的同时,有效维持系统中健全部分的供电持续性,是直流故障隔离较为有效的解决方案。在分析直流电网对高压直流断路器技术性能要求的基础上,对机械式直流断路器和分别基于晶闸管和绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)的2 种混合式直流断路器的电流分断特点和发展现状进行了阐述。提出换流技术、杂散参数优化技术、与系统的协调配合技术和试验技术是高压直流断路器技术发展面临的主要技术挑战。最后,对高压直流断路器在舟山五端柔性直流输电工程中的应用情况和即将开展的张北直流电网工程进行了介绍。 0 引言 柔性直流输电技术的发展日趋成熟,其独立功率调节和灵活运行能力,为间歇性可再生能源并网与消纳提供了安全高效的解决方案。目前,世界范围内投入商业运行的大部分柔性直流输电工程均采用点对点输送方式;相较于多条点对点的电能输送方式,多个柔直换流站连接成网状形成直流电网,在高压大容量领域中具备更好的可靠性、经济性和灵活性。随着风电、光电等可再生能源不断开发,大规模清洁能源并网与跨区域电能传输对柔性直流电网的构建与发展提出了迫切需求[1-2]。 目前已投运的柔性直流输电工程大多采用模块化多电平技术(modular multi-level converter,MMC)和脉宽调制两电平技术,这些工程均无法通过闭锁换流阀清除直流故障,只能通过分断交流侧断路器来实现故障隔离。研究中采用全桥模块或电容钳位双模块[3-6]的换流阀带有直流侧故障清除能力,可以通过换流阀闭锁清除直流故障。在没有直流断路器的情况下,点对点柔性直流输电工程依靠分断交流断路器或闭锁带直流侧故障清除能力的换流阀可实现直流故障清除;但以上2 种方式在高压大容量直流电网中的应用将造成整个系统短时停电,难以满足系统运行要求。当系统配置直流断路器后,通过选择性分断直流断路器可以实现故障线路的快速隔离并维持系统其他部分的持续运行。 直流故障保护是柔性直流电网构建所面临的技术瓶颈,研制适用于柔性直流电网应用的直流断路器,保证直流电网运行的可靠性,是直流电网建设必须突破的技术难题[7]。 与交流系统相比,直流故障电流缺乏自然零点,要实现其可靠开断,需要人工创造电流零点,同时还需要吸收储存于直流系统感性元件中的巨大能量,因此直流断路器的设计较交流断路器难度大为增加。此外,柔性直流电网故障扩展快、电流上升快,对换流站等设备冲击大,为保障设备安全一般在数毫秒全网换流站将会闭锁退出运行,为实现直流电网健全区域持续运行,直流断路器需要在数毫秒内完成分断[8]。 在直流断路器的多种技术路线中,综合采用机械开关和电力电子开关的混合式直流断路器以其显著的技术优势成为高压直流断路器研制的主流[9-10]。ABB 公司于2011 年研制了80kV 3ms 分断8.5kA 基于绝缘栅双极晶体管(insulated gate bipolar transistor,IGBT)直接串联的混合式直流断路器样机[8]。全球能源互联网研究院于2014年完成了200kV 3ms分断15kA 的级联全桥型混合式直流断路器样机研制[11],并于2016 年实现高压直流断路器首个工程示范。

高压开关技术要求

一、高压开关柜主要技术规格及要求 1. 主要技术参数 额定电压: 10kV 额定频率: 50Hz 工频耐压: 42kV (50Hz 1min) 雷电冲击耐压: 75kV 额定主母线电流: 630A/1250A 额定短时耐受电流:25KA/31.5kA(3S,有效值) 额定峰值耐受电流:63KA/80kA 热稳定电流: 25KA/31.5 kA (3S) 防护等级: 1)外壳IP4X ; 2)手车门打开时为IP2X。 2.柜宽要求:小于等于650 (mm),优先选用结构紧凑柜型,投标单位及投标产品必须满足本项要求,否则招标人有权拒绝投标人的投标书。 3. 金属封闭铠装中置式手车开关柜柜体结构型式与功能 10KV 铠装式交流金属封闭开关柜的结构应保证工作人员的安全,且便于运行、维护、检查、监视、检修和试验(提供燃弧试验报告)。开关柜内安装的高压电器组件均必须为加强绝缘型产品,满足凝露试验要求(提供凝露试验报告)。 (1)柜体结构 A) 柜体外壳及各功能单元的隔板均采用国际知名品牌优质敷铝锌钢板,钢板厚度应 不小于2.0mm,投标时须注明敷铝锌钢板产地。柜体框架采用螺栓连接。 B)开关柜用隔板分隔成母线室、手车室、电缆室、仪表室和压力释放通道,各室外 壳独立接地。分隔用的钢板应具有足够的机械强度,以保证每个室内的元件在发 生故障时不影响 相邻设备。

