文档库 最新最全的文档下载
当前位置:文档库 › 胶原蛋白酶的研究进展

胶原蛋白酶的研究进展

胶原蛋白酶的研究进展
胶原蛋白酶的研究进展

胶原蛋白酶的研究进展三亿文库

设为首页收藏本站

首页考试资料幻灯片工程技术公务员考试小学教学中学教学大学教学外语资料

36胶原蛋白酶的研究进展

胶原蛋白酶的研究进展;摘要:胶原蛋白特有的三股螺旋结构使其难于被人体吸;关键词:胶原蛋白酶,作用机理,影响因素;Abstract:Thenutritionala;

Keywords:collagenproteas;胶原蛋白是人体内含量最多、分布最广泛的蛋白质,是;加[4][1-3]和生物活性等特性,被愈来愈多的;[5-6]抗疲劳等生理调节功能的小肽,是极具发展

胶原蛋白酶的研究进展

摘要:胶原蛋白特有的三股螺旋结构使其难于被人体吸收,将胶原蛋白水解为胶原多肽后,可显著提高其营养及生理功能,胶原蛋白酶是一种价值很高的蛋白酶种。本文介绍了胶原蛋白酶的定义、选择、影响因素。作用机理等,并展望其研究方向。

关键词:胶原蛋白酶,作用机理,影响因素

Abstract: The nutritional and physiological function of collagen protein can be significantly improved via chemical or enzymatichydrolysis,as the collagen protein was difficult to be absorbed by human body due to the triple helical characteristic molecules structure. Collagen protease is a kind of high value of protease. In this paper, introduces the definition of collagen enzyme, selection, influence factors, mechanism etc. The future development direction it was also prospected.

Key words: collagen protease, mechanism, influence factors

胶原蛋白是人体内含量最多、分布最广泛的蛋白质,是一种与组织和器官功能密切相关的功能性蛋白。胶原蛋白的低免疫原性、生物相容性、生物降解性

加[4][1 - 3]和生物活性等特性,被愈来愈多的消费者所认识。胶原蛋白制品已被广泛应用于食品、保健食品、化妆品、医药等领域,市场需求急剧增。天然胶原蛋白经蛋白酶水解后,可得到具有抗氧化、降血压、降血脂、免疫调节、激素调节、

[5-6]抗疲劳等生理调节功能的小肽,是极具发展前景的功能因子,也是当前医药、食品界最热门的研究课题之一。

胶原蛋白具有独特的三股超螺旋结构,三条链相互平行而且由链间氢键相连,具有十分稳定的性质,一般的加工温度及短时间加热都难使其分解,因此难被人体吸收,食用利用率较低[7]。将胶原蛋白水解为胶原多肽后,其营养及生理功能可显著提高:蛋白质消化吸收率几乎达100%,能保护胃黏膜以及抗溃疡,促进皮肤胶原代谢,抑制血压上升,对关节炎等胶原病具有很好的预防及治疗作用,能促进钙吸收和降低血清中胆固醇含量等[8]。寻找一种高效的降解胶原蛋白的酶也成为了当今的一个热门课题。

1 胶原蛋白酶的定义和选择

1.1 定义

胶原蛋白酶(Collgaenolytci protease)定义为在适当的pH 和温度下,只切割活性胶原螺旋区或明胶而不作用于其他蛋白底物的酶类

1.2 酶的选择

能使胶原蛋白酶解的酶类较多。按照作用位点可以分为内切酶和外切酶;从来源上可分为植物蛋白酶(如菠萝蛋白酶、木瓜蛋白酶等)、动物蛋白酶(如胰蛋白酶、胃蛋白酶等)、微生物蛋白酶(如枯草杆菌1.398、放线菌166 等);此外,较常用于水解的蛋白酶还有风味复合酶等。在实际应用中,酶的选取通常要考虑三个方面:一是酶对胶原蛋白作用的强度;二是酶的价格;三是水解产物的要求。如果酶对胶原的作用太弱,则无法得到高的胶原水解率,而酶的纯度直接影响酶的价格,纯度较高的酶与工业用酶的价格往往相差甚远。因此开发的产品如没有特殊要求,一般可以考虑选择用已完全工业化的酶。除此之

外,还必须考虑酶对胶原的作用位点,因为这直接影响最后水解产物分子量的分布,是决定能否得到目标产物的一个关键因素

[12-13][9-10]。。细菌胶原酶可分泌到胞外,通过发酵可大量获得,微[11]生物来源的胶原酶在应用方面具有更广的应用范围。

2 胶原蛋白酶的水解特性和作用机理的研究

2.1 胶原蛋白酶的水解特性

对于水解胶原蛋白方面的研究,国外的报道很多。例如Ruud A. Bank 等采用SDS-PAGE 决策法分别测定α-胰凝乳蛋白酶水解完整的胶原蛋白、热处理(70℃,30min)过的变性的胶原蛋白、以及用人体胶原酶解旋的胶原蛋白得到的碎片的尺寸,通过比较得出胰凝乳蛋白酶不能使完整的三股螺旋的胶原蛋白分子解链,但能使变性的胶原蛋白完全降解成小分子产物

在37℃经过12h 能够水解不能溶解的牛胶原蛋白[15][14]。。S.R.L.Teruel 研究发现美洲比目鱼胶原蛋白酶不能水解牛胶原蛋白,鱼胶原蛋白酶在pH 为7 时活性最高。天然的鱼胶原蛋白酶。Masato Hiyama 等人实验发现某种曲霉菌丝氨酸蛋白酶OK-22,在37℃,pH为7.5,经过48h,Ⅰ-型胶原蛋白的水解程度达到12%。曲霉菌丝氨酸蛋白酶水解Ⅰ-型胶原蛋白的上限大约是12%,与水解乳酪的程度一样,而真菌蛋白酶水解胶原蛋白的程度要比水解乳酪的程度弱的多[16]。Siriporn Damrongsakkul 等在用木瓜蛋白酶和应用Neutrase 蛋白酶水解生牛皮时,发现应用Neutrase 蛋白酶水解的产物中,胶原蛋白的水解产物的粘度跟水一样低。Ⅰ-型的人类胶原蛋白是存在于哺乳动物体内最丰富的一种分子,天然的胶原对大多数的胶原蛋白酶都具有抵抗力[17]。J. Friedrich 等在研究角蛋白酶对天然胶原的水解能力时发现羽毛角蛋白和胶原不能被

[18]这种从菌类提取的角蛋白酶水酶。

曾名勇等采用正交试验确定了菠萝蛋白酶和alcalase 2.4L 碱性蛋白酶这两种酶单独水解鱼皮胶原蛋白的最佳酶解条件。在此基础上,进行复合酶水解实验,表明先采用菠萝蛋白酶水解,再用alcalase

2.4L蛋白酶水解,效果更佳[19]。薛勇等在研究岩藻聚糖硫酸酯寡糖-Ce(Ⅳ)配合物的制备及其对胶原蛋

[20]白的水解活性时发现小分子岩藻聚糖硫酸酯寡糖-Ce(Ⅳ)的配合效果最好,且水解胶原蛋白的活性高,并通过实验确定了配合条件以及配合物对胶原蛋白的最佳水解条件。孙爱梅等研究认为胰蛋白酶对

天然胶原蛋白几乎没有作用,但可以降解变性的胶原蛋白。胰蛋白酶水解胶原的最适条件是pH 为

8.1~8.2、温度37℃。在此条件下,采用凝胶过滤色谱分析考察了酶用量时间对胶原蛋白降解过程的影响。通常情况下,在酶促

反应中底物浓度比酶浓度高得多,增加酶用量对酶促反应初始速率影响较大,而且速率增加与酶用量成正比,随着底物浓度的降低,酶用量对反应速率的影响逐渐减小

件为,并对胶原水解产物的理化性质进行了测定

2.2 胶原蛋白酶的作用机理

对于酶作用机理的研究也很多。Misook Kim等利用从生姜的根茎中提取的半胱氨酸蛋白酶GP2水解从小牛皮中提取的Ⅰ-型胶原蛋白时,发现这种酶能作用于胶原分子三条螺旋链上的相同位点,是目前唯一被证明能够水解天然胶原的植物半胱氨酸蛋白酶[23][22][21]。陈秀金等研究了用碱性蛋白酶水解脱铬革屑制备胶原水解产物时,影响胶原蛋白水解产物收获率的各种因素,确定了最佳水解条。。Yoshio Yamakawa等测定了纯出血蛇毒素水解几种白明胶和胶原蛋白的能力。但在天然胶原中只有Ⅳ-型胶原能够被水解。出血蛇毒素对Ⅳ-型胶原的水解具有时间依赖性,在开始的2 h水解非常迅速;出血蛇毒素作用于Ⅳ-型胶原不同的位点来水解三股螺旋结构[24]。Magda Gioia等检测了嗜中性粒细胞胶原蛋白酶,白明胶酶A降解胶原纤维的作用机制,通过研究Ⅰ-型胶原蛋白在37℃时水解,确定了在

