文档库 最新最全的文档下载
当前位置:文档库 › §8.6 立体几何中的向量方法(一)——证明平行与垂直

§8.6 立体几何中的向量方法(一)——证明平行与垂直

§8.6 立体几何中的向量方法(一)——证明平行与垂直
§8.6 立体几何中的向量方法(一)——证明平行与垂直

§8.6 立体几何中的向量方法(一)——证明平行与垂直

1.直线的方向向量与平面的法向量的确定

(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.

(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向

量,则求法向量的方程组为?

????

n ·

a =0,n ·

b =0. 2.用向量证明空间中的平行关系

(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2.

(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2.

(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3.用向量证明空间中的垂直关系

(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )

(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( × )

1.下列各组向量中不平行的是( )

A .a =(1,2,-2),b =(-2,-4,4)

B .c =(1,0,0),d =(-3,0,0)

C .e =(2,3,0),f =(0,0,0)

D .g =(-2,3,5),h =(16,24,40) 答案 D

解析 选项A 中,b =-2a ?a ∥b ;选项B 中,d =-3c ?d ∥c ;选项C 中,零向量与任意向量平行;选项D ,不存在λ(λ∈R ),使g =λh .

2.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3) B .P (-2,0,1) C .P (-4,4,0) D .P (3,-3,4)

答案 A

解析 逐一验证法,对于选项A ,MP →

=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,

∴点P 在平面α内,同理可验证其他三个点不在平面α内.

3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →

=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________. 答案

407,-157

,4 解析 由题意知,BP →⊥AB →,BP →⊥BC →

. 所以?????

AB →·BC →=0,BP →·AB →=0,

BP →·BC →=0,

即????

?

1×3+5×1+(-2)×z =0,(x -1)+5y +(-2)×(-3)=0,3(x -1)+y -3z =0, 解得x =407,y =-15

7

,z =4.

4.若A (0,2,198),B (1,-1,58),C (-2,1,5

8)是平面α内的三点,设平面α的法向量n =(x ,

y ,z ),则x ∶y ∶z =________. 答案 2∶3∶(-4)

题型一 证明平行问题

例1 (2013·浙江改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . 证明:PQ ∥平面BCD .

思维点拨 证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量.

证明 方法一 如图,取BD 的中点O ,以O 为原点,OD 、OP 所在射线为y 、z 轴的正半轴,建立空间直角坐标系O -xyz . 由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ →=3QC →,

所以Q ????34

x 0,24+34y 0,1

2.

因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ????0,0,1

2, 所以PQ →

=???

?34x 0,24+34y 0,0.

又平面BCD 的一个法向量为a =(0,0,1),故PQ →

·a =0. 又PQ ?平面BCD ,所以PQ ∥平面BCD .

方法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同证法一建立空间直角坐标系,写出点A 、B 、C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →

,设点F 坐标为(x ,y,0)则

(x -x 0,y -y 0,0)=1

4

(-x 0,2-y 0,0),

∴???

x =34

x 0

y =24+3

4y

∴OF →=(3

4x 0,24+3

4

y 0,0)

又由证法一知PQ →=(3

4x 0,24+34y 0,0),

∴OF →=PQ →

,∴PQ ∥OF .

又PQ ?平面BCD ,OF ?平面BCD , ∴PQ ∥平面BCD .

思维升华 用向量证明线面平行的方法有:

(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;

(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.

(2014·湖北)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别

是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).

(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;

(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.

方法一 (1)证明 如图(1),连接AD 1,由ABCD -A 1B 1C 1D 1是正方体,知BC 1∥AD 1.

当λ=1时,P 是DD 1的中点,

又F 是AD 的中点,所以FP ∥AD 1.所以BC 1∥FP . 而FP ?平面EFPQ ,且BC 1?平面EFPQ , 故直线BC 1∥平面EFPQ .

图(1)

(2)解 如图(2),连接BD .因为E ,F 分别是AB ,AD 的中点,

图(2)

所以EF ∥BD ,且EF =1

2BD .

又DP =BQ ,DP ∥BQ ,

所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD , 从而EF ∥PQ ,且EF =1

2

PQ .

在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1,于是EQ =FP =1+λ2,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,

故∠GOH 是平面EFPQ 与平面PQMN 所成的二面角的平面角.

若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN ,知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 分别是EF ,MN 的中点, 所以GH =ME =2.

在△GOH 中,GH 2=4,OH 2=1+λ2-(22)2=λ2+1

2

, OG 2=1+(2-λ)2-(

22)2=(2-λ)2+1

2

, 由OG 2+OH 2=GH 2,

得(2-λ)2+12+λ2+12=4,解得λ=1±2

2

故存在λ=1±2

2

,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.