C)开关柜的门板及侧封板等采用冷轧钢板,厚度不小于2mm,经纯化处理后采用静电 喷涂和焙烤,表面抗冲击且耐腐蚀。 D)维护方式:柜前操作,柜后维修。 E)进出线方式:满足设计要求(详见图)。 F)外形尺寸应不大于:宽650mm,深1540mm,高2250mm。含母联及泄压通道后高度不 大于 2800mm. (2) 手车室 A) 手车采用冷轧钢板经加工后焊接而成。 B)手车应设有“工作”和“试验”位置,各位置设定位机构。 C)手车的传动机构应保证手车推拉时灵活轻便。相同规格的断路器和手车应有良 好的互换性。 D)手车在抽出或试验时,应有隔离挡板隔离一次静触头,进入工作位置时自动打开。 E)活门在手车移开后需被机械锁定;接地开关操作孔需用挂锁锁定;断路器室门及 电缆室门需用挂锁锁定。 (3) 母线室 A)应有足够的空间通过满足设计要求的母线。 B)开关柜的母线设计应考虑以后的发展、方便与原母线联接。 (4) 电缆室 A) 室内可安装电流互感器、手动操作的弹簧快速接地开关,并可连接多根平行电缆, 充裕的电缆室空间,其底部设有可拆卸的不锈钢板,板上设电缆孔并提供电缆孔 封堵部件。 B) 接地开关与断路器间采用可靠的机械联锁,可有效的防止误操作。 C) 一次电缆头接线耳中心孔至柜底距离应大于550mm。 (5) 仪表室 A) 室内采用可翻转的网格板,可安装各类继电保护元件、仪表、信号指示、操作开关 等元件。 B) 室内侧板上留有小母线穿越孔,以方便施工。 C) 各开关备有合闸分闸故障等三种状态运行信号输出,主电房值班室模似板系統接口

电流电压功率之间的关系及公式

电流电压功率之间的关 系及公式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F? W=I2乘以R? V=IR W=V2/R 电流=电压/电阻? 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N (瓦特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I,

P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P 还有P=I2RP=IUR=U/I最好用这两个; 3、如电动机电能转化为热能和机械能: 电流符号:I 符号名称:安培(安) 单位:A 公式: 电流=电压/电阻I=U/R 单位换算:1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式=电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式=?*线电压U*线电流I(星形接法) =?3*相电压U*相电I(角形接法)

三相电机类电功率的计算公式=?*线电压U*线电流I*功率因数 COSΦ 星形电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P P=I2R? 4、串联电路? P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时间)电流处处相等: I1=I2=I 总电压等于各用电器两端电压之和: U=U1+U2? 总电阻等于各电阻之和: R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和“ W=W1+W2? W1:W2=R1:R2=U1:U2? P1:P2=R1:R2=U1:U2? 总功率等于各功率之和:

真空断路器试验规范

真空断路器试验规范 真空断路器试验项目及标准 1、辅助及控制回路交流耐压 试验方法 500V 兆辅助和控制回路交流耐压值为1000V,可采用普通试验变压器或 欧表摇测1min 代替, 安全措施及注意事项 试验中回路中不应有其它工作进行,使用兆欧表测量后应充分放电, 试验标准 不应有击穿情况 2、合闸接触器和分合闸电磁铁线圈的直流电阻和绝缘电阻 试验方法 使用单臂电桥测量合闸接触器和分合闸电磁铁线圈的直流电阻,使用 1000V兆欧表测量绝缘电阻, 安全措施及注意事项 测量后应充分放电, 试验标准 1)绝缘电阻不低于1MQ。 2)直流电阻应符合制造厂规定 3、断路器整体和断口间绝缘电阻 试验方法 使用2500V兆欧表测量真空断路器整体对地和断口间绝缘电阻,

安全措施及注意事项 1)试验时应记录环境温度。 2)测量后对所测回路进行放电, 试验标准 交接时、大修后:35kV 3000 M Q 10kV 1200 M Q 运行中:35kV 1000 M Q 10kV 300 M Q 4、导电回路电阻 试验方法 将断路器合闸,将导电回路测试仪试验线接至断路器一次接线端上,电压线接在内侧,电流线接在外侧。如采用直流压降法测量,则电流应不小于100A;安全措施及注意事项 接线时应和注意保持与带电设备距离; 试验标准 导电回路电阻数值应符合制造厂的规定 5、合、分闸时间及同期性及合闸弹跳时间 试验方法 1)将断路器特性测试仪的合、分闸控制线分别接入断路器二次控制线中,用试验接线将断路器一次各断口的引线接入测试仪的时间通道。 2)将可调直流电源调至额定操作电压,通过控制断路器特性测试仪,对真空断路器进行分、合操作,得出是各相合、分闸时间及合闸弹跳时间。三相合闸时间中的最大值与最小值之差即为合闸不同期;三相分闸时间中的最大值与最小值之差即为分闸不同期。 3)试验时也可采用站内直流电源作为操作电源;对于电磁操作机构,应将合闸合