处理过程中两种α-链胶原蛋白的功能差异。运用热力学和动力学参数定量的比较,发现金属胶原蛋白酶对对胶原蛋白分子链的解旋和伸展至少有两种截然不同的机理[25]。A. Cristina Sarmento等认为存在三种溶胶机理,一种是用裂缝胶原蛋白酶,

[26]能够分裂稳定三股螺旋胶原蛋白,第二种是拓宽的精细蛋白酶,如半胱氨酸蛋白酶,能够作用于天然胶原蛋白分子的分裂的肽端,第三种是细菌蛋白酶及组织蛋白酶。Eric Dufour等研究了胶原酶和组

织蛋白酶B水解Ⅲ-型的胶原时流体静压力的作用。实验证明高压条件下胶原分子表面一些氨基酸侧链不宜暴露,也不宜被组织蛋白酶B识别。胶原水解的速率随着压力的增大而减小。高压会导致酶和底物的构象发生变化,压力还会改变酶的弹性

[27]。

3 影响酶活力的因素

酶也是一种蛋白质,凡是能使蛋白质变性的因素,都可能使酶失去活性,如物理因素(温度、压力、光、磁场),化学因素(氧化、还原、溶剂、金属离子、离子强度、pH)和生物学因素(酶修饰和酶降解)蛋白酶在加工和贮存期间活力都会降低,在常温(25℃,湿度25%)下,贮存一个月酶活力降低达20%~30%,蛋白酶的易失活特性极大地限制了其生产和应用。蛋白酶的活性降低主要是由于蛋白酶的巯基易被氧化,与SO2的相互转化,形成了醌-硫醇复合物,并可自行降解。

3.1 化学因素

3.1.1 有机溶剂

一般情况下,随着有机溶剂浓度的增大,蛋白酶活力呈直线下降。试验证明,当甲醇、乙醇、乙二醇浓度分别达到25.5%、20.5%、24.0%时,酶活力丧失一半,浓度达到50%时,酶活力完全丧失。在十二烷基硫酸钠(SDS)变性中,菠萝蛋白酶活力随SDS浓度的增大而呈指数下降,而α-螺旋度开始有所下降,然后出现回升趋势,SDS达4mg/ml时,酶完全失活,而α-螺旋度增加24%[28-30]。潘江球等研究报道,聚丙烯酰胺(PAAM)可使蛋白酶在30、45、50、60℃下贮存后,酶活力保留率分别提高l3.8%、22.9%、25.2%、28.4%。贮存温度越高,PAAM提高酶活力保留率的效果越明显,PAAM在液体酶中同样可以显著地提高酶的稳定性。这是因为PAAM是一种高分子亲核试剂,通过氢键固定在酶的表面来稳定酶分子构象;它对蛋白酶分子还起到一种包埋作用,有效地防止巯基的氧化失活;也由于它从酶相互作用区域排除水,降低自由能,使酶的贮存稳定性得到了显著的提高

3.1.2 金属离子

在pH7.0时,草酸钠对蛋白酶有明显稳定作用,100mmol/L草酸钠能使酶活半衰期延长6倍,丁二酸钠、酒石酸甲钠对酶活也有一定的保护作用。醋酸钠、柠檬酸钠、硼酸钠对蛋白酶都有一定程度的保护作用,并且浓度变化对保护作用的影响不大。研究证明,添加苯甲酸钠,贮存1个月后酶活力比对照组提高14%。添加焦亚硫酸钠,在15℃下避光保存2个月酶活力保持不变。Ca2 +和Zn2 +对蛋白酶有一定程度的保护作用。KCl和NaCl对蛋白酶热稳定性基本没有影响[32][31]。;CaCl2和MgCl2在一定浓度下显现出一定的保护作用,分别比对照品提高了21%和12.4%。Zn(Ac)2和ZnCl2在低浓度下就可增进酶的热稳定性,在合适的浓度下,酶活力分别比对照品提高了32.4%和29.1%。在这些金属离子中,发现对蛋白酶有一定作用的都是二价离子,以锌离子的作用较为明显,钙、镁离子次之。而对于锌离子,醋酸锌的功效显得更大些,它能以极低的浓度(5×10-4mol/L)获得显著的稳定效果。

3.1.3 共溶剂

糖类、多元醇、氨基酸及其衍生物、无机盐、甘油、多聚物如聚乙二醇(PEG)等一般被称为蛋白质的共溶剂。对某一活性酶来说,其酶失活半衰期是常数,因此可以菠萝蛋白酶失活半衰期用作衡量酶热稳定性的指标。研究证明,40%半乳糖对菠萝蛋白酶有一定的保护作用,能使其酶活半衰期提高3倍;50%葡萄糖可将菠萝蛋白酶的半衰期延长10倍,但

有研究指出,葡聚糖和肌醇对该蛋白酶没有保护作用。蔗糖、麦芽糖、棉子糖和松三糖等寡糖对菠萝蛋白酶均有明显的保护作用。也有人证明,低浓度的蔗糖、葡萄糖、β-环糊精、黄原胶对提高酶的热稳定性没有作用。50%甘油可将菠萝蛋白酶的半衰期延长8倍,乙二醇和甘露醇对菠萝蛋白酶有一定的保护作用

甘露醇即使在低浓度下也能促进酶溶液的热稳定性。

近几年的研究表明,共溶剂对酶的保护作用机制是共溶剂的加入改变了溶液的热力学性质,使酶的稳定性得到增强,理论上称优先排阻作用。共溶剂从酶表面的优先排阻并不是说共溶剂分子绝对不能渗透到酶表面并与之结合,而是在酶表面完全水化和共溶剂完全结合之间建立起一种平衡。糖类是酶蛋白在溶液中和在干燥状态下较好的稳定剂。甘油和多元醇对酶的非极性表面有

很好的稳定作用。另外,一些研究者发现,混合使用共溶剂可大大提高酶的稳定效果。[33]。试验还证明,多元醇甘油、

3.2 物理因素

3.2.1 温度和湿度

一般动物蛋白酶的最适反应温度介于37~40℃,植物蛋白酶的最适为50~60℃,温度升高,酶的热失活增强,反应速度下降。

在干燥环境下,蛋白酶活力相对稳定,但随着环境湿度的增大,酶失活速率加快

3.2.2 光照

光对蛋白酶活性的影响是明显的。试验证明,将菠萝蛋白酶进行避光和无避光贮存10d 后,无避光下酶活力的保留率比避光下降低了9.8%。这是因为蛋白酶中的巯基、氨基、色氨酸残基和唯一的组氨酸残基是酶活性的必需基团,日光对这些基团的破坏性很强,日光中的紫外线等可以引起酶构象的改变或使酶的氨基酸残基氧化、引起共价键断裂等反应3.3 生物因素

Lee等报道,用脂质膜微胶囊包埋保护蛋白酶,能有效地提高蛋白酶的稳定性[36]。据黄惠华等报道,以聚乙二醇为分散剂和稳定剂,用氧化低价铁盐的方法制成具有磁性响应性的微球,用1.33%浓度的该磁性微球吸附分离的蛋白酶,回收率达61.96%,酶活性为3.8万单位/g,固定化磁性蛋白酶的热稳定性有显著提高,常温下的保存半衰期为28d左右[37][35][34]。。。用琥珀酸酐法活化后的聚乙二醇(PEG)修饰蛋白酶,所得到的修饰酶在对温度和pH值的稳定性上均比天然酶有一定程度的提高。这说明PEG分子对酶有一定的保护作用,推测这种作用应来自分子间的作用力。Mg2+和Ca2+对修饰酶有不同程度的激活作用,而Na+对修饰酶无明显影响[38]。以脱乙酰甲壳质为载体,戊二醛为交联剂,对蛋白酶进行固定化,研究其对啤酒澄清的作用。采用右旋糖醛对蛋白酶进行化学修饰,经修饰的酶能较好地保持蛋白酶活性,并且具有更好的稳定性。

4 胶原蛋白酶的提取方法

蛋白酶的提取方法有很多种:沉淀法、层析法、膜超滤法,提取胶原蛋白主要用的的是层析法。

4.1 层析法

层析法又称为色谱法。在层析分离中基于固定相和流动相中各组份阻滞能力的作用不同,又可分为分子筛层析、离子层析、亲和层析等。

4.1.1 分子筛层析

分子筛层析( gel chromatography) 又称为凝胶层析或凝胶过滤。分子筛层析是利用有一定孔径范围的多孔凝胶作为固定相,对混合物中各组分按分子大小进行分离的层析技术,适用于分离和提纯蛋白质、酶、多肽、激素、多糖、核酸类等物质。分子大小彼此相差25%的样品,只要通过单一凝胶床就可以完全将它们分开。具有分子筛作用的物质很多,如浮石、琼脂、琼脂糖、聚乙烯醇、聚丙烯酰胺、葡聚糖凝胶等,以葡聚糖凝胶应用最广。分子筛层析具有设备简单、操作方便、分离迅速及不影响分子生物学活性等优点,目前已被

