文档库 最新最全的文档下载
当前位置:文档库 › 矩阵行列式求导

矩阵行列式求导

矩阵行列式求导
矩阵行列式求导

矩阵函数求导

首先要区分两个概念:矩阵函数和函数矩阵

(1) 函数矩阵,简单地说就是多个一般函数的阵列,包括单变量和多变量函数。

函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分

考虑实变量t 的实函数矩阵

()()()ij m n X t x t ×=,所有分量函数()ij x t 定义域相同。

定义函数矩阵的微分与积分

0()(),()().t t ij ij t t d d X t x t X d x d dx dx ττττ?????????==????????????∫∫ 函数矩阵的微分有以下性质:

(1) ()()()()()d d d X t Y t X t t dt dt dt

+=+; (2) ()()()()()()()d dX t dY t X t Y t t X t dt dt dt

=+; 特殊情形

(a ) 若K 是常数矩阵,则()()()d d KX t K X t dt dt

=; (b ) 若()X t 是方阵,则2()()()()()d dX t dX t X t X t X t dt dt dt

=+; (3) ()

111()()()()d dX t X t X t X t dt dt =----; (4) 对任意的方阵A 和时变量t ,恒有At At At d e Ae e A dt

==; (5) 若AB BA =,则A B B A A B e e e e e +==。如果,A B 可交换,则许多三角不等

式可以推广到矩阵上。如sin(),sin(2)A b A +等。

参考文献:余鄂西,矩阵论,高等教育出版社。

(2) 矩阵函数,就是自变量为矩阵的函数映射;根据函数的自变量和因变量的

形式可分为多种。

矩阵函数的导数

定义(向量导数):映射:n m f →\\,()()12(),(),,()

(), 1...T m i f f x f x f x f x i m ===",

定义映射的导数为一个m n ×的偏导数矩阵 (), 1..., 1...i ij j df x Df i m j n dx ??===????. 例如 dAx A dx

=, ?

()()()(),,D f x g x Df x Dg x αβαβαβ??+=+∈∈????\\

()()''()()()D f g x f g x g x ??=????

''()()()()()(),,T T T n m D f x g x g x f x f x g x f g ??=+∈→????

\\ ?

()()T T T T T dx Ax x A Ax x A A dx

=+=+

定义(矩阵导数):

()vec ()()vec()

d A X dA X dX d X 有

符号说明

?d/dx (y)是一个向量,其第(i)个元素是dy(i)/dx

?d/d x (y) 是一个向量,其第(i)个元素是dy/dx(i)

?d/d x (y T) 是一个矩阵,其第(i,j)个元素是dy(j)/dx(i)?d/dx (Y) 是一个矩阵,其第(i,j)个元素是dy(i,j)/dx ?d/d X (y) 是一个矩阵,其第(i,j)个元素是dy/dx(i,j)

注意 Hermitian 转置不能应用,因为复共轭不可解析,x,y是向量,X,Y是矩阵,x,y是标量。

在下面的表达中 A, B, C 是不依赖于 X的矩阵,a,b是不依赖于x的向量, 线性积

?d/dx (AYB) =A * d/dx (Y) * B

o d/dx (Ay) =A * d/dx (y)

?d/d x(x T A) =A

o d/d x(x T) =I

o d/d x(x T a) = d/d x(a T x) = a

?d/d X(a T Xb) = ab T

o d/d X(a T Xa) = d/d X(a T X T a) = aa T

?d/d X(a T X T b) = ba T

?d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z

二次积

?d/d x (Ax+b)T C(D x+e) = A T C(Dx+e) + D T C T(Ax+b)

o d/d x (x T Cx) = (C+C T)x

[C: symmetric]: d/d x (x T Cx) = 2Cx

d/d x (x T x) = 2x

o d/d x (Ax+b)T (D x+e) = A T (Dx+e) + D T (Ax+b)

d/d x (Ax+b)T (A x+b) = 2A T (Ax+b)

o[C: symmetric]: d/d x (Ax+b)T C(A x+b) = 2A T C(Ax+b)

?d/d X(a T X T Xb) = X(ab T + ba T)

o d/d X(a T X T Xa) = 2Xaa T

?d/d X(a T X T CXb) = C T Xab T + CXba T

o d/d X(a T X T CXa) = (C + C T)Xaa T

o[C:Symmetric]d/d X(a T X T CXa) = 2CXaa T

?d/d X((Xa+b)T C(Xa+b)) = (C+C T)(Xa+b)a T

三次积

?d/d x(x T Axx T) = (A+A T)xx T+x T AxI

?d/dx (Y-1) = -Y-1d/dx (Y)Y-1

Note: matrix dimensions must result in an n*n argument for tr().