方法二 以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图(3)所示的空间直角坐标系D -xyz .

图(3)

由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ),M (2,1,2),N (1,0,2),BC 1→

=(-2,0,2),FP →=(-1,0,λ),FE →=(1,1,0),MN →=(-1,-1,0),NP →

=(-1,0,λ-2). (1)证明 当λ=1时,FP →

=(-1,0,1), 因为BC 1→

=(-2,0,2), 所以BC 1→=2FP →

,即BC 1∥FP .

而FP ?平面EFPQ ,且BC 1?平面EFPQ , 故直线BC 1∥平面EFPQ .

(2)解 设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由?????

FE →·n =0,FP →·

n =0,可得????

?

x +y =0,-x +λz =0.

于是可取n =(λ,-λ,1).

同理可得平面PQMN 的一个法向量为m =(λ-2,2-λ,1).

若存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角,则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,

即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±2

2

.

故存在λ=1±2

2,使平面EFPQ 与平面PQMN 所成的二面角为直二面角.

题型二 证明垂直问题

例2 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD . 思维点拨 证明线面垂直可以利用线面垂直的定义,即证线与平面内的任意一条直线垂直;也可以证线与面的法向量平行.

证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →.

令BB 1→=a ,BC →=b ,BA →

=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,

则BA 1→=a +c ,BD →=12a +b ,AB 1→

=a -c ,

m =λBA 1→+μBD →

=????λ+12μa +μb +λc , AB 1→·m =(a -c )·???

?????λ+12μa +μb +λc =4????λ+12μ-2μ-4λ=0.故AB 1→

⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO .

因为△ABC 为正三角形, 所以AO ⊥BC .

因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.

取B 1C 1的中点O 1,以O 为原点,分别以OB →,OO 1→,OA →

所在直线为x

轴,y 轴,z 轴建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3), A (0,0,3),B 1(1,2,0).

设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →

=(-2,1,0). 因为n ⊥BA 1→,n ⊥BD →

故?????

n ·BA 1→=0,n ·

BD →=0????

-x +2y +3z =0,-2x +y =0,

令x =1,则y =2,z =-3,

故n =(1,2,-3)为平面A 1BD 的一个法向量, 而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→

∥n , 故AB 1⊥平面A 1BD .

思维升华 用向量证明垂直的方法:

(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.

(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.

(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.

如图所示,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =

2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角. (1)求证:CM ∥平面P AD ; (2)求证:平面P AB ⊥平面P AD .

证明 (1)以C 为坐标原点,分别以CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C -xyz , ∵PC ⊥平面ABCD ,

∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.

∵PC =2,∴BC =23,PB =4.

∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2), M (

32,0,32

),∴DP →=(0,-1,2),DA →

=(23,3,0), CM →

=(32,0,32

),

令n =(x ,y ,z )为平面P AD 的一个法向量,

则?????

DP →·n =0,DA →·

n =0,即???

-y +2z =0,23x +3y =0,

∴???

z =12

y ,x =-3

2

y ,

令y =2,得n =(-3,2,1).

∵n ·CM →

=-3×32+2×0+1×32=0,

∴n ⊥CM →

,又CM ?平面P AD , ∴CM ∥平面P AD .

(2)取AP 的中点E ,则E (3,2,1),BE →

=(-3,2,1). ∵PB =AB ,∴BE ⊥P A .

又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →

,∴BE ⊥DA ,

又P A ∩DA =A ,∴BE ⊥平面P AD , 又∵BE ?平面P AB ,∴平面P AB ⊥平面P AD . 题型三 解决探索性问题

例3 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;

(2)求二面角D -A 1A -C 的余弦值;

(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.

思维点拨 设BD 与AC 交于点O ,连接A 1O ,证明OB ,OC ,OA 1两两垂直,从而以点O 为坐标原点建立空间直角坐标系.(1)证明AA 1→·BD →=0;(2)根据两个平面的法向量夹角余弦值求二面角的余弦值;(3)设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,利用CP →=λCC 1→

,求出点P 坐标,再根据BP →

与平面DA 1C 1的法向量垂直求λ的值.

解 (1)设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,

∴A 1O 2=AA 21+AO 2-2AA 1·

AO cos60°=3, ∴AO 2+A 1O 2=AA 21,

∴A 1O ⊥AO .

由于平面AA 1C 1C ⊥平面ABCD ,∴A 1O ⊥平面ABCD .

以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→

=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→

,即BD ⊥AA 1.

(2)由于OB ⊥平面AA 1C 1C ,∴平面AA 1C 1C 的一个法向量为n 1=(1,0,0). 设n 2=(x ,y ,z )为平面DAA 1D 1的一个法向量,则?????

n 2·

AA 1→=0,n 2·

AD →=0,

即?

