文档库 最新最全的文档下载
当前位置:文档库 › 双速电动机变速控制电路

双速电动机变速控制电路

双速电动机变速控制电路
双速电动机变速控制电路

双速电动机变速控制电路

按时间原则组成的双速感应电动机控制电路

双速电动机是变极调速中最常见的一种形式,它是通过改变电动机定子绕组接线来改变极对数,从而改变电动机运行速度,其中定子绕组△形接线对应低速,而YY形接线对应高速。电路如下图:

[看图思路]

由电工学原理可知,电动机的转速与电动机的磁极对数有关,改变电动机的磁极对数即可改变其转速。对于笼形感应电动机来讲,可通过改变定子绕组的连接,即可改变定子绕组中电流流动的方向,形成不同的磁极对数,来改变电动机的转速。

双速电动机的定子绕组的每相由两个线圈连接而成,线圈之间有导线引出,如图(a)所示,

也就是说,定子绕组有6个引出端,即U1(W2)、V1(U2)、W1(V2)、U3、V3、W3。

图(b)、(c)为△/YY(4极/2极)定子绕组接线示意图。

其中(b)表示三相定子绕组按△形(U1、V1、W1接电源L1、L2、L3,而接线端U3、V3、W3悬空),此时每相绕组中的线圈①、②串联,电流方向如图(b)中虚线箭头所示,此时电动机以4极运行,为低速。若将电动机定子绕组的3个接线端子U3、V3、W3接三相交流电源,而将另外3 个引线U1、V1、W1连接在一起,则原来三相定子绕组的△形接线变为YY形接线,如图(c)所示,

此时每相绕组中的线圈①、②并联,电流方向如图中的实线箭头所示,于是电动机以2极高速运行。两种接线方式交换使磁极对数减少一半,其转速增加一倍。必须注意,从一种接法改为另一种接法时,为了保证旋转方向不变,应把电源相序反过来,如图(c)所示。

在电机控制原理图中,KM1

为电动机定子绕组△形接法连接接触器,KM2、KM3为定子绕组YY运转的控制电路。图(c)利用转换开关,置于“低速”位置时,电动机定子绕组联接接成△形,低速运行;置于“高速”位置时,电动机在△形联接下低速启动,然后自动加快投入YY形高速运转。

[看图实践]

(1)图(b)电路:

按下启动按钮SB2,使接触器KM1得电吸合并自锁,电动机定子绕组按△形联接低速启动运行,KM1的辅助动断触头KM1(13-15)断开,确保KM2、KM3不能得电,实现互锁;同时通电延时时间继电器KT也得电并自锁,一旦KT延时时间到,其延时断开的动断触头KT(9-11)断开,使KM1失电释放。低速启动运行停止,同时KM1的辅助动断触头KM1(13-15)复位闭合,而KT的延时闭合的动合触头KT(3-13)也闭合,使接触器KM2、KM3得电吸合并自锁,其主触头闭合,电动机便由低速自动转换为高速运行,实现了自动加速控制,其辅助动灿触头KM3(3-5)、KM2(5-7)断开,使KT失电释放,并确保KM1不能得电,实现互锁。

时间继电器KT自锁触头KT(7-9)的作用是,在KM1失电释放后,KT仍然保持有电,直至进入高速运行,即KM2、KM3得电后,KT才被失电,这样一方面使控制电路工作可靠,另一方面使KT只在换接过程中短时得电,减少KT线圈的能耗。

(2)图(c)电路

将转换开关SA置于“低速”位置,接触器KM1得电吸合,其主触头闭合,电动机在△形连接下低速运行;将SA置于“高速”位置,通电延时继电器KT得电,其瞬动动合触头KT(3-9)闭合,使接触器KM1得电吸合,电动机先连接成△形以低速启动,KM1的辅助动断触头KM1(13-15)断开,使KM2、KM3不能得电,实现互锁。

当KT延时时间到,其延时断开的动断触头KT(9-11)断开,使KM1辅助动断触头LM1(13-15)复位闭合;KT的延时闭合的动合触头KT(11-13)闭合,使KM2、KM3得电吸合,电动机连接成YY形自动由低速投入高速运行。KM2、KM3的辅助动断触头KM2(3-5)、KM3(5-7)断开,使KM1不能得电吸合,实现互锁。

电动机实现先低速后高速的控制,其目的是限制启动电流。

电器元件动作顺序为:

预置条件(选择开关SA选高速运行)

PLC控制的双速电动机的变速控制线路

a)继电接触控制

b)PLC的输入输出接线(I/O图)c)梯形图

X

d)指令程序

采用PLC控制的工作过程如下:

