文档库 最新最全的文档下载
当前位置:文档库 › 《Matlab神经网络30个案例分析》基于pso算法优化的PID神经网络的系统控制算法

《Matlab神经网络30个案例分析》基于pso算法优化的PID神经网络的系统控制算法

《Matlab神经网络30个案例分析》基于pso算法优化的PID神经网络的系统控制算法
《Matlab神经网络30个案例分析》基于pso算法优化的PID神经网络的系统控制算法

for i=1:maxgen

i;

for j=1:sizepop

w=(wmax-wmin)*(i-1)/(maxgen)+wmin; %权值线性变化

V(j,:)=w*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:)); %速度更新

V(j,find(V(j,:)>Vmax))=Vmax; %小于最大速度

V(j,find(V(j,:)

%种群更新

pop(j,:)=pop(j,:)+0.5*V(j,:);

for k=1:45

if rand>0.95

pop(j,k)=0.3*rand; %自适应变异

end

end

pop(j,find(pop(j,:)>popmax))=popmax; %小于个体最大值

pop(j,find(pop(j,:)

%适应度值

fitness(j)=fun(pop(j,:));

end

for j=1:sizepop

%个体极值更新

if fitness(j)

gbest(j,:) = pop(j,:);

fitnessgbest(j) = fitness(j);

end

%全局极值更新

if fitness(j)

zbest = pop(j,:);

fitnesszbest = fitness(j);

end

end

%记录最优适应度值

yy(i)=fitnesszbest;

end

最优个体控制

figure(1)

plot(yy)

title('粒子群算法进化过程');

xlabel('进化代数');ylabel('适应度');

individual=zbest;

w11=reshape(individual(1:6),3,2);

w12=reshape(individual(7:12),3,2);

w13=reshape(individual(13:18),3,2);

w21=individual(19:27);

w22=individual(28:36);

w23=individual(37:45);

rate1=0.006;rate2=0.001; %学习率

k=0.3;K=3;

y_1=zeros(3,1);y_2=y_1;y_3=y_2; %输出值

u_1=zeros(3,1);u_2=u_1;u_3=u_2; %控制率

h1i=zeros(3,1);h1i_1=h1i; %第一个控制量

h2i=zeros(3,1);h2i_1=h2i; %第二个控制量

h3i=zeros(3,1);h3i_1=h3i; %第三个空置量

x1i=zeros(3,1);x2i=x1i;x3i=x2i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i; %隐含层输出

%权值初始化

k0=0.03;

%值限定

ynmax=1;ynmin=-1; %系统输出值限定

xpmax=1;xpmin=-1; %P节点输出限定

qimax=1;qimin=-1; %I节点输出限定

qdmax=1;qdmin=-1; %D节点输出限定

uhmax=1;uhmin=-1; %输出结果限定

for k=1:1:200

%--------------------------------网络前向计算--------------------------%系统输出

y1(k)=(0.4*y_1(1)+u_1(1)/(1+u_1(1)^2)+0.2*u_1(1)^3+0.5*u_1(2))+0.3*y_1(2); y2(k)=(0.2*y_1(2)+u_1(2)/(1+u_1(2)^2)+0.4*u_1(2)^3+0.2*u_1(1))+0.3*y_1(3); y3(k)=(0.3*y_1(3)+u_1(3)/(1+u_1(3)^2)+0.4*u_1(3)^3+0.4*u_1(2))+0.3*y_1(1); r1(k)=0.7;r2(k)=0.4;r3(k)=0.6; %控制目标

%系统输出限制

yn=[y1(k),y2(k),y3(k)];

yn(find(yn>ynmax))=ynmax;

yn(find(yn

%输入层输出

x1o=[r1(k);yn(1)];x2o=[r2(k);yn(2)];x3o=[r3(k);yn(3)];

%隐含层

x1i=w11*x1o;

x2i=w12*x2o;

x3i=w13*x3o;

%比例神经元P计算

xp=[x1i(1),x2i(1),x3i(1)];

xp(find(xp>xpmax))=xpmax;

xp(find(xp

qp=xp;

h1i(1)=qp(1);h2i(1)=qp(2);h3i(1)=qp(3);