??

y +3z =0,

-3x +y =0,

取n 2=(1,3,-1),则〈n 1,n 2〉即为二面角D -A 1A -C 的平面角,∴cos 〈n 1,n 2〉=

n 1·n 2|n 1||n 2|=55

, 所以,二面角D -A 1A -C 的余弦值为

55

. (3)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →

=λCC 1,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →

=(-3,1+λ,3λ). 设n 3⊥平面DA 1C 1,则?????

n 3⊥A 1C 1→,

n 3⊥DA 1→,

又A 1C 1→=(0,2,0),DA 1→

=(3,0,3),

设n 3=(x 3,y 3,z 3),???

2y 3=0,

3x 3+3z 3=0,

取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →

=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .

思维升华 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即

找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.

如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长

都是底面边长的2倍,P 为侧棱SD 上的点. (1)求证:AC ⊥SD .

(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.

(1)证明 连接BD ,设AC 交BD 于点O ,则AC ⊥BD . 由题意知SO ⊥平面ABCD .

以O 为坐标原点,OB →,OC →,OS →

所在直线分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系,如图. 设底面边长为a ,则高SO =62

a , 于是S ?

???0,0,

62a ,D ???

?-22a ,0,0, B ??

??22a ,0,0,C ????0,22a ,0,OC →=???

?0,22a ,0,

SD →=????-22a ,0,-62a ,则OC →·SD →

=0.

故OC ⊥SD .从而AC ⊥SD .

(2)解 棱SC 上存在一点E ,使BE ∥平面P AC . 理由如下:

由已知条件知DS →

是平面P AC 的一个法向量, 且DS →=????22a ,0,62a ,CS →

=????0,-22a ,62a ,

BC →

=???

?-22a ,22a ,0.

设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →

=?

??

?-

22a ,22a (1-t ),62at , 而BE →·DS →=0?t =13

.

即当SE ∶EC =2∶1时,BE →⊥DS →

.

而BE 不在平面P AC 内,故BE ∥平面P AC .

利用向量法解决立体几何问题

典例:(12分)(2014·课标全国Ⅱ)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;

(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积.

(1)证明 连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .[2分] 因为EO ?平面AEC ,PB ?平面AEC , 所以PB ∥平面AEC .[4分]

(2)解 因为P A ⊥平面ABCD ,四边形ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.

如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →

|为单位长,建立如图空间直角坐标系A -xyz ,[6分]

则D (0,3,0),E (0,32,12),AE →=(0,32,12

). 设B (m,0,0)(m >0),

则C (m ,3,0),AC →

=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则?????

n 1·

AC →=0,n 1·AE →=0,即?????

mx +3y =0,32y +12z =0,

可取n 1=(

3

m

,-1,3).[8分] 又n 2=(1,0,0)为平面DAE 的一个法向量, 由题设|cos 〈n 1,n 2〉|=1

2

,即

33+4m 2=12

解得m =3

2

.[10分]

因为E 为PD 的中点,所以三棱锥E -ACD 的高为1

2,

三棱锥E -ACD 的体积V =13×12×3×32×12=3

8

.[12分]

温馨提醒 (1)利用向量法证明立体几何问题,可以建坐标系或利用基底表示向量; (2)建立空间直角坐标系时,要根据题中条件找出三条互相垂直的直线;

(3)利用向量除了可以证明线线平行、垂直,线面、面面平行、垂直外,还可以利用向量求夹角、距离,从而解决线段长度问题、体积问题等.

方法与技巧

1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.

2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 失误与防范

用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.

A 组 专项基础训练 (时间:45分钟)

1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ?α D .l 与α相交

答案 B

解析 ∵n =-2a ,∴a 与α的法向量平行,∴l ⊥α.

2.若AB →=λCD →+μCE →

,则直线AB 与平面CDE 的位置关系是( ) A .相交 B .平行

C .在平面内

D .平行或在平面内

答案 D

解析 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →

共面,∴AB 与平面CDE 平行或在平面CDE 内. 3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( ) A .(2,4,-1) B .(2,3,1) C .(-3,1,5) D .(5,13,-3) 答案 D

解析 由题意知,AB →=(-2,-6,-2),设点D (x ,y ,z ),则DC →

=(3-x,7-y ,-5-z ),因为AB →=DC →

,所以x =5,y =13,z =-3,故选D.

4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )

A.627

B.637

C.607

D.657 答案 D

解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),

∴????

?

7=2t -μ,5=-t +4μ,λ=3t -2μ,

∴?????

t =337

μ=17

7,

λ=657.