低速运行时,按下低速按钮SB2,输入继电器X401的常开触点闭合,Y430的线圈接通,其自锁接点闭合,联锁接点断开,接触器KM1获电吸合,电动机定子绕组作三角形联结,电动机低速运行。当要转为高速运行时,则按下高速起动按钮SB3,X402常闭接点断开Y430线圈回路,KM1失电释放,与此同时,X402常开接点闭合,与X400、X404、Y430的常闭接点,接通Y431的线圈回路并自锁,KM2获电吸合,Y431常开接点的闭合使Y432线圈回路接通,KM3也得电吸合,于是电动机定子绕组联结成双星形,此时电动机高速运行。KM2合上后KM3才得电合上(Y431线圈先接通,Y432才动作),这是为了避免KM3

合上时电流很大。按下停止按钮SB1时,X400常闭接点断开,使Y430或Y431和Y432线圈回路断开,相应的接触器KM1或KM2和KM3失电释放,主触头断开,电动机则停下来。同理,电动机过载时,热继电器常开触点闭合,X403或X404的常闭接点断开,使Y430或Y431和Y432线圈回路断开,进而使KM1或KM2和KM3失电释放,电动机得到保护。如果按下SB3,电动机高速运行,必要时再按SB2,电动机会转为低速运行。

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

电动机自动快速再起动电路图

电动机知识 匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员, 它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定

转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。 电磁制动器从通电到断电(或从断电到通电) 需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。 防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.wendangku.net/doc/9f413344.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

接触器控制的双速电动机电气原理图文档

自制各种PLC编程电缆 前言 随着可编程序控制器(PLC)在工业控制领域的广泛应用,PLC编程成了电气工程技术人员必须掌握的专业技能。可编程序控制器的品牌众多,欧、美、日、韩及台湾的PLC纷纷抢滩大陆,在给使用者提供了多种选择的同时,也给使用者带来了小小麻烦。由于不同品牌PLC的编程电缆互不通用,买一根原装电缆往往上千元。对于以学习为主要目的以及经常碰到不同品牌PLC的技术人员来说,如果能够有办法花较低的代价自制一根编程电缆,无疑为他们提供了方便。PLC虽然品牌众多,但各种品牌的PLC其编程接口不外乎几种型式,在PLC随机提供的技术手册里一般也都会提供编程口的引脚定义,这就为自制编程线提供了可能。下面我就PLC编程口的几种串行通信接口标准和物理结构,详细说明如何DIY一根适用的编程电缆。 二.PLC编程口的型式 编程电缆一端与PC的COM口相连,另一端与PLC的编程口相连,PC端的COM 口均为RS232C接口,DB-9针形插头。而PLC的编程口按接口标准一般可分为三种,即RS232、RS485、RS422 。按物理结构可分为五种,即八针圆口(DIN-8),九针D形口(DB-9),二十五针D形口(DB-25),RJ11口以及专用接口,其中以前两种居多,各接口引脚排列如图一所示。 图一

为了做好编程电缆,首先要大概了解一下这三种串行通信接口标准。RS-232、RS-422与RS-485是三种串行数据接口标准,接口标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,所以同样一种接口标准可以有不同的物理结构,如DB-9 、DB-25等。RS-232是PC机与通信工业中应用最广泛的一种串行接口,RS-232C总线标准设有25条信号线,包括一个主通道和一个辅助通道。多数情况下只使用主通道,常用九条信号线(九针D形口),各引脚定义如表一所示。对于一般双工通信,仅需几条信号线就可实现,如发送数据线TXD 和接收数据线RXD以及逻辑地线GND,RS232C只能点对点通讯,传输距离短,共模抑制能力差。 RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。它使用一对双绞线,将其中一根定义为A(TXD-/RXD-),另一根定义为B(TXD+/RXD+),不需要数字地线。速率在100kbps及以下时通信距离达1200米以上。RS-485 可以联网构成分布式系统,其允许最多并联32台驱动器和32台接收器。RS-485只能实现半双工通信。 RS-232接口引脚定义 25 针9 针缩写描述 2 3 TXD 发送数据 3 2 RXD 接收数据 4 7 RTS 请求发送 5 8 CTS 允许发送 6 6 DSR 通讯设备准备好 7 5 GND 信号地 8 1 CD 载波检测 20 4 DTR 数据终端准备好 22 9 RI 响铃指示器 表一 RS-422接口标准主要是为克服RS-232接口标准的通讯距离短和传输速率慢而建立