浅析高压直流断路器关键技术

浅析高压直流断路器关键技术 摘要:随着可再生能源发电的发展及用户对电能要求的不断提高,传统交流电 网已难以满足可再生能源发电和负荷随机波动性对电网快速反应的要求。随着电 压源型高压变流器和高压柔性直流输电技术的迅速发展,国内外对直流输电网的 研究正日益深入。在输电领域,为适应新的能源格局,基于常规直流和柔性直流 的多端直流输电系统和直流电网技术成为未来的发展趋势,多端直流输电实现了 多电源供电、多落点受电,是一种更灵活、快捷的输电方式以,在此基础上如果 将直流输电线路在直流侧互联形成直流电网,可以有效解决新能源并网带来的有 功波动等问题,在未来城市智能配电网、微网等领域也具有较大优势,对我国未 来电网的建设和发展具有重大意义。 1引言 直流侧故障是直流输电系统必须考虑的一种故障类型,影响到设备参数的计 算和控制保护策略的设计。与交流系统相比,直流系统阻抗相对较低,故障渗透 速度更快,渗透程度更深,控制保护难度也更大。随着多端柔性直流输电系统的 发展,如何处理直流故障成为王程实践中需要考虑的关键问题。从原理上讲,直 流侧故障处理方法主要有3类:一是通过换流器闭锁实现故障的自清除;二是通 过交流断路器的动作使故障点与交流系统隔离;=是通过直流断路器的动作使故 障点与交流系统隔离。采用晶闸管的常规两端直流输电系统即采用第一类方法, 在直流侧故障发生时,通过强制移相使两侧换流器进入逆变方式,使弧道电压、 电流迅速降低为零,实现直流侧故障快速消除,可用于易发化闪络等暂时性故障 的架空线路,而对于柔性直流输电系统,目前采用的两电平、电平换流器和模块 化多电平换流器均不具备闭锁能力,换流器新型拓扑尚未成熟,实际工程中仍采 用断开交流侧断路器来清除直流侧故障,但这样往往需要短时停运整个系统,导 致交流侧特别是弱交流系统收到较大冲击,增加了系统失稳的风险,同时降低了 柔性直流输电系统的可利用率。 2高压直流断路器的技术发展趋势 2.1机械式高压直流断路器的发展现状 机械式高压断路器通常采用将交流断路器(少油式断路器,真空式断路器等)改造之后用于直流系统之中以实现电路的开断。直流电不存在电流自然过零点, 灭弧困难。在低压小电流应用场合,可以通过增大电弧电压、分段串接限流电阻 或控制磁场气体发电断流等方法实现强迫直流开断熄弧。但在高压大电流应用场合,上述方法不可行,一般是对常规机械式交流断路器结构做适当改造,并增加 能够在开断直流电流过程中自动形成高频振荡电流过零点的振荡换流回路,以解 决机械开关切断高压大直流电流时的灭弧问题。在20世纪年70代初,美国公司 的专家就提出了采用振荡换流熄弧的机械式直流断路器基本结构其一般化拓扑结 构如图所示,主要由机械开关、振荡换流回路,以及能量吸收与过压放电回路等 部分构成。 图1 机械式直流断路器的基本拓扑结构 根据是否存在预先向振荡回路中的电容进行充电,机械式直流断路器的灭弧 方式一般分为自然振荡灭弧与强制振荡灭弧: (1)自然振荡灭弧 自然振荡灭弧直接利用电弧电压随电流增大而下降的非线性负电阻效应,利

高压开关柜技术标准

1 总则 1.1 适用范围 本标准适用于额定电压12kV,频率50Hz三相系统中的户内交流金属铠装中置式开关柜。 本标准不适用于有火灾、爆炸危险、化学腐蚀及剧烈振动等场所的开关柜。 1.2 引用标准 本标准在编写过程中主要参照以下资料: GB 3906-2006《3.6kV~40.5kV交流金属封闭开关设备和控制设备》 GB/T 11022-1999《高压开关设备和控制设备标准的共用技术要求》 IEC298(1990)《额定电压1kV以上50kV及以下交流金属封闭开关设备和控制设备》DL/T 404-1997《户内交流高压开关柜订货技术条件》 SD/T318—89 《高压开关柜闭锁装置技术条件》 1.3 使用环境条件 1.3.1 环境温度: 最高温度+400C,最低温度-400C。 1.3.2 相对湿度: 日平均相对湿度≤95%, 月平均相对湿度≤90%。 1.3.3 海拔高度: 1000m。 1.3.4抗地震度: 地震烈度不超过8度。

1.3.5 周围空气应不受腐蚀性或可燃气体、水蒸汽等明显污染。 1.3.6 无严重污秽及经常性的剧烈震动,严酷条件下严酷度设计满足1类要求。1.3.7 在超过GB3906规定的正常的环境条件下使用时: 相对湿度大于70%时应接通电加热器; 凡海拔高度超过1000m的地方,按JB/Z102-71规定处理。 1.3.8 产品应能防止影响设备工作的异物进入。 1.4 额定参数 额定电压; 额定频率; 断路器额定电流; 开关柜额定电流; 额定热稳定电流及其持续时间; 额定动稳定电流; 额定短路开断电流; 额定短路关合电流; 额定绝缘水平; 防护等级。 1.4.1 额定电压: 3.6kV、7.2kV、12kV。 1.4.2 额定频率: 50Hz(±0.2)。 1.4.3 断路器额定电流: 630A、1250A、1600A、2000A、2500A、3150A。 1.4.4 开关柜额定电流: 630A、1250A、1600A、2000A、2500A、3150A。 1.4.5 额定热稳定电流及其持续时间: 额定热稳定电流:16kA、20kA、25kA、31.5kA、40kA、50kA; 持续时间:4s。 1.4.6 额定动稳定电流(峰值): 40kA、50kA、63kA、80kA、100kA、125kA。