%积分神经元I计算

xi=[x1i(2),x2i(2),x3i(2)];

qi=[0,0,0];qi_1=[h1i(2),h2i(2),h3i(2)];

qi=qi_1+xi;

qi(find(qi>qimax))=qimax;

qi(find(qi

h1i(2)=qi(1);h2i(2)=qi(2);h3i(2)=qi(3);

%微分神经元D计算

xd=[x1i(3),x2i(3),x3i(3)];

qd=[0 0 0];

xd_1=[x1i_1(3),x2i_1(3),x3i_1(3)];

qd=xd-xd_1;

qd(find(qd>qdmax))=qdmax;

qd(find(qd

h1i(3)=qd(1);h2i(3)=qd(2);h3i(3)=qd(3);

%输出层计算

wo=[w21;w22;w23];

qo=[h1i',h2i',h3i'];qo=qo';

uh=wo*qo;

uh(find(uh>uhmax))=uhmax;

uh(find(uh

u1(k)=uh(1);u2(k)=uh(2);u3(k)=uh(3); %控制律

%--------------------------------------网络反馈修正----------------------%计算误差

error=[r1(k)-y1(k);r2(k)-y2(k);r3(k)-y3(k)];

error1(k)=error(1);error2(k)=error(2);error3(k)=error(3);

J(k)=0.5*(error(1)^2+error(2)^2+error(3)^2); %调整大小

ypc=[y1(k)-y_1(1);y2(k)-y_1(2);y3(k)-y_1(3)];

uhc=[u_1(1)-u_2(1);u_1(2)-u_2(2);u_1(3)-u_2(3)];

%隐含层和输出层权值调整

%调整w21

Sig1=sign(ypc./(uhc(1)+0.00001));

dw21=sum(error.*Sig1)*qo';

w21=w21+rate2*dw21;

%调整w22

Sig2=sign(ypc./(uh(2)+0.00001));

dw22=sum(error.*Sig2)*qo';

w22=w22+rate2*dw22;

%调整w23

Sig3=sign(ypc./(uh(3)+0.00001));

dw23=sum(error.*Sig3)*qo';

w23=w23+rate2*dw23;

%输入层和隐含层权值调整

delta2=zeros(3,3);

wshi=[w21;w22;w23];

for t=1:1:3

delta2(1:3,t)=error(1:3).*sign(ypc(1:3)./(uhc(t)+0.00000001));

end

for j=1:1:3

sgn(j)=sign((h1i(j)-h1i_1(j))/(x1i(j)-x1i_1(j)+0.00001));

end

s1=sgn'*[r1(k),y1(k)];

wshi2_1=wshi(1:3,1:3);

alter=zeros(3,1);

dws1=zeros(3,2);

for j=1:1:3

for p=1:1:3

alter(j)=alter(j)+delta2(p,:)*wshi2_1(:,j);

end

end

for p=1:1:3

dws1(p,:)=alter(p)*s1(p,:);

end

w11=w11+rate1*dws1;

%调整w12

for j=1:1:3

sgn(j)=sign((h2i(j)-h2i_1(j))/(x2i(j)-x2i_1(j)+0.0000001));

end

s2=sgn'*[r2(k),y2(k)];

wshi2_2=wshi(:,4:6);

alter2=zeros(3,1);

dws2=zeros(3,2);

for j=1:1:3

for p=1:1:3

alter2(j)=alter2(j)+delta2(p,:)*wshi2_2(:,j);

end

end

for p=1:1:3

dws2(p,:)=alter2(p)*s2(p,:);

end

w12=w12+rate1*dws2;

%调整w13

for j=1:1:3

sgn(j)=sign((h3i(j)-h3i_1(j))/(x3i(j)-x3i_1(j)+0.0000001));

end

s3=sgn'*[r3(k),y3(k)];

wshi2_3=wshi(:,7:9);

alter3=zeros(3,1);

dws3=zeros(3,2);

for j=1:1:3

for p=1:1:3

alter3(j)=(alter3(j)+delta2(p,:)*wshi2_3(:,j));

end

end

for p=1:1:3

dws3(p,:)=alter2(p)*s3(p,:);

end

w13=w13+rate1*dws3;