广泛应用于各种生化产品的分离和纯化。但同时也存在分辨率不高,分离操作较慢等不足之处。此外,凝胶层析要求样品黏度不宜太高,凝胶颗粒有时还有非特异吸附现象。

4.1.2 离子交换层析

离子交换层析( Ion Exchange Chromatography 简称为IEC) 是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析中,基质是由带有电荷的树脂或纤维素组成。由于蛋白质也带有电荷,当蛋白质处于不同的pH 条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,反之阳离子交换基质结合带有正电荷的蛋白质。通过提高洗脱液中的

盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。与分子筛层析相比,离子交换层析特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便

宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白质,还需要其他的纯化步骤并需要经常进行离子再生,耗费大量酸碱,而且对环境有一定的破坏。

5 发展前景

我国是工业生产大国之一,每年产生30万吨以上的鞣革废渣,利用这些工业废弃物的酶解来制备胶原多肽,使其变废为宝,不仅减少环境污染,还能带来良好的社会效益和经济效益。但是由于酶自身的缺点,如高度的底物专一性,易变敏感性,水解率偏低等,导致工业化生产的成本较高,产品价格昂贵。所以寻找稳定性,产量高好的胶原蛋白酶,改进各种水解工艺条件,提高胶原蛋白酶解为胶原多肽的酶解效率,将成为水解胶原蛋白领域的研究重点。

三亿文库https://www.wendangku.net/doc/94774077.html,包含各类专业文献、外语学习资料、行业资料、专业论文、中学教育、幼儿教育、小学教育、文学作品欣赏、36胶原蛋白酶的研究进展等内容。

12

参考文献:

[1]石岗.生物活性肽进展[J].北京农业科学,;[2]陈国梁,贺翠莲.胶原蛋白的研究进展[J].;[3]焦驼文,孔繁东,等.酶解蛋白制备抗氧化多肽;[4]冯成利,党蕊叶,李校坤,等.猪皮胶原蛋白肽;[5]曹荣安,李浩,李良玉,等.胶原蛋白的生理功;[6]傅燕凤,沈月新.浅谈鱼皮胶原蛋白的利用[J;[7]S.R.Fahnestock,A.Stei

参考文献:

[1]石岗. 生物活性肽进展[J] . 北京农业科学,2002 ( 3 ) :9 - 13.

[2]陈国梁,贺翠莲. 胶原蛋白的研究进展[J]. 延安大学学报: 自然科学版,2000,19 (2) : 78 - 81.

[3] 焦驼文,孔繁东,等. 酶解蛋白制备抗氧化多肽的研究现状与展望[J]. 中国酿造,2007 (3) : 5 - 7.

[4] 冯成利,党蕊叶,李校坤,等. 猪皮胶原蛋白肽的提取及理化分析[J]. 陕西师范大学学报: 自然科学版,2007,35: 20 - 23.

[5]曹荣安,李浩,李良玉,等. 胶原蛋白的生理功能特性及其应用[J]. 肉制品加工与设备,2010 (1) : 7 - 9.

[6]傅燕凤,沈月新. 浅谈鱼皮胶原蛋白的利用[J]. 食品研究与开发,2004,25 (2) : 16 -18.

[7] S.R.Fahnestock, A.Steinbüchel.Biopolymers(8):Polyamidesand ComplexProteinaceousMaterials[M],2005.

[8] Piez K A,Eigner E A,Lewis M S.The chromatographicseparation and amino acid composition of the subunits ofseveral

collagens[J].Biochemistry.1963,(2):58-66.

[9] Watanabe K. Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol, 2004, 63: 520–526.

[10] PPark PJ, Lee SH, Byun GH, et al. Purification and characterization of a collagenase mackerel, Scomber japonicus. J Biochem MolBiol, 2002, 35(6): 5765–5782.

[11] Kumar CG, Takagi H. Microbial alkaline proteases: from abioindustrial viewpoint. Biotechnol Adv, 1999, 17(7):

561–594.

[12] Kanth SV, Venba R, Madhan B, et al. Studies on the influence of bacterial collagenase in leather dyeing. Dyes Pigm, 2008, 76(2): 338–347.

[12]蒋挺大,张春萍.胶原蛋白[M].化学工业出版社,2001

[13] 菅景颖,张志胜.酶解胶原蛋白研究进展[J].浙江化工,2007, 38(1):18-20

[14] Ruud A.Bank,Marianne Krikken,Bob Beekman et al.A simplefied mesurement of degraded collagen in tissues: application in

healthy ,fibrillated and osteoarthritic cartilage [J]. Matrix Biology,1997,16:233-243.

[15] S.R.L. Teruel, B.K.Simpson. Characterization of the collagenolytic enzymefraction from winter flounder

(Pseudopleuronectes americanus)[J].Comp. Biochem. Physiol.1995,lI2B(1):131-136.

[16] Masato Hiyama,Masaaki Shinozuka,Masaru Iizuka et al.Degradation of Gelatin and Collagen by Serine Proteinase of Aspergillus

sydowi[J]. Journal of Fermentation And Bioengineering,1996,81(5):464-465.

[17] Siriporn Damrongsakkul,Kongpob Ratanathammapan, Kittinan Komolpis et al. Enzymatic hydrolysis of rawhide using papain and neutrase[J].Journal of Industrial and Engineering Chemistry,2008,(14):202-206.

[18] J. Friedrich, S. Kern. Hydrolysis of native proteins by keratinolytic protease of Doratomyces microsporus [J].Journalof Molecular

Catalysis B: Enzymatic,2003, (21):35-37.

[19]曾名勇,李八方,陈胜军等.红非鲫鱼皮胶原蛋白酶解条件的研究[J].中国海洋药物杂

志.2005, 24(5):24-29.

[20] 薛勇,薛长湖,杜世振等.岩藻聚糖硫酸酯寡糖-Ce(Ⅳ)配合物水解胶原蛋白的研究[J].中国海洋大学学报,2006, 36(2):273-276.

[21] 孙爱梅,张贵锋,倪文等.胶原蛋白讲解物高效液相色谱/质谱连用分析[J].中国生物工程杂志.2005,25(2):66-72.

[22]陈秀金,曹健,魏明等.碱性蛋白酶水解脱铬革屑制备胶原水解物的研究[J].中国皮

革,2004,33(1):42-46.

[23] Misook Kim,Susan E.Hamilton,Luke W.Guddat et al.Plant collagenase:Unique collagenolytic activity of cysteine proteases from ginger[J].Biochimica et BiophysicaActa, 2007, (1770): 1627-1635.

[24] Magda Gioia,Susanna Monaco,Giovanni Francesco et al. Characterization of the Mechanisms by which Gelatinase A,Neutrophil Collagenase,,and Membrane-Type Metalloproteinase MMP-14 Recognize Collagen I and Enzymatically Process the Two α-Chains[J]. J. Mol. Biol,

2007,(368):1101-1113.

[25] Yoshio Yamakawa ,Tamotsu Omori-Sathoa, Dietrich Mebs. Hemorrhagic principles in the enom of Bitis arietans,a viperous snake.II. Enzymatic', properties with special reference to substrate specificity[J].Biochimica et Biophysica Acta,1995,(1247):17-23.

[26] A.Cristina Sarmento ,Cl′audia S. Oliveira,Ana S.Duarte et al. Evaluation of cardosin A as a probe for limited proteolysisin non-aqueous environments-complex substrates

hydrolysis[J].Enzyme and Microbial Technology,2006,(38):415-421.

[27] Eric Dufour,Michèle Dalgalarrondo,Guy Hervé et al. Proteolysis of Type III Collagen by Collagenase and

[28]Cathepsin B Under High Hydrostatic Pressure[J].Meat Science.1996,42, (3):261-269.陈清西,颜思旭. 果菠萝蛋白酶的分子构象与活力变化的研究. 生物化学杂志, 1991, 7 (3):301-306.

[29]陈清西,颜思旭. 果菠萝蛋白酶在胍和SDS 变性时的酶活力与构象变化研究. 生物化学与生物物理学报, 1992,24(5):476-482.

[30] 陈清西,颜思旭. 果菠萝蛋白酶在有机溶剂微扰时的分子折叠与活力变化的研究. 高等化学学报, 1993, 14(3):424-427.