?d/d X(tr(X)) = I

?d/d X(tr(X k)) =k(X k-1)T

?d/d X(tr(AX k)) =SUM r=0:k-1(X r AX k-r-1)T

?d/d X(tr(AX-1B)) = -(X-1BAX-1)T

o d/d X(tr(AX-1)) =d/d X(tr(X-1A)) = -X-T A T X-T

?d/d X(tr(A T XB T)) = d/d X(tr(BX T A)) = AB

o d/d X(tr(XA T)) = d/d X(tr(A T X)) =d/d X(tr(X T A)) = d/d X(tr(AX T)) = A ?d/d X(tr(AXBX T)) = A T XB T + AXB

o d/d X(tr(XAX T)) = X(A+A T)

o d/d X(tr(X T AX)) = X T(A+A T)

o d/d X(tr(AX T X)) = (A+A T)X

?d/d X(tr(AXBX)) = A T X T B T + B T X T A T

?

?[C:symmetric]d/d X(tr((X T CX)-1A) = d/d X(tr(A (X T CX)-1) =

-(CX(X T CX)-1)(A+A T)(X T CX)-1

?[B,C:symmetric]d/d X(tr((X T CX)-1(X T BX)) = d/d X(tr( (X T BX)(X T CX)-1) = -2(CX(X T CX)-1)X T BX(X T CX)-1 + 2BX(X T CX)-1

?

行列式

?d/d X(det(X)) = d/d X(det(X T)) = det(X)*X-T

o d/d X(det(AXB)) = det(AXB)*X-T

o d/d X(ln(det(AXB))) = X-T

?d/d X(det(X k)) = k*det(X k)*X-T

o d/d X(ln(det(X k))) = k X-T

?[Real] d/d X(det(X T CX)) = det(X T CX)*(C+C T)X(X T CX)-1

o[C: Real,Symmetric]d/d X(det(X T CX)) = 2det(X T CX)* CX(X T CX)-1?[C: Real,Symmetricc]d/d X(ln(det(X T CX))) = 2CX(X T CX)-1

Jacobian

如果y 是x的函数,则d y T/d x是y关于x的Jacobian 矩阵。其行列式|d y T/d x|是表示了d y和d x的超体积比值. Jacobian行列式出现在变元积分中: Integral(f(y)d y)=Integral(f(y(x)) |d y T/d x| d x).

Hessian矩阵

如果f是x的函数,则对称矩阵d2f/d x2= d/d x T(df/d x)就是f(x)的Hessian 矩阵。 满足df/d x = 0 的x的值,当Hessian是正定、负定、不定时,就是相应的最小值、最大值、或者是鞍点。

?d2/d x2 (a T x) = 0

?d2/d x2 (Ax+b)T C(D x+e) = A T CD + D T C T A

o d2/d x2 (x T Cx) = C+C T

d2/d x2 (x T x) = 2I

o d2/d x2 (Ax+b)T (D x+e) = A T D + D T A

d2/d x2 (Ax+b)T (A x+b) = 2A T A

o[C: symmetric]: d2/d x2 (Ax+b)T C(A x+b) = 2A T CA

行列式跟矩阵的关系

行列式跟矩阵的关系 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 矩阵由数组成,或更一般的,由某元素组成。就是m×n 矩阵就是mn个数排成m个横行n个竖列的阵式。n×n矩阵的行列式是通过一个定义,得到跟这个矩阵对应的一个数,具体定义可以去看书。注意,矩阵是一个阵式,方阵的行列式是跟一个方阵对应一个数。行列式的值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数。 也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负。 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

高中数学复习专题矩阵与行列式

专题八、矩阵与行列式 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1,ΛΛ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A ΛM M ΛΛ212221211211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A -B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数 α的乘积矩阵,记作:αA.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠。 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)???=+=+222 1 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122 112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 2 1a a 2 1b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c ,则: ①当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==,方程组(*)无穷组解; ③当D =0时,0,0x y D or D ≠≠,方程组(*)无解。 系数行列式112 2 a b D a b =也为二元一次方程组解的判别式。