%参数更新

u_3=u_2;u_2=u_1;u_1=uh;

y_2=y_1;y_1=yn;

h1i_1=h1i;h2i_1=h2i;h3i_1=h3i;

x1i_1=x1i;x2i_1=x2i;x3i_1=x3i;

end

time=0.001*(1:k);

figure(2)

subplot(3,1,1)

plot(time,r1,'r-',time,y1,'b-');

title('PID神经元网络控制');

ylabel('被控量1');

legend('控制目标','实际输出','fontsize',12);

subplot(3,1,2)

plot(time,r2,'r-',time,y2,'b-');

ylabel('被控量2');

legend('控制目标','实际输出','fontsize',12);

axis([0,0.2,0,1])

subplot(3,1,3)

plot(time,r3,'r-',time,y3,'b-');

xlabel('时间/s');

ylabel('被控量3');

legend('控制目标','实际输出','fontsize',12); figure(3)

plot(time,u1,'r-',time,u2,'g-',time,u3,'b'); title('PID神经网络提供给对象的控制输入');

xlabel('时间'),ylabel('控制律');

legend('u1','u2','u3');grid

figure(4)

plot(time,J,'r-');

axis([0,0.1,0,0.5]);grid

title('网络学习目标函数J动态曲线');

xlabel('时间');ylabel('控制误差');

web browser https://www.wendangku.net/doc/9a708632.html,

Warning: Ignoring extra legend entries. Warning: Ignoring extra legend entries. Warning: Ignoring extra legend entries.

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

matlab遗传算法优化神经网络权值教程

matlab遗传算法优化神经网络权值教程第4章nnToolKit神经网络工具包 4.1 nnToolKit简介 神经网络工具包是基于MATLAB神经网络工具箱自行开发的一组神经网络算法函数库 可在MATLAB环境下均独立运行,也可打包成DLL组件,直接被VB、VC、 C++ 、C#、JAVA或其他支持COM的语言所调用 本工具包中增加了一些MATLAB中没有的神经网络算法,如模糊神经网络、小波神经网络、遗传神经网络算法等 4.2nnToolKit函数库 4.2nnToolKit 函数库 4.2nnToolKit函数库 例4-1 对ch4\nnToolKit工具箱\lmnet文件夹中文件(input_para1.txt和output_para1.txt)提供的专家样本数据进行网络训练。%此为BP网络训练程序

function retstr = LmTrain(ModelNo,NetPara,TrainPara,InputFun,OutputFun,DataDir)NNTWARN OFF retstr=-1; ModelNo=‘1’;NetPara(1)=7;Ne tPara(2)=1; NetPara(3)=6;NetPara(4)=10; 4.2nnToolKit函数库 4.2nnToolKit函数库 例4-2 输入一组测试样本数据,对例4-1训练的网络模型进行仿真 %此为一仿真程序%首先读入权域值参数 function retdouble = LmSimu(ModelNo,NetPara,SimulatePara,InputFun,OutputFun,DataDir)NNTWA RN OFF %%%% 输入参数赋值开始 %%%%%%%%%%%%%%%%%%%%%%%% 这 部分代码主要是方便用户调试用ModelNo=‘1’; NetPara(1)=7; 4.2nnToolKit函数库

遗传算法在BP神经网络优化中的应用.

遗传算法在 BP 神经网络优化中的应用 2O世纪80年代后期,多机器人协作成为一种新的机器人应用形式日益引起国内外学术界的兴趣与关注。一方面,由于任务的复杂性,在单机器人难以完成任务时,人们希望通过多机器人之间的协调与合作来完成。另一方面,人们也希望通过多机器人间的协调与合作,来提高机器人系统在作业过程中的效率。1943年,Maeullocu和 Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展、停滞、再发展的过程,时至今日正走向成熟,在广泛领域里得到了应用,其中将人工神经网络技术应用到多机器人协作成为新的研究领域。本文研究通过人工神经网络控制多机器人完成协作搬运的任务-3 J,并应用遗传算法来对神经网络进行优化。仿真结果表明,经过遗传算法优化后的搬运工作效率显著提高,误差降低。 1 人工神经网络 ANN)的基本原理和结构 人工神经网络(Artiifcial Neural Network,ANN)) 是抽象、简化与模拟大脑神经结构的计算模型,又称并行分布处理模型 J。ANN 由大量功能简单且具有自适应能力的信息处理单元——人工神经元按照大规模并行的方式通过一定的拓扑结构连接而成。ANN拓扑结构很多,其中采用反向传播(Back-Propa- gation,BP)算法的前馈型神经网络(如下图1所示),即BP人工神经网络,是人工神经网络中最常用、最成熟的神经网络之一。 BP网络模型处理信息的基本原理是:输入信号x;通过中间节点(隐层点 )作用于出节点,经过非线形变换,产生输出信Yk,网络训练的每个样本包括输入向量 x和期望输出量 T,网络输出值Y与期望输出值T之间的偏差,通过调整输入节点与隐层节点的联接强度取值w;;和隐层节点与输出节点之间的联接强度Y以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数 (权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