[31] 潘江球,刘坚,李思东,等. Polyacrylamide对菠萝蛋白酶活力的稳定作用. 热带作物学报, 2002, 23(4):29-31.

[32] 章佩芬,陈敏华,郭利平. 菠萝蛋白酶应用的性质研究.广州食品工业科技, 2002,

18(2):16-18.

[33] 李兴,林哲甫. 多元醇和糖类对菠萝蛋白酶热稳定性的影响. 中国生物制品学杂志,2001,14(4):243-244.

[34]章佩芬,郭勇. 菠萝蛋白酶的保存稳定性研究. 药物生物技术, 2002, 9(3):163-164.

[35] 潘江球. 影响菠萝蛋白酶活力主要因素的研究. 华南热带农业大学硕士学位论文,2003.

[36]Lee DH, Jin BH, Hwang YI, Lee SC. Encapsulationof bromelain in liposome. Journal of food science and nutrition, 2000, 5(2):81-85.

[37] 黄惠华,高孔荣.磁性载体对菠萝蛋白酶吸附分离和固定化的研究.食品科学,1996,17(10):3-8.

[38] 田国贺,郭佳宓,吕团伟,等.聚乙二醇对菠萝蛋白酶的化学修饰. 生物技术, 2006,16(1):35-38.

三亿文库https://www.wendangku.net/doc/94774077.html,包含各类专业文献、外语学习资料、行业资料、专业论文、中学教育、幼儿教育、小学教育、文学作品欣赏、36胶原蛋白酶的研究进展等内容。

12

下载地址:36胶原蛋白酶的研究进展.Doc

【Top】

最新搜索

胶原蛋白酶的研究进展

注册电气工程师基础-涵盖所有数学基础(微分、积分、级数、求导

划分产品成本和期间成本,是为了贯彻配比原则。

季节性保养 (FILEminimizer)

论孔子平等教育思想对幼儿园生活活动组织的意义

江西省赣州市2015中考数学适应性考试试卷

EC-PC87541笔记本的上电时序(图)

黑龙江哈师大附中11—12学年下学期高二4月月考生物

水池蓄水试验记录

桂林金盘电气

2015-2020年中国胶原蛋白酶行业分析及发展方向研究报告

2015-2020年中国胶原蛋白酶行业分析及发展方向研究报告_调查/报告_表格/模板_实用

文档。2015-2020年中国胶原蛋白酶行业分析及发展方向研究报告2015...

胶原蛋白的研究进展

胶原蛋白研究进展 *:通讯作者.23465145378@https://www.wendangku.net/doc/94774077.html, 摘要: 胶原蛋白以其独特的生物...的胶原蛋白制品的目的. 井原等[3]采用酸法对胶原蛋白进行提取,再用蛋白酶...

2015年中国胶原蛋白酶产业深度调研报告

2015-2020 年中国胶原蛋白酶产业深度调研及市场前景预测报告中国产业信息网什么是行业研究报告行业研究是通过深入研究某一行业发展动态、规模结构、竞争格局以及综合... 2015-2020年中国胶原蛋白酶行业分析及发展战略研究报告

2015-2020年中国胶原蛋白酶行业分析及发展战略研究报告_经济/市场_经管营销_专业资料。胶原蛋白酶行业分析及发展战略研究报告2015-2020 年中国胶原蛋白酶行业分析及... 木瓜蛋白酶的研究进展

木瓜蛋白酶的研究进展_生物学_自然科学_专业资料。木瓜蛋白酶研究进展的论文木瓜...它将肌动球蛋白和胶原蛋白降解成小分子的多肽甚至氨基酸,令其肌丝和筋腱丝断裂... 2015-2020年中国胶原蛋白酶市场行情动态及投资风险报告

2015-2020 年中国胶原蛋白酶市场行情动态及投资风险报告凯德产业经济研究中心https://www.wendangku.net/doc/94774077.html, 行业研究报告的定义行业研究是通过深入研究某一行业发展动态、规模... 木瓜蛋白酶的提取及应用研究进展

木瓜蛋白酶的提取及应用研究进展_能源/化工_工程科技_专业资料。木瓜蛋白酶的提取...它将肌动球蛋白和胶原蛋白降解成小分子的多肽甚至氨基酸,令其肌丝和筋腱丝断裂... 2015年中国胶原蛋白酶行业投资前景预测报告

2015-2020 年中国胶原蛋白酶行业市场运行态势及投资前景预测报告中国产业信息网什么是行业研究报告行业研究是通过深入研究某一行业发展动态、规模结构、竞争格局以及... 2014-2019年中国胶原蛋白行业深度调研与投资前景预测报告

胶原蛋白什么是行业研究报告行业研究是通过深入研究某一行业发展动态、规模结构、...酶解生物活性胶原蛋白发展前景看好二、胶原蛋白应用前景广阔三、胶原蛋白/聚... 热点推荐

果蔬种植培训实施方案

37唯科学的西方马克思主义历史观评析

生态文明建设的重要性以及大学生应该怎么做10

环安卫

第四章果蔬加工原料的常用品种60

6-4珍爱生命拒绝毒品

32药品购销合同

58消防喷淋头种类及介绍

52数字电路与逻辑设计试题及答案(试卷C)

关于进一步加强职工学习实施意见

关于我们 | 联系我们 | 免责声明

三亿文库资料来自互联网,本站只负责收集和整理。举报文档点这里

木瓜蛋白酶

发酵工程与设备课程论文 题目木瓜蛋白酶 班别学号 姓名 成绩

木瓜蛋白酶 摘要:木瓜蛋白酶是一种能分解蛋白质的蛋白酶。先了解木瓜蛋白酶的制备及保存,接着分析它的化学修饰和酶活力的影响。最后,木瓜蛋白酶的固定化及方法以及它在各个行业的应用。Abstract: Papain is a protease that breaks down proteins.To understand the preparation and preservation of papain and then analyzed its chemical modification and enzyme activities.Finally, the immobilized papain and the method and its application in various industries 关键字:木瓜蛋白酶化学修饰酶活力固定化行业的应用Keywords:papain Chemical modification enzyme immobilization industry applications 木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。它是利用未成熟的番木瓜果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。 作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。 一、木瓜蛋白酶的制备及保存 木瓜蛋白酶的制备是将未成熟番木瓜果实割取乳液去杂,在室温下,入半胱氨酸溶液在研钵中充分磨匀,静置后取上清液即

木瓜蛋白酶活力测定方法

木瓜蛋白酶活力测定方法 分别精密量取酪蛋白溶液5ml,置3支具塞试管中,置40℃水浴中保温10分钟,各精密加入供试品溶液2ml,摇匀,置40℃水浴中,开始记时,准确反应1小时,立即精密加入三氯醋酸溶液5ml,强力振摇混匀,置40℃水浴中放置30~40分钟,使沉淀的蛋白质完全凝固,滤过,滤液作为供试品溶液。精密量取酪蛋白溶液5ml置另一具试管,于40℃水浴中保温1小时,精密加入三氯醋酸溶液5ml,强力振摇混匀,精密加入供试品溶液2ml,置40℃水浴中放置30~40分钟,滤过,滤液作为空白溶液。照分光光度法(中国药典2000年版二部附录IV A),以0.1mol/L 盐酸溶液为空白,在275nm的波长处测定空白溶液、供试品溶液和对照品溶液的吸收度,按下式计算: 效价(单位/mg)=A/As*Cs*12/2*稀释倍数/W 式中A为供试品溶液的吸收度减去空白溶液的吸收度: As为酪氨酸对照品溶液的吸收度: Cs为酪氨酸对照品溶液的浓度, ug/ml W为供试品重量,mg; 在上述条件下,释放1ug的酪氨酸的酶量为一个活力单位。 试剂酪蛋白溶液:取酪蛋白1g,加0.05mol/L磷酸氢二钠溶液50ml,置沸水浴中煮30分钟,时时搅拌,冷至室温,加0.05mol/L枸椽酸溶液调节PH至6.0±0.1,并迅速搅拌,防止酪蛋白沉淀,用水稀释至100ml(临用新配)。酶稀释液:取无水磷酸氢二钠3.55g,加水400ml溶解,加乙二胺四醋酸二钠1.1g和盐酸半胱氨酸2.74g,振摇溶解,用1mol/L盐酸或1mol/L氢氧化钠溶液调节PH6.5±0.1,用水稀释至500ml,混匀(临用新配)三氯醋酸溶液:取三氯醋酸17.99g,加醋酸钠29.94g和冰醋酸18.9ml,加适量水溶解后,加水使成1000ml,摇匀。 酶活力测定对照品溶液的制备:精密称取已105℃干燥至恒重的酪氨酸对照品适量,用0.1mol/L盐酸溶液制成每1ml中约含40ug的溶液。供试品溶液的制备:取本品适量(约相当于木瓜酶活力120万单位),精密称定,加酶稀释液振摇,制成每1ml中含200~300单位的溶液,摇匀。 淀粉酶活力测定 实验技术 2008-05-27 18:01:29 阅读213 评论0字号:大中小 一、目的 淀粉是葡萄糖以α-1,4糖苷键及α-1,6 糖苷键连结的高分子多糖,是人类和动物的重要食物,也是食品、发酵、酿造、医药、 纺织工业的基本原料。 淀粉酶是加水分解淀粉的酶的总称,淀粉酶对淀粉的分解作用是工业上利用淀粉的依 据,也是生物体利用淀粉进行代谢的初级反应。小麦成熟期如遇阴雨天气,有的品种会发生