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

第一章 行列式试题及答案

第一章 行列式试题及答案 一 选择题 (每小题3分,共30分) ⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( ) (A) n (B) n /2 (C) 2n (D) n (n -1)/2 ⑵ 在函数()x x x x x x f 21421 12---=中,x 3的系数是( ) (A) -2 (B) 2 (C) -4 (D) 4 ⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( ) (A) 1 (B) -1 (C) (-1)n (D) (-1) n(n -1)/2 ⑷ 设 n n λλλλλλ 21 2 1 = ,则n 不可取下面的值是( ) (A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17 ⑸ 下列行列式等于零的是( ) (A)100123123- (B) 031010300- (C) 100003010- (D) 2614226 13- ⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++1 11 222c bc ac bc b ab ac ab a ( ) (A) 1 000100 01222 +c bc ac bc b ab ac ab a (B) 1111122222 +++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a (C) 101011122 22 2 +++++c bc bc b ac ab c bc ac bc b ab ac ab a (D) 1 1122 2 bc ac bc ab ac ab c bc ac bc b ab ac ab a + ⑻ 设a ,b ,c 两两不同,则02 22=+++c b a c b a b a a c c b 的充要条件是( ) (A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2 =b 2 , c =0 ⑼ 四阶行列式 =4 4 3 322 1 1 a b a b b a b a ( ) (A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2) ⑽ 齐次线性方程组??? ??=-+=+-=-+03020 223 21321321x x x x x x x x x λ只有零解,则λ应满足的条 件是( ) (A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1 二 填空 (每小题3分,共15分) ⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。 ⑵ 五阶行列式=6 200357020381002 300031000___________。 ⑶ 设7 3 4 369 02 111 1875 1----= D ,则5A 14+A 24+A 44=_______。 ⑷ 若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 ⑸ 设x 1,x 2,x 3是方程x 3+px +q =0的根,则行列式=1 32213 3 21 x x x x x x x x x __。 三 计算行列式 (每小题6分,共30分) ⑴ 0 112 2 1 032101132 2 2 1 13 1 3211----- ⑵ ()()()()()()()()()()()()2 22 2 2222 2222 2222321321321321++++++++++++d d d d c c c c b b b b a a a a ⑶ y y x x -+-+11 1 1 111111111111 ⑷ a c b a c b a c b a c b a ⑸ x b b b a x b b a a x b a a a x D n =(a ≠ b ) 四 证明题 (每小题10分,共20分) ⑴ 用归纳法证明: 任意一个由自然数1,2,…,n 构成的n 元排列,一定可以经过不超过n 次对换变成标准排列12…n ⑵ 设平面上三条不同的直线为 000 =++=++=++b ay cx a cy bx c by ax , 证明: 三条直线交于一点的充分必要条件是0=++c b a

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

矩阵和行列式初步

第 九 章 矩阵和行列式初步 格致中学 王国伟 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP = ,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ? - ? ? -?? ;若将常数项增加进去,则可简记为:2313242414m n ?? ?- ? ?-??。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ?- ? ? -? ?这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ???称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

行列式-矩阵练习题

行列式 矩阵练习题 一、单项选择题 1. 设行列式D=a 522315 21-=0,则a =( B ). A. 2 B. 3 C. -2 D. -3 2. 设A 是k ×l 矩阵,B 是m ×n 矩阵,如果AC T B 有意义,则矩阵C 的为( B ). A. k ×m B. k ×n C. m ×l D. l ×m 3. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ). A. AB=BA B. (AB)T =B T A T C. (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 2 4. A 为n 阶方阵,下面各项正确的是( C ). A. |-A|=-|A| B. 若|A|≠0,则AX=0有非零解 C. 若A 2=A,则A=E D. 若秩(A)k B. 秩(A)≥k C. 秩(A)=k D. 秩(A)≤k 6. 设A 、B 为同阶方阵,则下面各项正确的是( A ). A. 若|AB|=0, 则|A|=0或|B|=0 B. 若AB=0, 则A=0或B=0 C. A 2-B 2=(A-B)(A+B) D. 若A 、B 均可逆,则(AB)-1=A -1B -1 7. 当k 满足( A )时,?????=+=++=++0 z 2y -kx 0z ky 2x 0z ky kx 只有零解. A. k=2或k=-2 B. k ≠2 C. k ≠-2 D. k ≠2且k ≠-2 8. 设A 为n 阶可逆阵,则下列( B )恒成立. A.(2A)-1=2A -1 B. (2A -1)T =(2A T )-1 C. [(A -1)-1]T =[(A T )-1]-1 D. [(A T )T ]-1=[(A -1)-1]T 二、填空题