改进的BP神经网络算法(C语言源码)

#include "stdio.h" #include "stdlib.h" #include "time.h" #include "math.h" /********************************************* inpoints 为输入神经元个数,可改变 outpoints为输出神经元个数 defaultpoints为隐层神经元个数 datagrough为样本数据个数 ********************************************** ******以下数据定义可以修改*****/ #define A 0 #define a 1 #define b 1 #define c 1 #define ALFA 0.85 #define BETA 0.2 //学习率0~1 #define Total 20000 #define inpoints 9 #define outpoints 5 #define defaultpoints 28 #define datagrough 44 #define forecastdata 4 /**********定义所需变量********/ double InpointData[datagrough][inpoints],OutpointData[datagrough][outpoints]; /* 输入输出数据*/ double InpointData_MAX[inpoints],InpointData_MIN[inpoints]; /* 每个因素最大数据*/ double OutpointData_MAX[outpoints],OutpointData_MIN[outpoints]; /* 每个因素最小数据*/ double w[defaultpoints][inpoints],limen[defaultpoints],v[outpoints][defaultpoints]; /* 连接权值、阈值*/ double dlta_w[defaultpoints][inpoints],dlta_limen[defaultpoints],dlta_v[outpoints][defaultpoints]; /* 连接权、阈值修正值*/ double defaultOutpoint[defaultpoints],Outpoint_dp[outpoints],Outpoint_ep[datagrough]; /**************************读数据文件******************************/ void ReadData() { FILE *fp1,*fp2; int i,j; if((fp1=fopen("D:\\data\\训练输入.txt","r"))==NULL) {

08第八章___神经网络的参数优化设计方法

1 第8章 神经网络的参数优化设计 在神经网络的泛化方法中,研究最多的是前馈神经网络的结构优化设计方法(剪枝算法、构造算法及进化算法等,我们将在以后各章讨论)。除了结构设计,其余前馈神经网络的泛化方法还有主动学习、最优停止法、在数据中插入噪声、神经网络集成及提示学习方法等,由于这些方法中神经网络的结构是固定的,因此神经网络性能是通过参数优化改善的,我们称这些方法为神经网络的参数优化设计方法。本章介绍最主要的参数优化设计方法,并给出了每种方法的算法实现和仿真例子。 8.1 主动学习 8.1.1 原理 按照学习机器对训练样本的处理方式,可将学习方式分为两类:被动学习方式和主动学习方式。被动学习是常用的学习方式,常被称为“从样本中学习” (Learning from samples ),该方式被动地接受训练样本,并通过学习从这些样本中提取尽可能多的信息。与被动学习相反,主动学习属于更高层次的、具有潜意识的学习。主动学习对训练样本的选择是主动的,通常通过对输入区域加以限制,有目的地在冗余信息较少的输入区域进行采样,并选择最有利于提高学习机器性能的样本来训练分类器,从而提高了整个训练样本集的质量。由上一章的讨论,训练样本质量对神经网络的泛化能力有极大影响,甚至超过网络结构对泛化能力的影响。因此采用主动学习方法,是改进神经网络泛化能力的一个重要方法。 主动学习机制大部分用于分类或概念学习[Baum1991,HwCh1990,SeOp1992]。在单概念学习中,Mitchell[Mitch1982]关于版本空间(Version Space)的论述有着较大的影响。下面,我们先简要介绍一下这一理论。 如果X 为一线性空间,概念c 定义为X 中点的集合。对目标概念t ,训练样本可写为()()x x t ,,其中X ∈x 为样本输入,()x t 为对x 的分类。如果t ∈x ,则()1=x t ,称()()x x t ,为t 的正样本;如果t ?x ,则()0=x t ,此时称()()x x t ,为t 的负样本。显然,对线性空间内的任何两个可分概念1c 和2c ,如果()()x x 1,c 是1c 的正样本(负样本),则()()x x 11,c ?必然是2c 的负样本(正样本),即任意两个可分概念的正负样本之间可以互相转换。如果某概念c 对x 的分类与目标概念对其的分类()x t 相等,即()()x x t c =,