三相双速异步电动机控制电路

三相双速异步电动机控制电路

————————————————————————————————作者:————————————————————————————————日期:

一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 双速电机的变速原理是: 电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。 如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。 1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数; 2、在定子槽内嵌有两个不同极对数的独立绕组; 3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。 (一)双速电机定子接线图 三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

双速电机控制电路图

双速电机控制电路图 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p =1。 ∴转速比=2/1=2 控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、 W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM 2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。

电工实训报告——三速电动机控制

电工实训报告——三速电动机控制 一、实训目的: (1)了解三速电动机的结构及原理; (2)掌握三速电动机的接线和用9个灯泡代替三速电机的接线原理; (3)掌握三速电动机控制的动作原理; (4)掌握复杂的控制线路的接线; (5)掌握复杂的控制线路的故障检查方法。 二、实训原理: 1、电路分析: 如图所示: 三速电动机有两套在连接上独立的定子绕组,有三种不同的转速。当接触器KM1、KM2闭合时,电动机的绕组端头U1、U1、V1、W1(逆时针)接到电源的U、V、W相上,作“三角”连接,电动机低速运行;当接触器KM3闭合时,电动机的绕组端头U、V、W接到电源的U、V、W相上,作单“Y”连接,电动机中速运行;当接触器KM4、KM5闭合时,电动机的绕组端头U1、V1、W3经KM5短接,而端头U2、V2、W2(顺时针)接到电源的U、V、W想上,作双“Y”连接,电动机高速运行。电动机由“三角”连接变成双“Y”连接的变极原理与双速电动机相同,只是三速电动机时开口三角形,如果接成闭口三角形,那么电动机中速运行时,在闭口三角形中将产生环流,而开口三角形就不会。实训时,如果条件有限,可以采用9个灯泡来代替9个半绕组。 以下是简化图: 2、动作原理:

(1)低速运行: 按下SB1,KM1、KM2、KA得电,U1、U1、V1、W1(逆时针)接到电源的U、V、W相上,单“三角”运行,KA闭合,低速运行。(六个灯泡亮但是较暗) (2)中速运行: 按下SB2 ,KM1、KM2失电,KM3、KT得电,电动机作单“Y”运行,中速运行。(三个灯泡亮) (3)一段时间后,常闭KT断开,常开KT闭合,KM3、KT失电,KM4,KM5得电,绕组端头U1、V1、W3经KM5短接,而端头U2、V2、W2(顺时针)接到电源的U、V、W想上,作双“Y”连接,电动机高速运行。(六个灯泡亮) (4)停止:按下SB,KM4、KM5失电,所有触点恢复原来状态,6个灯泡灭。 三、实训步骤: 1、元器件检查: (1)用万用表的“二极管”档位检查接触器的主触点及辅助触点常开、常闭触点,当按下KM时,常开应闭合,常闭应断开。 (2)测量接触器、时间继电器线圈电阻值是否正常,时间继电器的线圈阻值约10KΩ左右。 (3)检查热继电器元件及常闭触头是否处于完好状态。 (4)测量电动机绕组的电阻值和六个灯泡的阻值是否正常。 (5)检查中间继电器的常开、常闭触点是否正常。 (6)检查按钮和复合按钮常开、常闭点,当按下时,常开应闭合,常闭应断开。 (7)检查熔断器两端,以确定其完好。 2、线路接线: (1)主电路接线图:

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

双速异步电机的调速控制线路

双速异步电机的调速控制线路 根据异步电动机转速公式:,当电源频率f 一定时,若改变电动机定子绕组的磁极对数P,就可使电动机转速改变。采用双速电机可改善机床的调速性能,简化变速机构,因此在车、铣、镗床中都有应用。常见的双速电动机的绕组有两种接线方式:Δ/YY 及Y/YY。 1.Δ/YY接法 图a)为双速电动机Δ/YY接法电路图。当绕组的1、2、3号出线端接电源,而使4、5、6号出线端悬空时,电机绕组接成三角形,每相绕组中有两个线圈串联,成四个极,电动机低速运转;当把1、2、3号端子短接,4、5、6号端子接电源时,则绕组为双星形,每相绕组中两个线圈并联,成两个极,电机作高速运转。 在三角形与双星形转换时,电动机输出功率分别为: 由于,所以。 由此可知,电机从Δ接法的低速运转变成YY接法的高速运转时,转速升高一倍,而功率只增加15%,所以这种调速方法可近似地看成恒功率调速。它很适合一般金届切削机床对调速的要求。 2.Y/YY接法 图b)为Y/YY接法,当电机转速增加一倍(YY接法)时,输出功率也增加一倍,属于恒转矩调速。它适用于电梯、起重饥、皮带运输机等要求恒转矩调速的场合。 3. 控制电路 图2.25为常用的双速电动机Δ/YY调速控制电路图,其中:KM1得电为低速,KM2得电为高速,KM3为短接接触器。