总复习-1矩阵与行列式

I 矩阵、行列式 一、矩阵的概念及其初等变换 矩阵概念 矩阵与行列式的区别: 矩阵(数表) 行列式(数) 记号:1111n m n m a a a a ?? ? ? ??? m n A ? ()ij m n a ? 1111 n m n n a a a a n A ij n a 化简:1111m n m n a a a a ?? ? ? ?→?? 1111n m n n a a a a = 矩阵的初等变换理论 定义:(看书) 结论一 对任一m n ?矩阵A ,设()R A r =,有 1,11,1000000000110r n r r rn m n c c c c A A ++??? ? ? ????→ ? ? ? ? ??? 行变 (的行最简形矩阵) 应用1 高斯消元法解线性方程组 增广矩阵A ???→行变 行最简形矩阵(可直接写出解) 应用2 列摆行变法判定向量组的线性相关性及求最大无关组、秩和线性表示式

1,1111,12100(,,,)(,,,)0000000011,,r n r r r n r n r n c c c c J J εαααε+++?? ? ? ? ???→= ? ? ? ? ??? 行变 设 则12,,,n ααα 与11,,,,,r r n J J εε+ 有相同的线性相关性。 应用3 行初等变换法求逆矩阵A -1、A -1B 1(,)(,)A E E A -???→行变 1(,)(,)A B E A B -???→行变 结论二 对任一m n ?矩阵A ,设()R A r =,有 000r m n E A A ??? ????→ ? ?? 列行变和变 (的相抵标准形) 应用1 初等变换法求矩阵的秩(可作列变) 应用2 标准形思路:,,0 00r E A P Q P Q ?? = ??? 其中是可逆矩阵. 结论三 初等变换与初等矩阵的转化关系:箭号等号关系(“左行右列”) 二、矩阵的运算 加法、数乘、乘法、转置 关于矩阵乘法,注意: (1) 矩阵乘法与数的乘法不同之处 不满足交换律 AB BA ≠ 222()2A B A AB B +≠++ 22()()A B A B A B -≠+- ()k k k AB A B ≠ 注意:,A B 设均为方阵,则 错误!未找到引用源。,AB E BA E AB ===若则 错误!未找到引用源。AB BA A B ==

矩阵行列式(较难与困难)

第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题 1.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为() A.869 B.870 C.871 D.875

第II 卷(非选择题) 请点击修改第II 卷的文字说明 评卷人 得分 二、解答题 2.已知矩阵??????=121a A 的一个特征值3=λ所对应的一个特征向量?? ? ???=11e , 求矩阵A 的逆矩阵1-A . 3.已知矩阵 10120206A B -???? ==???? ???? ,,求矩阵1.A B - 4.选修4-2:矩阵与变换 已知直线:23l x y -=,若矩阵13a A b -?? = ??? ,a b R ∈所对应的变换σ把直线l 变换为它自身。 (Ⅰ)求矩阵A ; (Ⅱ)求矩阵A 的逆矩阵. 5.求曲线1x y +=在矩阵M 10103?? ??=?????? 对应的变换作用下得到的曲线所围成图形的面积. 6.(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量??? ? ??=321e 并有特征值 12-=λ及属于特征值-1的一个特征向量???? ??-=112e , ??? ? ??-=11α (Ⅰ )求矩阵M ;(Ⅱ )求5 M αr . 7.选修4—2:矩阵与变换 已知矩阵00a b ??=????M 满足:i i i l =M αα,其中(1,2)i i l =是互不相等的实常数,(1,2)i i =α,是非零的平面列向量,11l =,211?? =???? α,求矩阵M . 8.变换T 1是逆时针旋转 2 π 的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=. (1)求点P (2,1)在T 1作用下的点P ′的坐标; (2)求函数y =x 2 的图象依次在T 1,T 2变换的作用下所得曲线的方程. 9.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-