基于遗传算法的BP神经网络优化算法

案例3:基于遗传算法的BP神经网络优化算法 ******************************************************************************* **** 论坛申明: 1 案例为原创案例,论坛拥有帖子的版权,转载请注明出处(MATLABSKY论坛,《MATLAB 智能算法30个案例分析》 2 案例内容为书籍原创内容,内容为案例的提纲和主要内容。 3 作者长期驻扎在板块,对读者和会员问题有问必答。 4 案例配套有教学视频和完整的MATLAB程序,MATLAB程序在购买书籍后可以自由下载,教学视频需要另外购买。 MATLAB书籍预定方法和优惠服务:https://www.wendangku.net/doc/9a708632.html,/thread-9258-1-1.html 点击这里,预览该案例程序:https://www.wendangku.net/doc/9a708632.html,/znsf/view/s3/GABPMain.html 已经预定的朋友点此下载程序源代码:https://www.wendangku.net/doc/9a708632.html,/thread-11921-1-1.html * ******************************************************************************* ** 1、案例背景 BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP 神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如: ①、学习收敛速度太慢; ②、不能保证收敛到全局最小点; ③、网络结构不易确定。 另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。 本节以某型号拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的BP神经网络进行齿轮箱故障的诊断。

神经网络学习算法的过拟合问题及解决方法

神经网络学习算法的过拟合问题及解决方法 李俭川 秦国军 温熙森 胡茑庆 (国防科技大学机电工程与自动化学院 长沙,410073) 摘要 针对反向传播学习算法及其改进算法中出现的过拟合问题,探讨了三种解决方法:调整法、提前停止法和隐层节点自生成法,并用实例对三种方法进行了验证和比较。其中,调整法和提前停 止法针对一个较大的网络可以解决过拟合问题,而隐层节点自生成法的提出既能避免过拟合问 题,又能获得最少神经元网络结构。这三种方法有效地解决了在神经网络学习过程中的过拟合问 题,提高了网络的适应性。它们不仅适合于函数逼近,而且可以推广到其他网络结构等应用领域。关键词 神经网络 计算机 BP 算法 过拟合 均方误差 自生成 故障诊断 中图分类号 T H 165.3神经网络已经在模式分类、机器视觉、机器听觉、智能计算、自动控制、故障诊断、信息处理、地震勘探、通信、雷达和声纳等领域有着十分广泛的应用前景,并随着计算机技术和信号处理技术的发展而发展。应用神经网络必须解决两个问题:模型和算法。现有的神经网络模型已达上百种[1] ,应用最多的是Hopfield 神经网络、多层感知器、自组织神经网络、概率神经网络以及它们的改进型。自Rumellhart D E,H inton 和Williams 提出误差反向传播算法(即BP 算法),解决了神经网络在引入隐层节点后的学习(或训练)问题后,已经发展了许多的改进学习算法[1],如快速下降法、共轭梯度法、一维搜索法及Lev enberg -Mar quardt 法等,其收敛速度很快,能满足实时性要求,但也存在着一些问题。1 学习算法及其过拟合问题 BP 算法及其改进算法是目前应用最广泛的学习算法,尽管不能证明这类算法能象单层感知器一样收敛,但是对许多问题的解决是成功的[2]。实际上,BP 算法是把一组样本的输入输出问题,变为一个非线性优化问题,它使用了优化技术中最普通的一种梯度下降法,用迭代运算求解权值并相应于学习记忆问题,加入隐层节点可使优化问题的可调参数增加,这样可得到更精确的解。要应用学习算法对网络进行训练,首先需要确定网络的结构,即输入、输出层神经元数目和隐层数及其神经元数目。 如何适宜地选取隐含层神经元的数目还没有确定的规律可以指导,但是,隐含层神经元数目是否合适对整个网络是否能够正常工作具有重要的甚至是决定性的意义。隐含层神经元数第22卷第4期2002年12月 振动、测试与诊断Jo ur nal of Vibr ation,M easur em ent &Diag no sis V o l.22No.4 D ec.2002 国家自然科学基金资助项目(编号:59775025)。 收稿日期:2001-07-09;修改稿收到日期:2001-12-03。