跨膜丝氨酸蛋白酶研究进展

跨膜丝氨酸蛋白酶研究进展 郭晓强 (解放军白求恩军医学院生物化学教研室,石家庄050081) 摘要 跨膜丝氨酸蛋白酶(T MPRSSs),又名II型跨膜丝氨酸蛋白酶(TTSPs)是一类定位于细胞膜上具有保守丝氨酸蛋白酶结构域的蛋白家族,哺乳动物中已发现二十多个成员。T MPRSSs基本结构类似,C端蛋白酶结构域在胞外,N端位于胞内,还拥有单跨膜结构域,差异之处在于主干区。T MPRSSs具有多种重要生理功能,功能异常可造成耳聋、癌症、贫血和高血压等多种疾病。本文对T MPRSSs基本特征、结构、生理功能及相关疾病进行综述。 关键词 跨膜丝氨酸蛋白酶;耳聋;癌症;贫血;高血压 中图分类号 Q55 蛋白酶是一类水解蛋白质的酶类,最早于上世纪初在胃液中发现(胃蛋白酶),至今已鉴定多个成员。最早认为蛋白酶主要通过非特异性水解蛋白质参与食物消化,然而一系列研究表明哺乳动物体内还存在一些具有底物选择性的蛋白酶,它们参与更为多样的生理过程,如细胞周期、形态建成、细胞增殖和迁移、排卵、血管生成和细胞凋亡等,功能异常可造成代谢性疾病、神经退行性疾病、心血管疾病、关节炎和癌症等的发生(Puente等.2003)。相对于传统水溶性蛋白酶,新近发现一类特殊蛋白酶———具有单跨膜结构域的丝氨酸蛋白酶,并且C端位于胞外,因此被称为II型跨膜丝氨酸蛋白酶(type II trans me mbrane serine p r oteases,TTSPs)(Hooper等. 2001),又称跨膜丝氨酸蛋白酶(trans me mbrane p r o2 tease serines,T MPRSSs),这些新成员的发现和深入研究使人们对蛋白酶有了全新的认识[1]。 一、T M PRSS结构与基本特征 自1988年发现第一个跨膜丝氨酸蛋白酶T M2 PRSS1(hep sin)(Leytus等.1988)以来,至今已在人、小鼠和大鼠中发现二十多个成员,仅人类就有十几种(表1)。T MPRSS表达具有明显组织特异性,T M2 PRSS6主要在胎儿和成年肝脏中表达(Velasco等. 2002),而T MPRSS10主要存在于心脏(Yan等. 1999),这种表达模式说明不同T MPRSS参与不同生理过程。T MPRSS家族成员在分子量上差别巨大,如人T MPRSS1包含417个氨基酸残基,而T M2 PRSS10由1042个氨基酸构成,两者相差1倍以上,但基本结构却高度相似,均含四部分,从N端到C 端依次为短细胞质结构域、跨膜结构域、主干区和丝氨酸蛋白酶结构域,后两者位于胞外,不同成员区别主要集中于主干区。 根据主干区不同,T MPRSS可被进一步分为四个亚家族:HAT/DESC、hep sin/T MPRSS、matri p tase 和corin[1]。HAT/DESC亚家族包括T MPRSS11d (HAT)和T MPRSS11e(DESC1),它们结构最为简单,主干区仅由单一SE A(sea urchin s per m p r otein, enter opep tidase,agrin)结构域构成[2](图1)。hep2 sin/T MPRSS亚家族包括T MPRSS1~5和T MPRSS13等,是包含种类最多的一个亚家族,主干区包含清道夫受体富含半胱氨酸(scavenger recep t or cys2rich, SRCR)结构域和低密度脂蛋白A类受体(l ow densi2 ty li pop r otein recep t or class A,LDLa)结构域。matri p tase亚家族包括T MPRSS14(matri p tase21)、T MPRSS6(matri p tase22)和T MPRSS7(matri p tase23),其主干区除含有SEA结构域外,还包含2个CUB (comp le ment p r otein subcomponents C1r/C1s,urchin e mbryonic gr owth fact or and bone mor phogenetic p r o2 tein1)结构域及3到4个串联重复LDLa结构域。corin亚家族目前只发现一个成员T MPRSS10(cor2 in),其结构最为复杂,主干区包含8个LDLa结构域,2个frizzled结构域和1个SRCR结构域。 图1 几个典型T MPRSS结构特点[1]

木瓜蛋白酶的研究进展

木瓜蛋白酶的研究进展2010-2011学年第2学期《食品添加剂》课程论文 得分

摘要 木瓜蛋白酶是一种重要的生化产品,具有较高的热稳定性。在食品工业中主要用于啤酒和其他酒类的澄清,肉类嫰化,饼干、糕点松化及蛋白质水解生产等,在医药工业中也有广泛的用途, 还用于饲料、纺织及制革等领域。由于木瓜蛋白酶价格昂贵并且无法重复利用,促使人们研究和制备固定化木瓜蛋白酶。 关键字:木瓜蛋白酶固定化食品工业

1.木瓜蛋白酶的概述 木瓜蛋白酶(papain)简称木瓜酶,又称为木瓜酵素,别名番木瓜酶,木瓜朊酶,番瓜酵素。木瓜酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,应用于啤酒及食品工业。 纯木瓜蛋白酶系由212个氨基酸组成的单链蛋白质,相对分子质量为23.406。制品可含有木瓜蛋白酶、木瓜凝乳蛋白酶和溶菌酶等不同的酶。 2.木瓜蛋白酶的特点 木瓜蛋白酶溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。最适合PH值5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点18.75;最适合温度55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活酪蛋白被木瓜蛋白酶降解生成的酪氨酸在紫外光区 275nm 处有吸收峰。 3.木瓜蛋白酶的作用机制 作用方式:木瓜蛋白酶是一种内切酶,能随机水解淀粉、可溶性糊精以及低聚糖中的a-1,4糖苷键。酶作用后可使糊化淀粉的粘度迅速下降,水解生成糊精及少量葡萄糖和麦芽糖。 木瓜蛋白酶papain属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜氨酸残基羧基参与形成的肽键。此酶属内肽酶,能切开全蛋蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。存在于木瓜胚乳中的蛋白酶。EC3.4.22.2。作为植物来源的蛋白酶来说,此酶研究进展的最快。此酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格。 木瓜蛋白酶(Papain)是利用未成熟的番木瓜(Carica papaya)果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。 木瓜蛋白酶的剪切肽键的机制包括:在His-159作用下Cys-25去质子化,而Asn-158能够帮助His-159的咪唑环的摆放,使得去质子化可以发生;然后Cys-25亲核攻击肽主链上的羰基碳,并与之共价连接形成酰基-酶中间体;接着酶与一个水分子作用,发生去酰基化,并释放肽链的羰基末端。 4.木瓜蛋白酶在各个行业的应用 (1)医药工业应用: 含有木瓜蛋白酶的药物,能起到抗癌、肿瘤、淋巴性白血病、原菌和寄生虫、结核杆菌等,可消炎、利胆、止痛、助消化。治疗妇科病、青光眼、骨质增生、枪刀伤口愈合、血型鉴别、昆虫叮咬等。 (2)食品工业应用: 可利用酶促反应,使食品大分子的蛋白质水解成小分子肽或氨基酸,广泛适用于如:鸡、猪、牛、海产品、血制品、大豆、花生等动植物蛋白酶解、制成嫩肉粉、水解羊胎素、水解大豆、饼干松化剂、面条稳定剂、啤酒饮料澄清剂、高级口服液、保健食品、酱油酿造及酒类发酵剂等。有效转化蛋白质的利用,大大提高食品营养价值,降低成本。有