矩阵和行列式复习知识点(完整资料).doc

【最新整理,下载后即可编辑】 矩阵和行列式复习 知识梳理 9.1矩阵的概念: 矩阵:像[27],[ 4202],[945 354 ]的矩形数字(或字母)阵列称为矩阵.通常用大写字母A 、B 、C…表示 三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵; ① 矩阵行的个数在前。 ② 矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 行向量、列向量 单位矩阵的定义:主对角线元素为1,其余元素均为0的矩阵 增广矩阵的含义及意义:在系数矩阵的右边添上线性方程组等号右边的值的矩阵。通过矩阵变换,解决多元一次方程的解。 9.2矩阵的运算 【矩阵加法】 不同阶的矩阵不可以相加; 记11122122A A A A A =?? ????,11122122B B B B B =??????,那么 ??? ???++++=+22222121 12121111B A B A B A B A B A , 【矩阵乘法】, [A 1A 2]×[A 1A 2]=11122122A B A B A B A B ?????? ; ?? ? ? ??++++=2222122121 2211212212121121 121111B A B A B A B A B A B A B A B A AB 【矩阵的数乘】().ij kA Ak ka == 【矩阵变换】

相似变换的变换矩阵特点:k [10 01]等 轴对称变换的变换矩阵:[?1001]、[100?1]、[01 10]等 旋转变换的变换矩阵:[0?1 10 ]等 9.3二阶行列式 【行列式】行列式是由解线性方程组产生的一种算式; 行列式是若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段。 行列式行数、列数一定相等;矩阵行数、列数不一定相等。 二阶行列式的值a d D ac bd b c = =- 展开式ac - bd 【二元线性方程组】 对于二元一次方程组111 222 a x b y c a x b y c +=?? +=?,通过加减消元法转化为方程组 x y D x D D y D ?=??? ?=?? 其中1 11 11 1 2 22 222 ,,x y a b c b a c D D D a b c b a c = == 方程的解为{A = A A A A = A A A 用行列式来讨论二元一次方程组解的情况。 (I )0D ≠,方程组(*)有唯一解; (II )0D = ○1 ,x y D D 中至少有一个不为零,方程组(*)无解; ○2 0x y D D ==,方程组(*)有无穷多解。 系数行列式1122 a b D a b =也为二元一次方程组解的判别式。 9.4三阶行列式

作为判别式的二阶行列式

9.3(2)作为判别式的二阶行列式 一、教学目标设计 1.通过经历在二元一次方程组系数行列式0≠D 和0=D 两种情形下讨论它的解的不同情况的过程,体验二元一次方程组系数行列式D 作为解的判别式的含义; 2.学会并掌握用二元一次方程组系数行列式D 判别(数字系数的)方程组解的情况的方法; 3.通过经历讨论字母系数二元一次方程组解的情况的过程,体验并掌握讨论的依据、步骤及(书写)表达. 二、教学重点及难点 二元一次方程组解的情况的判别与讨论. 三、教学流程设计 四、教学过程设计 一、温故求新 由上节课的例2解二元一次方程组及课后训练可以知道,这些方程组的系数行列式的值均不为零,即0≠D ,它们的解是唯一的.我们还通过举例得到了一些二元一次方程组,它们的系数行列式的值为零(即0=D ),但它们的解并不是唯一的,可能无解,也可能有无穷多解.那么,这样的情况是否具有一般性呢?二元一次方程组解的情

况与其系数行列式的值到底有怎样的关系呢? [说明]温故求新是常用的教学策略. 二、学习新课 1.作为判别式的二元一次方程组系数行列式的研究 一般地,通过消元法可将二元一次方程组(*)???=+=+222 111c y b x a c y b x a 转化为? ??=?=?y x D y D D x D ,其中=D 21a a 21b b ,=x D 21c c 21b b ,=y D 21a a 21c c ,然后根据D 的取值情况进行分类讨论. 2.例题分析 分析讲解教材例题3、例4; 例3.判别下列二元一次方程组解的情况: (1)???=+=-2268534y x y x (2)???=+=+596364y x y x (3)?? ???=-=-232623y x y x [说明]体会判别方程组解的情况的依据与过程. 例4.解关于x 、y 的二元一次方程组,并对解的情况进行讨论: ? ??=++=+m my x m y mx 24 [说明]注意讨论的依据、一般顺序及书写表达. 3.问题拓展 ①“二元一次方程组系数行列式0=D ”是“方程组无解” 的________________条件.(编制类似的问题若干) ②构造一个二元一次方程组,使它的解的情况分别是“有唯一解”、“无解”、“有无穷多解”.