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

高压直流断路器目前的研究概况

高压直流断路器目前的研究概况 1.前言 高压直流断路器的研制难点有三:一是直流电流不像交流电流那样有过零点,所以灭弧比较困难;二是直流回路的电感较大,所以需由直流断路器吸收的能量 比较大;三是过电压高。 高压直流断路器可以分为机械式高压直流断路器(mechanical HVDC circuit breaker)、固态高压直流断路器(solid-state HVDC circuitbreaker)与混合式高压直流断路器(hybrid HVDC circuit breaker)。 机械式直流断路器可以关断非常大的电流,并具有成本低、损耗小等优点, 但其开断速度较慢。 固态直流断路器开断速度迅速,但其相关损耗较高,且价格昂贵。 为克服两者的缺点,通过将机械式直流断路器和固态直流断路器集成在一个 装置上,从而形成混合式断路器。混合式直流断路器结合了机械开关良好的 静态特性与电力电子器件良好的动态性能,用快速机械开关来导通正常运行电流,用固态电力电子器件来分断短路电流,具有通态损耗小、开断时间短、无 需专用冷却设备等优点,是目前高压直流断路器研发的新方向,有着广阔的应 用前景。 下面将着重介绍混合式高压直流断路器的研究概况。 2 混合式高压直流断路器的研究概况 2.1 ABB--混合式高压直流断路器 2012 年,ABB 的混合式高压直流断路器技术被《麻省理工科技创业》评为2012 年度最重要的十大科技里程碑之一。该混合式高压直流断路器的基本结构如下图所示,主要包括机械式开关支路a(快速机械隔离开关b+负载转换开关

c)和半导体开关支路d(半导体断路器e+避雷器组f)。 -当直流线路正常运行时,半导体开关支路处于断开状态,快速机械隔离开关和负载转换开关导通并流过直流电流。 -当检测到直流线路发生短路时,首先导通半导体断路器,关断负载转换开关,线路上的电流转移到半导体开关支路上,负载转换开关承受半导体短路器的导 通电压。 -由于快速机械隔离开关此时流过的电流为零,快速机械隔离开关迅速打开。-当快速机械隔离开关打开后,半导体断路器开关断开,直流线路上的能量通过与半导体断路器并联的氧化锌避雷器吸收,短路电流下降。 ABB 所设计的半导体断路器单元设计图如下图所示,采用IGBT 作为半导体开关,并进行阀组串联。 该混合式高压直流断路器通过开断短路电流8.5kA 的短路试验,其开断时间 为5 毫秒。 2.2 ALSTOM--混合式高压直流断路器 2014 年阿尔斯通完成其混合式高压直流断路器原型产品的测试工作。该混合式高压直流断路器的基本结构如下图所示,主要包括旁路开关(UFD + PES)、半导体开关支路1(晶闸管+避雷器)、半导体开关支路2(晶闸管+电容器)和避雷 器组。 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

高压开关技术

网络教育学院 本科生毕业论文(设计) 题目:高压开关技术 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

I 个字符的中文摘要。 针对本题目,摘要可写成: 随着我国电力事业的迅速发展,人们对于电力系统可靠性和安全性的要求越来越高。电力设备正朝着大型化、自动化和智能化的方向发展。高压开关是电力系统中最重要的控制和保护设备,在电网中的作用至关重要,其故障带来的后果是十分严重的。一旦电力系统发生故障,即使只引起生产设备短暂的停止工作,也会造成巨大的损失。 本论文所要研究的。 第二段主要介绍本次论文研究的主要内容、方法以及取得的成果。

高压开关技术 目录 内容摘要 ...........................................................................................................................I 1 绪论 . (1) 1.1 高压开关的发展现状与趋势 (1) 1.2 国外高压开关的发展情况 (1) 1.3 我国高压开关的发展情况 (2) 1.4 本论文的主要工作 (3) 2 ____概述 (4) 2.1 ____特点与组成结构 (4) 2.2 ____操动机构及工作原理 (4) 2.3 ____电气特性 (5) 3 ____常见故障分析 (6) 3.1 ____运行状况概述 (6) 3.2 ____常见故障及分析 (6) 4 ____解决方案 (7) 4.1 ____检测与诊断 (7) 4.2 ____故障解决办法 (7) 4.3 ____发展方向 (7) 结论 (8) 参考文献 (9) 附录 (10) II