木瓜蛋白酶在美白护肤中的应用

南宁东恒华道生物科技有限责任公司——专业酶制剂生产厂家 销售热线4000-0771-80 木瓜蛋白酶在美白护肤中的应用美白产品在行业中的现状 人体到了25岁以后,身体的新陈代谢功能减慢,黑色素无法正常排解,而在角质层沉积形成斑点,形成黄褐斑、黑斑和色斑等。统计资料显示,13亿人口的中国,祛斑美容产品每年的市场份额已超过100亿元,年利润在千万元以上。国内美白、祛斑类产品已成为护肤品中的主流产品之一,而美白护肤产品绝大多数属于化学试剂或植物提取物,效果有限而且副作用明显,严重影响了用户的持续使用和行业的发展。 美白产品在行业中存在的问题 美白是全世界的难题,有一些不良商家为了使护肤品达到良好的美白效果,在护肤品中添加一些金属元素如汞、铅等。添加汞后,汞化合物会破坏表皮层的酵素活动,使黑色素无法形成。铅的氧化物具有一定遮盖作用,也可用于美白。如果化妆品中添加了砷、汞、铅,长期使用对人体造成的损害最大。在SK—II 之后,又有4大著名化妆品品牌(迪奥、雅诗兰黛、兰蔻、倩碧)的6款粉饼产品被香港媒体披露含有重金属铬和钕。消费者不仅感到恐惧,也对化妆品的安全性产生怀疑。 木瓜蛋白酶在行业中的应用 木瓜酶是从番木瓜水果中提取而得含有多种生物酶的美白去斑生物产品,主要作用为嫩肤及美白去斑。其生物机理学: 第一,木瓜酶作用于人体皮肤老化角质层,促使其分解退化、去除,达到嫩肤效果及促进细胞生长的效果,且木瓜酶水解物在皮肤表层形成一层氨基酸衍生物薄膜,使肌肤保持润湿与光滑; 第二,木瓜酶易于与形成色斑的黑色素中的铜离子形成络合物,减少黑色素的形成和去除色斑的黑色素,且木瓜酶水解的三钛物质可直接抑制形成黑色素的络氨酸活性,消除自由基作用,从而达到美白去斑的效果。 归结起来,木瓜酶通过去除老化皮肤角质层及与色斑中铜离子快速反应,抑制形成黑色素的络氨酸活性和去除氧化自由基,达到嫩肤美白去斑的功效。 1

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

丝氨酸蛋白酶抑制剂的研究进展教学提纲

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,江苏常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类

木瓜蛋白酶应用及研究进展

木瓜蛋白酶应用及研究进展 摘要本文主要介绍了木瓜蛋白酶的作用机理,在医药、食品、化工、科研等方面的应用,以及在木瓜蛋白酶的固定等方 面的最新研究进展。 关键字木瓜蛋白酶应用酶的固定化发展 一、简介 木瓜蛋白酶,是一种蛋白水解酶,可将抗体分子水解为3个片段。是番木瓜中含有的一种低特异性蛋白水解酶,活性中心含半胱氨酸,属巯基蛋白酶,主要应用于啤酒及食品工业。 二、作用机理 木瓜蛋白酶属巯基蛋白酶,具有较宽的底物特异性,作用于蛋白质中L-精氨酸、L-赖氨酸、甘氨酸和L-瓜木瓜蛋白酶氨酸残基羧基参与形成的肽键。这种酶属于内肽酶,能切开蛋白质分子内部肽链—CO—NH—生成分子量较小的多肽类。是一种存在于木瓜胚乳中的蛋白酶。作为植物来源的蛋白酶来说,此酶研究进展的最快。木瓜蛋白酶主要是以内肽酶的形态起作用。活性的产生,而半胱氨酸残基是不可缺少的,所以是硫基蛋白酶的一种,底物的特异性不太严格,分子量为23400,氨基酸残基数212。木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观为白色至浅黄色的粉末,微有吸湿性。这种酶是利用未成熟的番木瓜果实中的乳汁,采用现代生物工程技术提炼而成的纯天然生物酶制品。它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点18.75;最适合温度55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。

胶原蛋白的研究进展

胶原蛋白研究进展 *:通讯作者.23465145378@https://www.wendangku.net/doc/94774077.html, 摘要: 胶原蛋白以其独特的生物特性而具有广阔的应用前景.对近年来国内外学者与生产厂家对胶原蛋白的制备、生物学功能作用及应用方面的研究进展进行了综述,以期充分有效地利用该生物资源. 关键词: 胶原蛋白; 制备; 功能; 应用 引言: 胶原蛋白( collagen) 是细胞外基质的主要成分,约占胶原纤维固体物的85%,占动物体内蛋白质总量的25% ~30%,它广泛存在于动物的结缔组织( 骨、软骨、皮肤、腱、韧等) 中,对机体和脏器起着支持、保护、结合,以及形成界隔等作用[1].目前,已发现的胶原蛋白有20 多种,它们在动物体内有着不同生理功能,其中,科研人员研究较多较深入的是Ⅰ型胶原蛋白.Ⅰ型胶原蛋白( 以下所述胶原蛋白均指Ⅰ型胶原蛋白) 分子长度约为300 nm,直径约为115nm,呈棒状,由3 条多肽链构成3 股螺旋结构,即: 2条αⅠ链,1条αⅡ链,αⅠ链和αⅡ链只是在氨基酸顺序上有微小差异.胶原蛋白特有的左旋α链相互缠绕构成胶原蛋白的右手复合螺旋结构,在螺旋区段,氨基酸呈现( Gly-X-Y) n 周期性排列.胶原蛋白中,甘氨酸( Gly) 含量较大,约占30%,脯氨酸( Pro)和羟脯氨酸( Hyp) 共占约25%,而一般动物蛋白质中羟脯氨酸含量极微少.可以说,羟脯氨酸是胶原蛋白特有的氨基酸,其含量多少与胶原蛋白的稳定性、变性温度成正性相关[2].同时,胶原蛋白具有很强的生物活性及生物功能,能参与细胞的迁移、分化和增殖,使动物的骨、腱、软骨和皮肤保持一定的机械强度.此外,胶原蛋白因其弱的抗原性和良好的生物相容性,在烧伤、创伤、眼角膜疾病、美容、矫形、硬组织修复、创面止血等医药卫生领域用途广泛.目前,国内外关于胶原蛋白的研究极为活跃,本文拟对胶原蛋白的制备、生物学功能及应用进行综述,以期充分有效利用该生物资源. 1.胶原蛋白的制备 目前,对胶原蛋白的提取主要有3 种方法,即酸法、酶法与碱法.因此,根据提取方法的不同,胶原蛋白也可以分为酸溶性胶原蛋白、酶溶性胶原蛋白以及碱溶性胶原蛋白,这3 种胶原蛋白的结构、理化性质与用途都不同.此外,随

木瓜蛋白酶的提取

木瓜蛋白酶的提取、分离纯化及其生物学研究综述及实验方法 13生物技术第二大组第二小组 组员:王玓玥(组长)、王子贺、王思瑶、王宇涛、王守鑫、谭国栋一、研究背景: 在经济飞速发展的今天,人们的生活水平已远远不只在于吃饱穿暖,食品的安全和营养问题受到人们越来越多的关注,绿色健康的生活也成为大家共同的追求,木瓜蛋白酶以它自身耐热及特殊结构等特点被广泛的用于食品行业,如何分离纯化得到高纯度低成本的木瓜蛋白酶则是人们现在研究的重点,本小组便也以此为研究主题展开实验。 二、木瓜蛋白酶基本介绍:木瓜蛋白酶,又称木瓜酶,是一 种蛋白水解酶。木瓜蛋白酶是番木瓜中含有的一种低特异性蛋白水解酶,广泛地存在于番木瓜的根、茎、叶和果实内,其中在未成熟的乳汁中含量最丰富。木瓜蛋白酶的活性中心含半胱氨酸,属于巯基蛋白酶,它具有酶活高、热稳定性好、天然卫生安全等特点,这种蛋白水解酶,分子量为23406,由一种单肽链组成,含有212个氨基酸残基。至少有三个氨基酸残基存在于酶的活性中心部位,他们分别是Cys25、His159和Asp158,当Cys25被氧化剂氧化或与金属离子结合时,酶的活力被抑制,而还原剂半胱氨酸(或亚硫酸盐)或EDTA能恢复酶的活力木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观

为白色至浅黄色的粉末,微有吸湿性;木瓜蛋白酶溶于水和甘油,水溶液为无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。木瓜蛋白酶是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶 的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,但几乎不能分解蛋白胨。木瓜蛋白酶的最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;木瓜蛋白酶的最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。。另外六个半胱氨酸残基形成了三对二硫键,且都不在活性部位。纯木瓜蛋白酶制品可含有:(1)木瓜蛋白酶,分子量21000,约占可溶性蛋白质的10%;(2)木瓜凝乳蛋白酶,分子量26000,约占可溶性蛋白质的45%;(3)