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

遗传算法优化BP神经网络的实现代码-共6页

%读取数据 data=xlsread('data.xls'); %训练预测数据 data_train=data(1:113,:); data_test=data(118:123,:); input_train=data_train(:,1:9)'; output_train=data_train(:,10)'; input_test=data_test(:,1:9)'; output_test=data_test(:,10)'; %数据归一化 [inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_tr ain,output_train); %对p和t进行字标准化预处理 net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm'); net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.00001; %net.trainParam.show=NaN %网络训练 net=train(net,inputn,outputn); %数据归一化 inputn_test = tramnmx(input_test,mininput,maxinput); an=sim(net,inputn); test_simu=postmnmx(an,minoutput,maxoutput); error=test_simu-output_train; plot(error) k=error./output_train

基于神经网络的优化计算实验报告

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

遗传算法优化BP神经网络权值和阈值(完整版)

https://www.wendangku.net/doc/9a708632.html,/viewthread.php?tid= 50653&extra=&highlight=%E9%81%97%E4%BC%A0%E7% AE%97%E6%B3%95&page=1 Matlab遗传算法优化神经网络的例子(已调试成功)最近论坛里问到用遗传算法优化神经网络问题的人很多,而且论坛里有很多这方面的代码。但可惜的是所有代码都或多或少有些错误!最郁闷的莫过于只有发帖寻求问题答案的探索者,却很少有对问题进行解答的victor。本人在论坛里看到不少会员对能运行成功的遗传算法优化神经网络例子的需求是多么急切,我也深有感触!现把调试成功的一个例子贴出来,供大家参考!(本例子是基于一篇硕士论文里的代码为蓝本改 编的,此处就不再注明作者了。)遗传算法优化bp.rar (3.34 KB) 注:该代码是由会员“书童”耗费了一整天的时间调试成功的,在此再次对我们的“书童”同学乐于助人的高尚品德致敬,并对其深表感谢!PS:参考会员“ilovexyq”意见,先对其做以补充。该网络为遗传算法 优化bp的一个典型例子,输入为7,输出为7,隐层为25。该网络输入输出数据就是为了说明问题而随便加的,没有实际意义。如用于自己的实际问题,把数据替换并根据需要改一下网络结构就行了。

PS:如有问题,请先阅读此贴: https://www.wendangku.net/doc/9a708632.html,/thread-52587-1-1.html### [本帖最后由 yuthreestone 于 2009-10-15 10:52 编辑] 搜索更多相关主题的帖子: 调试例子算法Matlab神经网络 https://www.wendangku.net/doc/9a708632.html,/thread-52587-1-1.html 遗传算法优化BP神经网络权值和阈值(完整版) 会员renjia前一段时间分享的程序,地址如下: https://www.wendangku.net/doc/9a708632.html,/viewthread.php?tid=50653&extra=&highlight=% E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95&page=1: (1)renjia提供的程序存在一些小错误,主要是设计的bp网络是两个隐含层,但编码的时候只有一个隐含层。修改后的程序将bp改成了单隐层以确保一致;(2)很多会员不知道该如何运行程序,各个m文件之间的关系弄不清楚。修改后的程序共包含三个m文件: 其中,主程序为ga_bp.m,适应度函数为gabpEval.m,编解码子函数为gadecod.m 注意:使用前需安装gaot工具箱(见附件),上述三个文件需放在同一文件夹中且将该文件夹设置为当前工作路径。 运行程序时只需运行主程序ga_bp.m即可。 (3)此程序仅为示例,针对其他的问题,只需将数据修改即可,但需注意变量名保持一致,尤其是全局变量修改时(在gadecod.m和gabpEval.m中也要修改)(4)gaot工具箱如何安装? 点击file选择set path,在弹出的对话框中选择add folder,将gaot文件夹添加进去,然后点击save保存即可。