电流电压功率之间的关系及公式

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

带你了解高压直流断路器

带你了解高压直流断路器 近日,张北可再生能源柔性直流电网试验示范工程竣工投产。该工程是世界上首个具有网络特性的直流电网工程。工程核心技术和关键设备均为国际首创。其中,作为工程骨干设备之一的高压直流断路器,其设计、研发、制造、应用等方面取得了重大突破。 电力输送从简单的线条向复杂的网络发展,需要依靠高压断路器形成能够开合的节点,从而实现电网各部分灵活地组合或分离。这一方面扩大了电网的规模,另一方面提高了电网对故障的冗余能力。无论是交流电网还是直流电网,高压断路器都是电力输送网络中最基础和关键的设备。 高压直流断路器就是切断直流电流的装备。完成直流输电系统运行方式切换和线路故障清除是它的两大主要功能。高压直流断路器也因此被称为直流电网的“网络关节”和“安全守卫”,对保障直流系统安全、经济、灵活运行意义重大。张北可再生能源柔性直流电网试验示范工程(以下简称张北柔直工程)高压直流断路器的研发应用填补了500千伏高压直流断路器产品及工程应用的国际空白,也使直流输电向直流电网发展成为现实。 从无到有,高压直流断路器逐步升级 自20世纪50年代高压直流输电技术走向工程应用以来,世界上已有上百个直流输电工程投入运行,大多数采用点对点输电的形式。高压直流断路器的缺乏制约了直流输电向网络化的方向发展。要形成直流电网,迫切需要制造出能快速切断大电流的高压直流断路器。 2012年,全球能源互联网研究院有限公司率先提出了高压直流断路器构想并启动项目研究。通过科研攻关,联研院先后突破了高压直流断路器基础理论研究、关键零部件研制、样机集成及等效试验等系列关键技术难题。 2014年年底,联研院自主研发出世界首套200千伏高压直流断路器样机。2016年年底,200千伏高压直流断路器成功应用于舟山五端柔性直流输电工程,标志着国家电网公司在直流断路器领域向前迈出一大步,也填补了国际上高压直流断路器工程应用的空白。投运以来,200千伏高压直流断路器累计完成60余次系统切换、4次直流海缆单双极接地短路故障清除,解决了该工程的带电投退、

高压开关柜技术参数使用说明

KYN28-12高压开关柜技术说明 1概述 1.1KYN28-12型铠装式交流金属封闭开关设备(以下简称开关柜),系三相交流50HZ单母 线及双母线分段系统的户内成套配电装置,适用于发电厂、变电站以及工矿企业的额定电压3~10kV电网中,作为接受和分配电能之用,并对电路实行控制、保护和监测。 1.2开关柜内配置高性能真空断路器,成套设备可满足电网对高压开关柜要求,并适合“五 防”和全工况、全封闭、全绝缘条件。 2环境条件 KYN28-12型开关柜在设计中已充分考虑到客户当地的气候及周围环境,并满足其特殊要求。条件与措施如下: 3参照国际相关标准 4技术参数

电流互感器 电流互感器用环氧树脂浇注而成,通常用于向测量和保护装置传递信息。电流互感器包括具有相关性能和精度等级并适合安装要求的一个线束铁芯或带一个或多个铁芯的套管棒。符合 IEC 60044-1标准。尺寸符合 DIN 42600 窄型标准。电流互感器通常安装在负荷侧来测量相电流。 电压互感器 电流互感器用环氧树脂浇注而成,通常用于向测量和保护装置传递信息。可固定安装或安装在互感器小车上。符合 IEC 60044-2。尺寸符合 DIN 42600 窄型标准。电压互感器采用单极电压互感器,具有适合相连设备功能要求的性能和精度等级。 5开关柜的设计报告 5.1柜体 5.1.1KYN28-12型开关柜为金属铠装移开式。 5.1.2柜体的外壳与各功能小室的隔板均采用优质板材,具有很强的抗腐蚀与抗氧化性能, 并具有比同等钢板高的机械强度。 5.1.3柜体无任何焊接点,柜体由螺栓连接组成,为全组装结构。 5.1.4柜体的安装维护可在正面进行,也可在背面进行,开关柜不仅可安装成面对面或背 对背双排排列,而且可根据具体项目要求靠墙安装,节省占地面积。 5.1.5整个柜体由接地的金属隔板分隔成四个功能小室,即:母线室、继电器室、断路器 手车室和电缆室,各功能单元设有独立的压力释放通道和释放门。 5.1.6断路器手车室内安装有特定的导轨,可轻巧地推进或抽出断路器手车。 5.1.7手车室内设计有带自动锁扣和开启的电气型金属帘板,可满足手车断路器与母排侧 和电缆侧之间同时自动隔离的要求。 5.1.8手车室内有隔离位置、试验位置及工作位置,每一位置均设有定位装置。 5.1.9各功能单元均装有门,门上装有锁和铰链。

高压真空断路器动作特性测试——实验指导书

实验一高压真空断路器动作特性测试 一、实验目的 1.熟悉12kV真空断路器的技术参数以及认识其内部结构。 2.掌握其储能、合闸、分闸操作过程。 3.利用断路器动特性分析仪测量得到合闸、分闸的相关数据。 二、主要实验设备 1.ZN63A(VS1)型户内高压真空断路器4台 2.TLHG-305断路器动特性分析仪 3.旋转传感器 三、实验方法 VS1(ZN63A)型户内高压真空断路器(以下简称断路器)是用于12KV电力系统中的户内开关设备,作为电网设备、工矿企业动力设备的保护和控制单元。由于真空断路器的特殊优越性,尤其适用于要求额定工作电流的频繁操作或多次开断短路电流的场所。 断路器采用操动机构与断路器本体一体式设计,既可作固定安装单元,也可配置专用推进机构,组成手车单元使用。 1.真空断路器的技术参数和内部结构 主要规格及技术参数见下表。