木瓜蛋白酶的提取及应用研究进展

木瓜蛋白酶的提取及应用研究进展 赵电波,陈茜,张丽尧 (郑州轻工业学院食品与生物工程学院,河南郑州450002) 摘要:本文主要介绍木瓜蛋白酶的组成,重点阐述提取方法、提取工艺的研究进展,进一步介绍木瓜蛋白酶在食品工业特别是在食品加工中的应用,并对其在医药、化工及未来食品加工方面的应用前景进行展望。 关键词:木瓜蛋白酶;提取工艺;食品加工;应用 Progress of Extraction and Application of Technology of PapainZHAO Dianbo, CHEN Xi, ZHANG Liyao(College of Food and Biotechnology Engineering, Zhengzhou University of Light Industry, HenanZhengzhou 450002, P. R. China)Abstract: The composition of papain was described, and its extraction methods, research of extractiontechnology had been highlighted. Applications of papain in food industry, particularly in food processing itwas further described, and its applicationsinpharmaceutical, chemical industry and the future prospects offood processing have been prospected in this article.Key words: papain;extractiontechnology; food processing; application 中图分类号:TS201.1文献标识码:A文章编号:1001-8123(2010)11-0019-05 木瓜蛋白酶(papain)来源于未成熟番木瓜(Carica papaya)果实的新鲜乳汁,是一种含疏基(-SH)肽链的内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力;同时还具有合成的功能,能把蛋白水解物合成为类蛋白质。工业用的木瓜蛋白酶一般都是未经纯化的多酶体系。现已知经木瓜乳汁干燥而得的木瓜蛋白酶至少含有四种主要酶类:木瓜蛋白酶(papain)、木瓜凝乳蛋白酶(chymopapain)、木瓜蛋白酶Ω(papaya proteinaseΩ)、木瓜凝乳蛋白酶M(chymopapain M)[1],其中木瓜凝乳蛋白酶的含量最多,占可溶性蛋白的45%。木瓜蛋白酶易溶于水和甘油,水溶液为无色或淡黄色,有时呈乳白色;几乎不溶于有机溶剂。它的最适pH值为5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用;最适温度为55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。1木瓜蛋白酶的提取工艺 1.1过去的常规提取方法 木瓜蛋白酶最原始的提取方法是烘干法,就是在番木瓜浆液中加入保护剂,然后将浆液离心,取上清液放置于鼓风干燥箱中,在55~60℃烘干,粉碎后即得到粗酶制品。乙引等[2]用这种方法所获得的酶得率为23.1%,但此法不利于酶活的保持,其酶活力仅为0.16×105U/g,且产品的纯度较低。木瓜蛋白酶的提取也曾广泛采用单宁沉淀法,乙引等[2] 用单宁沉淀法提取了木瓜蛋白酶。先将番木瓜乳汁离心,于上清液中缓慢加入已溶解的单宁溶液,不断搅拌,使溶液中单宁达到一定浓度。静置,沉淀 单宁-酶复合物,调节pH值,沉淀后进行真空干燥,得到酶制品。结果表明,这种方法生产的酶得率较低,仅有7.3%,但酶活力较高,为3.53×105U/g。但是这种方法存在环境污染等问题。1.2目前较为常见的提取方法 目前生产中多采用超滤、絮凝、盐析等方法提取木瓜蛋白酶。 1.2.1超滤法提取木瓜蛋白酶

胶原蛋白的研究进展

https://www.wendangku.net/doc/94774077.html, 肉类研究 MEAT RESEARCH  2010.1 收稿日期:2009-11-04 作者简介:王丽娜,1986-,女,硕士研究生,研究方向:兽医公共卫生学.Email:wannnglina@https://www.wendangku.net/doc/94774077.html, 通讯作者:黄素珍 山西农业大学动物科技学院 邮政编码:030801 胶原蛋白的研究进展 王丽娜,黄素珍 (山西农业大学 动物科技学院,山西 太谷 030801) 摘 要:本文对胶原蛋白的性质、提取方法以及它的功能和发展前景等研究进行了简单的综述。主要对胶原蛋白的来源做了详细的介绍。关键词:胶原蛋白;来源;功能;研究进展 Research Progress About Collagen WANG Lina ,HUANG Suzhen (Veterinary Medicine and Animal Science, Shanxi Agriculture University, Taigu Shanxi 030801)Abstract: This paper is mainly introduce the development ,the characterize and the distill method of collagen. We make a detail introduction to the source of collagen.Key words: collagen; source; founction; research process 中图分类号:TS201.1 文献标识码:A 文章编号:1001-8123(2010)01-0016-07 0 前言 胶原蛋白是哺乳动物体内含量最丰富、分布最广泛的蛋白质,占人体内蛋白质总25%,相当于体重的6%。它存在于动物皮肤与骨胳中,如猪皮、牛筋、禽的皮肤及骨骼中含有大量的胶原蛋白。 胶原蛋白的营养十分丰富。胶原蛋白富含除色氨酸和半胱氨酸外的18种氨基酸,其中维持人体生长所必需的氨基酸有7种,胶原蛋白中的甘氨酸占30%,脯氨酸和羟脯氨酸共占25%,是各种蛋白质中含量最高的,丙氨酸、谷氨酸的含量也比较高,同时还含有在一般蛋白中少见的羟脯氨酸和焦谷氨酸。 胶原蛋白是细胞外基质的结构蛋白质,分子量为300kD,其分子在细胞外基质中聚集为超分子结构。胶原蛋白最普遍的结构特征是三螺旋结构,由3条a链多肽组成,每一条胶原链都是左手螺旋构型,它们交叉相互缠绕成右手螺旋结构,即超螺旋结构,胶原蛋白独特的三重螺旋结构,使其分子结构非常稳定,并 且具有低免疫原性和良好的生物相容性等。结构决定性质,性质决定用途,胶原蛋白的结构的多样性和复杂性决定其在许多领域的重要地位。胶原蛋白产品具有良好的应用前景。 1 胶原蛋白的特性 1.1 低免疫原性 林炜[1]等认为胶原具有三种类型的抗原因子:第一类是由胶原肽链非螺旋的端肽引起的;第二类是由胶原三螺旋的构象引起的;第三类是由α链螺旋区的氨基酸顺序引起的。第二类抗原因子仅存在于天然胶原分子中,第三类只出现在变性胶原中,而第一类抗原因子在天然和变性胶原中均存在。 1.2 生物相容性 胶原的生物相容性是指胶原蛋白与宿主细胞及组织之间良好的相互作用。胶原本身是构成细胞外基质的骨架,其三股螺旋结构及交联所形成的纤维或网络构成了细胞重要组成成分,对细胞起到锚定和支持作

木瓜蛋白酶酶活力检测方法

木瓜蛋白酶酶活力检测方法 南宁庞博生物工程有限公司企业标准 Q/NPB 01-2019 食品添加剂木瓜蛋白酶制剂 1、范围 本标准规定了食品添加剂木瓜蛋白酶制剂的原辅料要求、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于以木瓜果乳汁为原料,添加葡萄糖,经浸泡提取、过滤、浓缩、干燥、调配粉碎、包装等工艺制成的食品添加剂木瓜蛋白酶制剂。 2、规范性引用文件 下列文件中的条款通过本标准引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191-2019 包装储运图示标志 GB/T 601-2002 化学试剂标准滴定溶液的制备 GB/T 602-2002 化学试剂杂质测定用标准溶液的制备 GB/T 603-2002 化学试剂试验方法中所用制剂及制品的制备 GB 2760 食品添加剂使用卫生标准 GB/T 4789.2-2019 食品卫生微生物检验菌落总数的测定 GB/T 4789.3-2019 食品卫生微生物检验大肠菌群计数 GB/T 4789.4-2019 食品卫生微生物检验沙门氏菌检测 GB/T 4789.6-2019 食品卫生微生物检验致泻大肠埃希氏菌检测 GB/T 4789.10-2019 食品卫生微生物检验金黄色葡萄球菌检验 GB/T 5009.3-2019 食品中水分的测定 GB/T 5009.74-2019 食品添加剂中重金属限量试验 GB/T 5009.75-2019 食品添加剂中铅的测定 GB/T 5009.76-2019 食品添加剂中砷的测定 GB 5749-2019 生活饮用水卫生标准 GB/T 6682-2019 分析实验室用水规格和试验方法 GB 7718 预包装食品标签通则 GB/T 8170-2019 数值修约规则与极限数值的表示和判定 GB/T 20880-2019 食用葡萄糖 JJF 1070 定量包装商品净含量检验规则 NY/T 691-2019 番木瓜