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的 Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP 算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},' trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutatio n',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY); 程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

神经网络和遗传算法的结合

遗传算法与神经网络的结合 李敏强 徐博艺 寇纪淞 摘要 阐明了遗传算法和神经网络结合的必要性和可行性,提出用多层前馈神经网络作为遗传搜索的问题表示方式的思想。用遗传算法和神经网络结合的方法求解了短期地震预报问题,设计了用遗传算法训练神经网络权重的新方法,实验结果显示了遗传算法快速学习网络权重的能力,并且能够摆脱局部极点的困扰。 关键词 遗传算法 进化计算 神经网络 On the Combination of Genetic Algorithms and Neural Networks Li Minqiang Xu Boyi Kou Jisong (Institute of Systems Engineering, Tianjin University, Tianjin 300072) Abstract In this paper, we demonstrate the necessity and possibility of combining neural network (NN) with GAs. The notion of using multilayered feed forward NN as the representation method of genetic and the searching technique is introduced. We combine GA and NN for solving short term earthquake forecasting problem, design a novel method of using GAs to train connection weights of NN.The empirical test indicates the capability of the new method in fast learning of NN and escaping local optima. Keywords genetic algorithms; evolutionary computation; neural networks 1引言 智能可以分为三个层次:高层次的是生物智能(BI),其次是人工智能(AI), 处于低层次的是计算智能(CI)。 计算智能是国际上新近提出的学科概念,在计算智能中,计算的概念是传统计算概念的拓展,计算对象不仅局限于数和字符,运算符号也不再局限于加减乘除等运算,在这个范畴内的加减乘除也需赋于新的含义。但一般来说,AI偏重于逻辑推理,而CI则偏重于数值计算。 目前,计算智能正处于迅猛发展的阶段,其主要技术包括模糊技术、神经网络、进化计算等[5]。这几项技术各自均有了数十年的历史,但当时这些方法并未受到足够的重视,一是当时这些方法还不很成熟,二是受当时计算机软硬件的限制,而这些方法一般需要较大的计算量,难以取得实际应用。随着计算机技术的发展和普及,它们在最近十年得到了突飞猛进的发展,引起了诸多领域专家学者的关注,成为一个跨学科的研究热点。近年来,这些方法呈互相融合的趋势[3],它们之间的相互补充可增强彼此的能力,从而获得更有力的表示和解决实际问题的能力。如对模糊神经网络、模糊遗传算法、模糊分类器系统、用遗传算法优化模糊系统的隶属度函数及神经网络的进化设计方法等的研究都