操动机构为平面布置的弹簧操动机构,具有手动储能和电动储能,操动机构置于灭弧室前的机箱内,机箱被四块中间隔板分成五个装配空间,其间分别装有操动机构的储能部分、传动部分、脱扣部分和缓冲部分,断路器将灭弧室与操动机构前后布置组成统一整体,即采用整体型布置,这种结构设计,可使操作机构的操作性能与灭弧室开合所需性能更为吻合,减少不必要的中间传动环节,降低了能耗和噪声,使断路器的操作性能更为可靠,断路器既可装入手车式开关柜,也可装入固定式开关柜(具体参见图1、图2)。

2.实验步骤与内容 (1)掌握断路器的储能、合闸、分闸操作过程。 1)储能操作:使用摇把插入手动储能孔中逆时针摇动带动链轮传动系统运动,链轮转动时带动储能轴跟随转动,并通过拐臂拉伸合闸弹簧进行储能。到达储能位置时,框架上的限位杆压下滑块使储能轴与链条传动系统脱开,储能保持掣子顶住滚轮保持储能位置,同时储能轴上连板带动储能指示牌翻转显示“已储能”标记,此时断路器处于合闸准备状态。 2)合闸操作:用手按下“合闸”按钮使储能保护轴转动,使掣子松开滚轮,合闸弹簧收缩同时通过拐臂使储能轴和轴上的凸轮转动,凸轮又驱动连杆机构带

高压直流断路器的研究简述

高压直流断路器的研究简述 文章综述了高压直流断路器的研究背景和应用现状,简要介绍了高压直流断路器在高压直流输电中的作用;高压直流断路器的主要性能指标以及高压直流断路器的种类及其原理结构;高压直流断路器灭弧方式的物理设计,重点说明了高压直流断路器的开断原理;对高压直流断路器进行了分类,并介绍了世界先进水平的高压直流断路器;总结了现今高压直流断路器研究的技术难题和未来的发展方向。 标签:高压直流输电;高压直流断路器;开断原理 1 概述 高压直流(HVDC)输电系统是由整流器、高压直流输电线路以及逆变器组成,其中整流器和逆变器统称为换流器。从结构上看,高压直流输电是交流-直流-交流形式的电力电子换流电路[1]。自从1954年瑞典哥特兰的世界上第一项高压直流输电工程投运以来,高压直流输电技术已经随着电力电子技术的突飞猛进而飞速发展[2]。高压直流输电系统主要有两个作用[3,4,5]:一是将频率不同或频率控制策略不同的交流系统联接起来;二是增长输电距离以及增大输电容量。我国现有的特高压直流示范工程有三个,分别是南方电网公司的云广±800kV 特高压直流输电示范工程,国家电网公司的向上±800kV特高压直流输电示范工程和锦苏±800kV特高压直流输电示范工程。与交流输电比较,直流输电主要有以下优点:输电损耗小、线路造价低;电压压降小;直流输电不要求与电网同步;可分期建设,提高投资效益[7]。高压直流输电工程的结构中,直流断路器是至关重要的设备之一。研制高压直流断路器主要需要突破三个难点[8,9]:一是直流输电电流没有过零点,增加断路器的灭弧的难度;二是直流输电回路的电感很大,而需要开断的电流往往也很大,导致直流断路器需承受巨大的能量;三是直流输电的过电压高。 2 高压直流断路器的基本构成和开断原理 2.1 高压直流断路器的基本构成 开断直流电流一直是高压直流输电系统中的重大难题之一。主要原因是直流电流没有自然过零点,必须强迫电流过零才能熄弧。另外在开断电流过零,电弧熄灭时,直流系统中仍存储着巨大的能量需要释放,这部分能量在断路器两端可能产生很高的过电压从而造成开断失败。 高压直流断路器的基本构成如图1所示[9]。 高压直流断路器是由:QB装置,振荡回路,耗能元件组成。QB装置通常采用传统的真空断路器和SF6断路器改造而成,QB装置为了获取较低的电弧电压,需要加装辅助回路,包括有源辅助回路和无源辅助回路两种。振荡回路用于

高压直流断路器的研究(结课大作业)