胶原蛋白的研究进展及其应用

胶原蛋白的研究进展及其应用 林祥明 厦门大学生命科学学院,福建厦门(361005) E-mail:lxmwxr@https://www.wendangku.net/doc/94774077.html, 摘要:胶原蛋白来源广泛,有许多优良性质且用途广泛。本文概述了胶原蛋白的结构、特性、研究现状及其制备方法,阐述了胶原蛋白及其水解产物在化妆品、医药、功能保健食品等相关领域的应用。 关键词:胶原蛋白制备进展应用 1. 引言 胶原蛋白为人体主要的细胞外间质成分之一,是人体蛋白质的一大家族。胶原蛋白分子的异常合成与沉积是纤维化反应的基础。在胚胎发育、组织重建、损伤修复等过程中,生长因子及分化因子对胶原蛋白基因的表达具有重要的调控作用[1]。近年来人们进行了这些因子等对胶原基因转动调控作用的研究,这将有助于阐明胶原蛋白基因表达的调控机制。胶原蛋白基因的表达是其本身的顺式作用、反式作用因子以及诸多调控因子相互作用的结果[2]。 到目前为止,已报道的胶原类型大约有19种,对天然胶原的研究有助于进一步理解靶药物和胶原之间结构功能关系。有人用人成纤维II型胶原的三维结构模型来进行合成胶原组织、胶原的结构和功能的研究,利用这一系统进一步研究侧链基团的立体化学和特定分子的相互作用,继而评价胶原相关疾病的临床治疗效应。此外,连接分子末端非螺旋末端肽是胶原分子抗原性的主要来源,而且用胃蛋白酶除去末端肽的缺失胶原是很有应用前景的药物载体,特别是用于基因递送[3,4]。 胶原蛋白是构成动物机体的重要功能物质,它具有其他合成高分子材料无法比拟的生物相容性和生物可降解性。胶原蛋白质结构和功能特点的多样性和复杂性,决定了其在许多领域的重要地位,以及良好的应用前景。目前胶原已广泛地应用于食品、化妆品、营养保健品、生物肥料以及医用材料等领域。 2. 胶原蛋白的概况 胶原蛋白是一种白色、不透明、无支链的纤维蛋白质,是由动物细胞合成的一种生物性高分子,广泛存在于动物的骨、腱、肌鞘、韧带、肌膜、软骨和皮肤中,是结缔组织中极其重要的一种蛋白质,占哺乳动物体内蛋白质总量的25%~30%,相当于体重的6%[5],是人体重要的细胞外基质成份。胶原还可作为组织的支持物,起着支撑器官、保护机体的功能,对细胞、组织乃至器官行使正常功能并对外伤修复有重大影响。 胶原蛋白的种类很多,一般皮肤和骨骼中的是Ⅰ型胶原蛋白,软骨中的是Ⅱ型胶原蛋白,胚胎皮肤中的是Ⅲ型胶原蛋白,细胞基底膜中的是Ⅳ型胶原蛋白。通常胶原蛋白由三条多肽链构成三股螺旋结构,氨基酸的主要组成为脯氨酸(Pro)、甘氨酸(Gly)和丙氨酸(Ala)。胶原特有的左旋α链相互缠绕构成胶原的右手复合螺旋结构,这一区段称为螺旋区段,其最

木瓜蛋白酶在食品工业中应用的研究进展

木瓜蛋白酶在食品工业中应用的研究进展 江甜 (武汉轻工大学,湖北武汉430023) 摘要:本文主要介绍木瓜蛋白酶,重点阐述提取方法、提取工艺的研究进展,进一步介绍木瓜蛋白酶在食品工业特别是在食品加工中的应用,并对其在医药、化工及未来食品加工方面的应用前景进行展望。 关键词:木瓜蛋白酶;提取工艺;食品加工;应用 Applications of papain in the food industry JIANG Tian (Wuhan Polytechnic University,Wuhan, 430023) Abstract: The papain was described, and its extraction methods, research of extraction technology had been highlighted. Applications of papain in food industry, particularly in food processing it was further described, and its applications in pharmaceutical, chemical industry and the future prospects of food processing have been prospected in this article. Key words: papain; extraction technology; food processing; application 木瓜蛋白酶又称木瓜酶,是一类巯基蛋白酶,广泛地存在于番木瓜(Carica papaya)的根、茎、叶和果实内,未成熟果实的乳汁中含量最丰富[1]。木瓜蛋白酶的作用范围很广,水解温度为10℃~80℃,在pH值3~9的范围内对底物均有作用,且稳定性好。在密封容器内,4℃的条件下或阴凉干燥处保存6个月酶活力仅下降0~10 或10 ~20 [2]。木瓜蛋白酶具有较强的蛋白酶水解和合成能力,还具有凝乳、解脂和溶菌活力,利用木瓜蛋白酶的酶促反应,可把大分子的蛋白质水解成容易消化吸收的小分子多肽或氨基酸[3-4],不仅可以用来改善植物蛋白的营养价值或功能性质,而且也广泛应用于食品行业,如啤酒的澄清、肉的嫩化以及制革、纺织和日化用品等行业中,同时也受了医学界的极力关注和重视[5-6]。 1木瓜蛋白酶的制备 1.1过去的常规提取方法 木瓜蛋白酶最原始的提取方法是烘干法,就是在番木瓜浆液中加入保护剂,然后将浆液离心,

胶原蛋白酶的研究进展

胶原蛋白酶的研究进展 摘要:胶原蛋白特有的三股螺旋结构使其难于被人体吸收,将胶原蛋白水解为胶原多肽后,可显著提高其营养及生理功能,胶原蛋白酶是一种价值很高的蛋白酶种。本文介绍了胶原蛋白酶的定义、选择、影响因素。作用机理等,并展望其研究方向。 关键词:胶原蛋白酶,作用机理,影响因素 Abstrac t: The nutritional and physiological function of collagen protein can be significantly improved via chemical or enzymatichydrolysis,as the collagen protein was difficult to be absorbed by human body due to the triple helical characteristic molecules structure. Collagen protease is a kind of high value of protease. In this paper, introduces the definition of collagen enzyme, selection, influence factors, mechanism etc. The future development direction it was also prospected. Key words: collagen protease, mechanism, influence factors 胶原蛋白是人体内含量最多、分布最广泛的蛋白质,是一种与组织和器官功能密切相关的功能性蛋白。胶原蛋白的低免疫原性、生物相容性、生物降解性[1 - 3]和生物活性等特性,被愈来愈多的消费者所认识。胶原蛋白制品已被广泛应用于食品、保健食品、化妆品、医药等领域,市场需求急剧增加[4]。天然胶原蛋白经蛋白酶水解后,可得到具有抗氧化、降血压、降血脂、免疫调节、激素调节、抗疲劳等生理调节功能的小肽,是极具发展前景的功能因子,也是当前医药、食品界最热门的研究课题之一[5-6]。 胶原蛋白具有独特的三股超螺旋结构,三条链相互平行而且由链间氢键相连,具有十分稳定的性质,一般的加工温度及短时间加热都难使其分解,因此难被人体吸收,食用利用率较低[7]。将胶原蛋白水解为胶原多肽后,其营养及生理功能可显著提高:蛋白质消化吸收率几乎达100%,能保护胃黏膜以及抗溃疡,促进皮肤胶原代谢,抑制血压上升,对关节炎等胶原病具有很好的预防及治疗作用,能促进钙吸收和降低血清中胆固醇含量等[8]。寻找一种高效的降解胶原蛋白的酶也成为了当今的一个热门课题。 1 胶原蛋白酶的定义和选择 1.1 定义 胶原蛋白酶(Collgaenolytci protease)定义为在适当的pH 和温度下,只切割活性胶原螺旋区或明胶而不作用于其他蛋白底物的酶类[9-10]。 1.2 酶的选择 能使胶原蛋白酶解的酶类较多。按照作用位点可以分为内切酶和外切酶;从来源上可分为植物蛋白酶(如菠萝蛋白酶、木瓜蛋白酶等)、动物蛋白酶(如胰蛋白酶、胃蛋白酶等)、微生物蛋白酶(如枯草杆菌1.398、放线菌166 等);此外,较常用于水解的蛋白酶还有风味复合酶等。在实际应用中,酶的选取通常要考虑三个方面:一是酶对胶原蛋白作用的强度;二是酶的价格;三是水解产物的要求。如果酶对胶原的作用太弱,则无法得到高的胶原水解率,而酶的纯度直接影响酶的价格,纯度较高的酶与工业用酶的价格往往相差甚远。因此开发的产品如没有特殊要求,一般可以考虑选择用已完全工业化的酶。除此之外,还必须考虑酶对胶原的作用位点,因为这直接影响最后水解产物分子量的分布,是决定能否得到目标产物的一个关键因素[12-13]。细菌胶原酶可分泌到胞外,通过发酵可大量获得,微生物来源的胶原酶在应用方面具有更广的应用范围[11]。

相关文档
相关文档 最新文档