关于卷积神经网络损失函数的改进算法

第39卷 第1期 高 师 理 科 学 刊 Vol. 39 No.1 2019年 1月 Journal of Science of Teachers′College and University Jan. 2019 文章编号:1007-9831(2019)01-0023-05 关于卷积神经网络损失函数的改进算法 徐振忠 (广东工业大学 应用数学学院,广东 广州 510520) 摘要:经典的卷积神经网络模型损失函数在设计时只考虑输出与标签之间的比较,没有涉及到图片之间的差异.为了提高卷积神经网络模型提取特征的差异,提出了基于Triplet network模型约束的卷积神经网络模型,这种方法提高了卷积神经网络提取有效特征的能力,减少数据集数量对于模型的影响. 在MNIST数据集和cifar-10数据集上进行实验,提出的新模型在这2个数据集上比经典的卷积神经网络模型识别效果更好. 关键词:卷积神经网络;Triplet network模型;反馈调节 中图分类号:TP391文献标识码:A doi:10.3969/j.issn.1007-9831.2019.01.007 An improved algorithm for the loss function of convolution neural networks XU Zhen-zhong (School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China) Abstract:The loss function of classical convolution neural network model only considers the comparison between output and label,but does not involve the difference between pictures.In order to improve the difference of feature extraction from convolutional neural network model,proposes a convolution neural network model based on Triplet network model constraint.This method improves the ability of convolution neural network in extracting effective features and reduces the infection due to the dataset′ number.MINIST datasets and cifar-10 datasets will be tested for certifying the effectiveness of this methed,and the result shows that the new model is better than the classical convolutional neural network model in recognition of these two datasets. Key words:convolution neural network;Triplet network model;back propagation 1980年,Fukushima根据Huble和Wiesel[1]的研究提出了多层感知机[2].多层感知机为卷积神经网络的出现奠定了重要的基础.Lecun[3]等在Fukushima的研究基础上采用BP算法建立了卷积神经网络(CNN)模型并运用到手写字符的识别上,并取得了一定的效果,该模型被称为LeNet-5.LeNet-5是最基本的CNN 模型,该模型包括输入层、卷积层、池化层、全连接层和输出层.后面的研究者大多在这个模型的基础上进行相应的改进.目前,对于经典CNN模型的改进大体从5个方面进行:(1)CNN结构的层数,如增加卷积层和池化层的数目,改变它们的顺序[4-5];(2)卷积核的大小和连接方式,如选择大小不同的卷积核进行组合[6-7];(3)池化的方式,如最大值池化和均值池化[8-9];(4)激活函数的选择,如sigmoid函数、tanh 函数和ReLU函数[10-11];(5)损失函数的选择,如采用不同的损失函数或在损失函数上加上相应的正则约 束[12-13].本文在经典CNN模型损失函数的基础上加了Triplet Network[14]的正则约束,得到基于Triplet network 模型约束的深度学习算法CNN模型(简称为TCNN).在经典CNN模型的损失函数中加入同类和异类的2 收稿日期:2018-10-05 作者简介:徐振忠(1992-),男,广东雷州人,在读硕士研究生,从事深度学习和图像识别及处理研究.E-mail:745007440@https://www.wendangku.net/doc/9a708632.html,

神经网络与遗传算法【精品毕业设计】(完整版)

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

小脑模型神经网络改进算法的研究

第23卷 第4期 1997年7月自 动 化 学 报AC T A AU TO M A T ICA SIN ICA V o l.23,N o.4Jul,1997 小脑模型神经网络改进算法的研究 1) 刘 慧 许晓鸣 张钟俊 (上海交通大学自动化系 上海 200030)摘 要 该文介绍了小脑模型神经网络的基本原理,在分析Albus [1]算法的基础上,指出了 该算法在批量学习时的缺陷.针对批量学习提出了相应的改进算法,并证明了该算法的收敛 性,仿真结果表明了该改进算法具有收敛速度快的特点. 关键词 神经网络,杂凑编码,联想网络,CM AC.1) 留学回国人员科研基金资助课题. 收稿日期 1995-04-101 引言 自1982年H o pfield 发表了关于反馈神经网络的文章以及Rumelha rt 等人发表了专著PDP 以来,在世界范围内掀起了研究神经网络的热潮.近年来,人工神经元网络和人工智能在控制界中的应用研究正在兴起和蓬勃发展,特别是神经网络具有充分逼近任意复杂非线性函数的能力,为解决复杂的非线性问题开辟了一条控制的具有特殊联想功能的神经网络CM AC(Cerebellar Mo del Articula tion Co ntroller). CM AC 神经网络是由J .S .Albus [2]在1975年提出的.它与Perceptro n 网相似,虽然 从每个神经元看其关系是一种线性关系,但从结果总体看CM AC 模型适合于非线性的映射关系.同时它的算法是十分简单的δ算法,所以速度很快.它把输入在一个多维状态空间中的量,映射到一个比较小的有限区域.只要对多维状态空间中部分样本进行学习,就可达到轨迹学习和控制的解,因此特别适合于机器人的轨变学习控制,实时学习控制,非线性函数映射,以及模式识别等领域.CM AC 具有自适应的作用,并且易于硬件化实现.图1 CM AC 网格的模型结构 2 CM AC 的基本原理 CM AC 的简单结构模型如图1 所示,输入空间S 由所有可能的输 入向量S i 组成,CM AC 网络将其 接受到的任何输入,通过感知器M 映射到一个很大的联想存储器A 中的c 个单元.输入空间邻近的两 个输入向量在存储器A 中有部分重叠的单元;距离越近,重叠越多.

相关文档
相关文档 最新文档