摘要 高压直流(HVDC)电网是解决可再生能源大规模接入的重要途径。发展高压直流电网对大规模电能的远距离输送、促进新能源的并网及消纳、提高区域交流互联电网的安全稳定性具有重要意义。而高压直流断路器是直流电网发展的瓶颈问题。本文分析了高压直流电网对高压直流断路器的需求;介绍了各种直流断路器的主要性能、基本构成、开断原理等。 关键词:高压直流输电,直流断路器,MRTB,ERTB,NBS,NBGS 前言 随着传统化石能源短缺和环境污染问题的不断加剧,以及风电、太阳能等可再生清洁能源的迅速发展,能够实现间歇式可再生能源大规模接入的多端高压直流输电系统,及其向HVDC电网方向的发展,越来越受到世界各国的关注。2008 年,欧洲提出超级智能电网(super grid)规划,旨在充分利用可再生能源的同时,实现国家间电力交易和可再生能源的充分利用;2011 年,美国提出了2030 年电网构想(Grid 2030),即美国未来电网将建立由东岸到西岸、北到加拿大、南到墨西哥,主要采用超导技术、电力储能技术和更先进的直流输电技术的骨干网架。 中国风力资源丰富地区主要集中在东北、华北、西北等区域。但这些地区大多负荷水平较低、调峰能力有限,大规模风电就地利用困难,需要远距离大容量输送,并在大区以至全国范围内实现电量消纳。这对中国发展HVDC电网技术提出了迫切的需求。随着HVDC 输电技术向HVDC 电网的发展,对整个系统的可靠性和稳定、安全运行也提出了更高的要求。其中所面临的巨大挑战就是HVDC 电网中短路电流的开断问题。与交流系统相比,HVDC 电网中时间常数小,短路电流上升速度快,同时造成直流电压的跌落,甚至引起换流器和短路电流的失控,而且直流电流由于缺乏自然过零点而难以开断。能够实现快速切除或隔离短路故障的高压直流断路器已成为HVDC 电网发展的瓶颈问题。 一、直流电网发展对高压直流断路器的 需求 随着直流输电技术向HVDC电网的发展,对整个系统的可靠性和稳定、安全运行也提出了更高的要求,其中所面临的巨大挑战就是HVDC 电网中短路电

高压断路器自能灭弧技术的发展

高压断路器自能灭弧技术的发展 作者:张文兵来源:西高所研发中心发布时间:2006-12-14 浏览次数:3963 目前很多生产中压开关设备的企业,其中不少是有实力的民营或股份制企业开始越来越关注126kV级以上产品的发展,很多厂家都有在高电压领域一展身手的想法,但大家对高压领域无论是产品的技术发展还是市场行情了解得不是太多,本文拟在结合西高所今年来开发的几个产品,特别是从灭弧技术和断路器的研制入手,向大家简要介绍了目前我国高压领域发展的概况。 1.市场分析 根据行业协会2004年年鉴,下表呈示了2003年72.5kV及以上高压断路器的产品产量。 2003年72.5kV及以上高压断路器的产品产量单位: 台 电压等级750 363 252 126 72.5 SF6断路器73 22 769 4010 481 GIS 511 1494 少油断路器 1 58 78 考虑到一些合资或外资企业未参加行协的统计,椐不完全估计截止2003年目前国内市场的 126kV以上产品的总需求量为10000台套左右(含GIS),其年产值约60-70亿元左右,约占整个高压开关总市场容量的1/4~1/3。其中126kV领域的产品产值约30亿元,供应偏紧。目前国内能进行126kV级以上产品生产的企业不足20家,有规模的且能生产252kV级以上产品的企业更是凤毛麟角。可以说,高压产品在近几年里还有一定的市场空间和利润空间。但生产高压产品所必须进行的在厂房、设备、技术、品牌战略等方面的高投入,依然是使不少企业彷徨不定或难以介入的高门槛。 2.自能灭弧的技术发展 对于六氟化硫断路器灭弧原理的发展而言,20世纪90年代无疑是一个重要的时期。在这期间,126kV及以上级的自能式灭弧原理得到了蓬勃的发展和广泛的应用,它与传统的压气式断路器相比,操作功大大减少,因而可配用维护方便的轻型弹簧操动机构,机械应力小,大大提高了机械可靠性及机械寿命,减轻了重量。从而使自能式六氟化硫高压断路器在轻量化、小型化、机械可靠性等特性上有了显著的优势,体现出高压断路器的进步。故采用自能式灭弧原理的断路器,被称为继双压式、单压式后的第三代断路器,是六氟化硫断路器发展史上的一次革命。它的出现迅速被用电部门所接受,具有良好的发展前景。 西安高压电器研究所对自能灭弧技术的研究始于八十年代中期,当时主要在中压产品上进行了旋弧+热膨胀灭弧室的研究,并成功开发了LN2-10和LN2-35系列的SF6断路器。96年以后,开始进

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

高压断路器实验

国网武汉高压研究院 张蓬鹤 2008-06-10高压断路器试验 主要内容 一、高压断路器概述 二、断路器试验综述 三、机械特性试验 ? 高压断路器的作用 ? 高压断路器的主要要求 ?高压断路器的分类 ?高压断路器的基本结构 ?断路器的术语 ?相应的断路器标准 一、

高 压 断 路 器 概 述 高压断路器是电力系统中最重要的控制和 保护设备。 ?在正常运行时,根据电网的需要,接通或断开电路的空载电流和负载电流,起控制作用; ?当电网发生故障时,高压断路器和保护装置及自动装置相配合,迅速、自动地切断故障电流,保障电网无故障部分的安全运行,以减少 停电范围,起保护作用; 1、 高 压 断 路 器 的