图a)用两个复合按钮SB2及SB3分别控制KM1及KM2、KM3,实现低速与高速的直接转换而无需经过停止状态。 图b)是用转换开关SA来选择低速或高速方式后,由按钮SB2发令启动电动机的控制电路。 图c)转换开关SA选择高、停、低速。当选择高速时,采用时间继电器KT,按时间原则自动控制电动机低速起动、经延时后转换到高速运行。 上述三个控制电路中,低速与高速之间都用接触器动断触头互锁,以防短路故障。 功率较小的双速电动机可采用图a)和图b)的控制方式;容量较大的双速电动机,宜可采用图c)的控制方式。

(建筑电气工程)接触器控制的双速电动机电气原理图精编

(建筑电气工程)接触器控制的双速电动机电气原理 图

自制各种PLC编程电缆 前言 随着可编程序控制器(PLC)在工业控制领域的广泛应用,PLC编程成了电气工程技术人员必须掌握的专业技能。可编程序控制器的品牌众多,欧、美、日、韩及台湾的PLC 纷纷抢滩大陆,在给使用者提供了多种选择的同时,也给使用者带来了小小麻烦。由于不同品牌PLC的编程电缆互不通用,买壹根原装电缆往往上千元。对于以学习为主要目的以及经常碰到不同品牌PLC的技术人员来说,如果能够有办法花较低的代价自制壹根编程电缆,无疑为他们提供了方便。PLC虽然品牌众多,但各种品牌的PLC其编程接口不外乎几种型式,在PLC随机提供的技术手册里壹般也都会提供编程口的引脚定义,这就为自制编程线提供了可能。下面我就PLC编程口的几种串行通信接口标准和物理结构,详细说明如何DIY壹根适用的编程电缆。 二.PLC编程口的型式 编程电缆壹端和PC的COM口相连,另壹端和PLC的编程口相连,PC端的COM 口均为RS232C接口,DB-9针形插头。而PLC的编程口按接口标准壹般可分为三种,即RS232、RS485、RS422。按物理结构可分为五种,即八针圆口(DIN-8),九针D形口(DB-9),二十五针D形口(DB-25),RJ11口以及专用接口,其中以前俩种居多,各接口引脚排列如图壹所示。 图壹

为了做好编程电缆,首先要大概了解壹下这三种串行通信接口标准。RS-232、RS-422和RS-485是三种串行数据接口标准,接口标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,所以同样壹种接口标准能够有不同的物理结构,如DB-9、DB-25等。 RS-232是PC机和通信工业中应用最广泛的壹种串行接口,RS-232C总线标准设有25条信号线,包括壹个主通道和壹个辅助通道。多数情况下只使用主通道,常用九条信号线(九针D形口),各引脚定义如表壹所示。对于壹般双工通信,仅需几条信号线就可实现,如发送数据线TXD和接收数据线RXD以及逻辑地线GND,RS232C只能点对点通讯,传输距离短,共模抑制能力差。 RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。它使用壹对双绞线,将其中壹根定义为A(TXD-/RXD-),另壹根定义为B(TXD+/RXD+),不需要数字地线。速率在100kbps及以下时通信距离达1200米之上。RS-485能够联网构成分布式系统,其允许最多且联32台驱动器和32台接收器。RS-485只能实现半双工通信。 RS-232接口引脚定义 25针9针缩写描述 23TXD发送数据 32RXD接收数据 47RTS请求发送 58CTS允许发送

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

三速电机

三速电动机是在双速电动机的基础上发展而来的。在三速电动机的定子槽内安放两套绕组,一套为三角形绕组,另一套是星形绕组。适当变换这两套绕组的联结方法,就可以改变电动机的磁极对数。使电动机具有高速、中速、和低速三种不同的转速。 三速电动机共有十个引出端子,它们的新旧文字符号对照为:U1(D1)、U 2(D4)、U3(D7)、U4(D11)、V1(D2)、V2(D5)、V4(D12)、W1(D3)、W2(D6)、W4(D13)。 一)三速电动机定子绕组的接法 低速、中速、高速,三种速度的电动机定子绕组接线方法,示于图21311中。