第四章 矩阵练习题

矩阵习题 一、 判断题 1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 2. 如果2 0,A =则0A =. 3. 如果2A A E +=,则A 为可逆矩阵. 4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 6.A 为n m ?矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q , 使.00 0??? ? ??=s I PAQ 7.n 阶矩阵A 可逆,则*A 也可逆. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 二、 选择题 1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是( ) (A) AB BA - (B) AB BA + (C) 2 ()AB (D) BAB 2. 设A 是任意一个n 阶矩阵,那么( )是对称矩阵。 (A) T A A (B) T A A - (C) 2 A (D) T A A - 3.以下结论不正确的是( )。 (A) 如果A 是上三角矩阵,则2 A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2 A 也是对角阵。

4.A 是m k ?矩阵, B 是k t ?矩阵, 若B 的第j 列元素全为零,则下列结论正确的是( ) (A) AB 的第j 列元素全等于零; (B) AB 的第j 列元素全等7于零; (C ) BA 的第j 列元素全等于零; (D ) BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是( ) (A) 2 2 2 ()2A B A AB B +=++ (B) 2 2 ()()A B A B A B -=+- (C) 222 ()AB A B = (D) 2 2 ()()A E A E A E -=+- 6.下列命题正确的是( ) (A) 若AB AC =,则B C = (B) 若AB AC =,且0A ≠,则B C = (C)若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ?矩阵,B 是n m ?矩阵,则( ) (A)当m n >时,必有行列式0AB ≠; (B)当m n >时,必有行列式0AB = (C)当n m >时,必有行列式0AB ≠; (D)当n m >时,必有行列式0AB =; 8.以下结论正确的是( ) (A) 如果矩阵A 的行列式,则0A =,则0A =; (B) 如果矩阵A 满足2 0A =,则0A =; (C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有2 2 ()()A B A B A B -+=- 9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩 阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( ). (A )123,,ααα. (B )122331,,αααααα+++. (C )234,,ααα. (D )12233441,,,αααααααα++++.

实验2-行列式与方程组的求解

2 行列式与方程组的求解 1. 求行列式的命令; 2. 求矩阵秩的命令; 3. 求矩阵的最简行矩阵的命令; 4. 满秩线性方程组的各种方法; 5. 符号变量的应用; 6. 验证与行列式相关的公式和定理。 例2.1 已知非齐次线性方程组: ?????????=++-+=+++-=+-++=+++-=++++85 1035372227772902116115359131073280543265432154321 543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x , 要求用下列方法求解该方程组。 (1)求逆矩阵法; (2)矩阵左除法; (3)初等行变换; (4)克莱姆法则。 解:(1)把非齐次线性方程组写为矩阵形式: b Ax =,则b A x 1-=,直接在MATLAB 的命令窗口输入: A=[6,2,3,4,5;2,-3,7,10,13;3,5,11,-16,21;2,-7,7,7,2;7,3,-5,3,10]; b=[80;59;90;22;85]; x=inv(A)*b %或:x=A^-1*b 计算结果为: x = 9.0000 3.0000 2.0000 1.0000 2.0000 (2)矩阵的乘法不遵守乘法交换律, Matlab 软件定义了矩阵左除和矩阵右除运算, 针对方程组的矩阵形式b Ax =,可用左除法 等式两端同时左除A ,得到:“b A x \=”,即b A x 1 -= 针对矩阵方程B XA =,,可用右除法,等式两端同时右除A ,A B X /=, 即1-=BA X 在MATLAB 命令窗口中输入:

高考数学《矩阵与行列式》专题复习

高考数学《矩阵与行列式》专题复习 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A 2122212 11211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A-B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:α A.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠. 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)?? ?=+=+2 221 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ???--=--=1221122112211221b a b a c a c a y b a b a b c b c x , 引入记号 21a a 2 1b b 表示算式1221b a b a -,即 21a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 21a a 2 1b b ,= x D 21c c 2 1b b ,= y D 21a a 2 1c c ,则: ①当= D 21a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==方程组(*)无穷组解; ③当D =0时,0≠x D 或0≠y D ,方程组(*)无解。 系数行列式11 22 a b D a b =也为二元一次方程组解的判别式。

相关文档
相关文档 最新文档