作 用 n 绝缘部分能长期承受最大工作电压,还能承受过电压; n 长期通过额定电流, 各部分温度不超过允许值 ; n 断路器的跳闸时间要短 , 灭弧速度要快 ; n 能够满足快速重合闸 ; n 在通过短路电流时, 有足够的动稳定性和热稳定性 ; 2、高压断路器的主要要求 ?油断路器; ?压缩空气断路器 (高速气流 ; ?SF6断路器; ?磁吹断路器(电弧吹入狭缝 ; ?真空断路器; ?固体产气断路器 (聚氯乙烯 ; 3、 高 压 断 路 器 的 分 类 4、高 压断路器的基本结构 n 由基座、绝缘支柱、开断元件及操作结构组成

。 5、断 路器的术语 n 特性参量术语 ; n 操作术语 ; 特性参量术语(铭牌 &额定电压 :在规定的使用和性能条件下能连续运行的最高电压, 并以它确定高压开关设备的有关试验条件; &额定电流 :在规定的使用和性能条件下能连续运行的最高电压, 高压开关设备主回路能够连续承载的电流数值 ; &额定开断电流 :在规定的使用和性能条件下 ,断路器能保证正常开断的最大断路电流; &额定开断容量:指断路器在额定电压下的开断电流与额定电压的乘积在乘以线路系数 ; &额定峰值耐受电流 (额定热稳定电流 :在规定的使用和性能条件下 ,开关在闭合位置所能耐受的额定短路耐受电流第一个大半波的峰值电流;

高压直流断路器

高压直流断路器的研究 摘要本文详述了高压直流断路器在直流系统中的功能要求以及直流断路器的功能作用,介绍了高压直流断路器的工作原理及组成结构。分析了现阶段应用于 高压直流断路器的开断电流、熄灭电弧的各种方法,并阐述了各种方法的原理,通 过对原理的分析阐述了各种方法的优缺点,并得出有源叠加振荡方式与无源叠加振 荡方式是现阶段实现高压直流断路器的最佳方式。 关键词:直流断路器开断电流无源叠加振荡有源叠加振荡 0 前言 直流断路器是直流换流站的主要电气设备之一。它不仅在系统正常运行时能切断和接通高压线路及各种空载和负荷电流,而且当系统发生故障时,通过继电保护装置的作用能自动、迅速、可靠地切除各种过负荷和短路电流,防止事故范围的扩大。在高压直流输电系统中,某些运行方式的转换或者故障的切除要采用直流开关。直流断路器同样因为直流电流难以熄弧、直流断路器吸收的能量大以及过电压高而制约其发展。 1 直流断路器在直流系统中的功能要求[1] 直流系统中的断路器主要包括中性母线断路器、高速接地断路器、金属回路转换断路器和大地回线转换断路器。 1.1 中性母线断路器 两端换流站的每一极都有一台中性母线断路器。当直流闭锁时,在换流站没有投旁路的情况下,极控系统将使直流电流降为零,中性母线断路器在无电流的情况下合闸 1.2 高速接地断路器 每个换流站都有一台高速接地断路器,当接地极退出运行时,两端换流站的高速接地断路器应自动将中性母线接到换流站接地网,不要求具备大电流转换能

力,但必须能在双极运行时打开。 1.3 金属回路转换断路器 金属回路转换断路器功能是将直流运行电流从较低阻抗的大地回路向具有较高阻抗的金属回路转移。直流电流从大地回路向金属回路的转移不应降低运行极的直流输送功率。 1.4 大地回线转换断路器 大地回线转换断路器用于将直流运行电流从具有较高阻抗的金属回路转移至具有较低阻抗的大地回路。直流电流从金属回路向大地回路的转移不应引起直流功率的降低。 2 直流断路器的基本构成与工作原理 直流断路器的组成与交流断路器的构成结构基本相同,只在交流断路器的基础上增加了振荡装置和耗能元件。直流断路器的本体部分由通断单元、中间传动机构、液压操作机构、绝缘支撑件和基座组成[1]。按原理可由以下三部分组成:由交流断路器改造而成的直流断路器、以形成电流过零点为目的的振荡电路以及以吸收直流回路中储存的能量为目的的耗能元件。 直流电流的开断不像交流电流那样可以利用交流电流的过零点,因此开断直流电流必须创造过零点。但是,当直流断路器开断时,由于直流系统储存着巨大的能量要释放出来,而释放出的能量又会在回路上产生过电压,引起断路器断口间的电弧重燃,以致造成开断失败。所以吸收这些能量就成为断路器开断的关键因素[2]。 高压直流断路器开断原理有叠加电流法和分段串联电阻耗能限流方式。下面介绍直流断路器开断原理。 2.1 叠加电流法 这种直流断路器利用电感和电容所引起的自激振荡来产生一个交流电流,通过交流电流与直流电流叠加起来,产生电流过零点,从而使电弧熄灭。叠加电流法又可分为有源型与无源型两种[10]。

相关文档
相关文档 最新文档