由图21311可知,三速电动机的接法为: 1)低速三角形接法是:U1(D1)接L1(A)相;V1(D2)接L2(B)相;W 1(D3)与U3(D7)短接后接L3(C)相;其余端子空着不接。 2)中速星形接法是:U4(D11)接L1(A)相;V4(D12)接L2(B)相;W 4(D13)接L3(C)相;其余端子空着不接。 3)高速双星形接法是:U1(D1)、V1(D2)、W1(D3)、U3(D7),四个接线端子短接起来;U2(D4)接L1(A)相;V2(D5)接L2(B)相、W2(D6)接L3(C)相;剩余的三个端子空着不接。 二)三速电动机的控制线路 三速电动机的新符号控制线路如图21312所示。

三速电动机的旧符号控制线路如图21313所示。 三速电动机的控制线路中的KM1与KM3(旧符号中的C1与C3)比较特殊。其中KM1需要具有四个主触头的接触器;而KM3则需要具有六个主触头的接触器。如果买不到多主触头的接触器时,可用两个接触器代替。 图21312三速电动机的控制线路部分的原理非常简单,它实际上就相当于三个正转控制线路的组合。 图21312三速电动机控制线路在各速度之间相互转换时都必须先按停止按钮SB1,然后再按动需转换速度的控制按钮。 二)三速电动机的自动加速控制线路 三速电动机的自动加速控制线路如图21314所示。

双速电机原理及接线图

双速电机接线图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n 1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p= 1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。 三、定子接线图如下 低速时绕组的接法高速时绕组的接法

电动机正反转控制电路图及其原理分析

如对您有帮助,请购买打赏,谢谢您! 正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示 图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

三速电动机控制电路

三速电动机的启动 YD系列变级多速三相异步电动机是全国统一设计的产品,主要用于要求多种转速的机械设备装置。它利用改变电动机定子绕组的接线以改变其极数的方法变速.具有随负载-的不同要求而有级地变化功率和转速的特性,从而达到功率的合理匹配和简化变速系统。电动机的转速有双速、三速、四速三种。当机械设备的合理转速为中低速时,由于电动机功率相应较小,所以可以有效节约电能。本文介绍三速电动机的启动控制电路。 YD系列多速电动机的功率容量最小的不到1kW,最大的70kW~80kW。启动时先从低速挡开始,然后根据设备对转速的要求,依次启动中速挡和高速挡。因低速启动时电动机功率较小,所以启动电流较小。因电动机已具有一定转速,后启动中、高速档时。启动电流也不是特别大。因此通常情况下,各挡启动电路无须采用降压限流启动方式。 YD系列三速电动机有9个接线端子,图是三相电源与电动机接线端子在不同转速时的连接关系,图中L1、L2和L3是三相380V电源,没有连线的端子在各自的转速状态下被悬空。图2和图3分别是启动电路的一次、二次电路图。启动前,绿灯HG点亮,指示控制电路正常。启动时,先按下低速启动按钮SB2,接触器KM1吸合动作.其主触点将三相电源接至电动机的U1、V1、W1端,由图1可见,电

动机在8极低速下启动运行。辅助触点KM1-1进行自保持:KM1-2接通中间继电器lKA的线圈回路,并由1KA一2对其自保持。1KA 的触点1KA-4切断绿灯HG电源,绿灯熄灭;触点1KA一1闭合.白灯HW点亮,指示电动机在8极低速下运行:触点1KA-3闭合.是允许电动机中速启动的信号。 如果低转速不能满足设备要求。可接着启动中速挡。按一下中速启动按钮SB3(SB3是具有动合和动断双触点的按钮),接触器KMl线圈断电释放,接触器KM2得电吸合,并由KM2-1保持。KM2的主触点将电源接至电动机的U2、V2、W2端,电动机在6极中速下启动运行。KM2-2接通中间继电器2KA的线圈回路,并由2KA-2对其自保持。2KA的触点2KA-5切断白灯HW电源,白灯熄灭;触点2KA -1闭合,黄灯HY点亮,指示电动机在6极中速下运行:触点2KA -3闭合,是允许电动机高速启动的信号。 如果需要更高的转速,可接着按压按钮SB4(SB4也是具有动合和动断双触点的按钮),之后接触器KM2线圈断电释放,接触器KM3、KM4同时得电吸合,并由KM3-2保持。KM3的主触点将电源接至电动机的U3、V3、W3端,KM4.的主触点将U1、V1、Wl端短接,这种接线效果如同图l中4极高速状态。KM3的辅助触点KM3-3使黄灯熄灭,KM3-1使红灯点亮,指示电动机在4极高速下启动运行。

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

相关文档
相关文档 最新文档