5.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( ) A .60° B .45°

C .90°

D .以上都不正确

答案 C

解析 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz ,

依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0), M (2,2,0).

∴PM →

=(2,1,-3),

AM →

=(-2,2,0),

∴PM →·AM →=(2,1,-3)·(-2,2,0)=0, 即PM →⊥AM →

,∴AM ⊥PM .

6.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________. 答案 α∥β

解析 设平面α的法向量为m =(x ,y ,z ), 由m ·AB →=0,得x ·0+y -z =0?y =z , 由m ·AC →=0,得x -z =0?x =z , ∴m =(1,1,1),m =-n , ∴m ∥n ,∴α∥β.

7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________. 答案 16

解析 P A →=(-1,-3,2),PB →

=(6,-1,4). 根据共面向量定理,设PC →=xP A →+yPB →

(x 、y ∈R ), 则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4) =(-x +6y ,-3x -y,2x +4y ), ∴????

?

2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,

解得x =-7,y =4,a =16.

8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a

3

,则MN 与平面BB 1C 1C 的位置关系是________. 答案 平行

解析 ∵正方体棱长为a ,A 1M =AN =2a

3

, ∴MB →=23A 1B →,CN →=23

CA →,

∴MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA →

=23(A 1B 1→+B 1B →)+BC →+23

(CD →+DA →

)

=23B 1B →+13

B 1

C 1→. 又∵C

D →

是平面B 1BCC 1的法向量, ∴MN →·CD →=????23B 1B →+13B 1C 1→·CD →=0, ∴MN →⊥CD →

.又∵MN ?平面B 1BCC 1, ∴MN ∥平面B 1BCC 1.

9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =1

2

PD .证明:平面PQC ⊥平面DCQ .

证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 、DP 、DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .

依题意有Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →

=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC →=0.即PQ ⊥DQ ,PQ ⊥DC , 又DQ ∩DC =D ,故PQ ⊥平面DCQ , 又PQ ?平面PQC ,∴平面PQC ⊥平面DCQ .

10.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .

证明 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系, 则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),

∴E (12,1,12),F (0,1,12),EF →=(-12,0,0),PB →=(1,0,-1),PD →

=(0,2,

-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →

=(1,0,0). (1)∵EF →=-12AB →,∴EF →∥AB →

,即EF ∥AB ,

又AB ?平面P AB ,EF ?平面P AB , ∴EF ∥平面P AB .

(2)∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,

∴AP →⊥DC →,AD →⊥DC →

,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,∴DC ⊥平面P AD .

∵DC ?平面PDC ,∴平面P AD ⊥平面PDC .

B 组 专项能力提升 (时间:30分钟)

11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( ) A .(1,1,1) B .(23,2

3,1) C .(22,2

2,1) D .(

24,2

4

,1) 答案 C

解析 设M 点的坐标为(x ,y,1),AC ∩BD =O , 则O (

22,2

2

,0), 又E (0,0,1),A (2,2,0),

∴OE →=(-22,-22,1),AM →

=(x -2,y -2,1),

∵AM ∥平面BDE ,∴OE →∥AM →

∴???

x -2=-

22

,y -

2=-

2

2

???

?

x =22,y =22.

12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( ) A .3B .4C .5D .6 答案 C

解析 ∵α⊥β,∴u ⊥v ,∴u ·v =0, ∴-12-8+4t =0

,t =5.

13.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →

的实数λ有________个. 答案 2

解析 建立如图的坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为

???

?x +12,y +12,1,

又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上, ∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1. ∴有2个符合题意的点P ,即对应有2个λ.

14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:

(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .

证明 (1)如图建立空间直角坐标系A -xyz ,

令AB =AA 1=4,

则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN , 则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →

=(-2,4,0), ∴DE →=NC →

,∴DE ∥NC ,

又∵NC ?平面ABC ,DE ?平面ABC . 故DE ∥平面ABC .

(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →

=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0.

∴B 1F →⊥EF →,B 1F →⊥AF →

,即B 1F ⊥EF ,B 1F ⊥AF , 又∵AF ∩EF =F ,∴B 1F ⊥平面AEF .

15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别

是AB 、PB 的中点. (1)求证:EF ⊥CD ;

(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论.

(1)证明 如图,分别以DA 、DC 、DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系, 设AD =a ,则D (0,0,0)、 A (a,0,0)、B (a ,a,0)、 C (0,a,0)、E ????a ,a

2,0、 P (0,0,a )、F ????

a 2,a 2,a 2.

EF →=????-a 2,0,a 2,DC →

=(0,a,0). ∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .

(2)解 设G (x,0,z ),则FG →

=????x -a 2,-a 2,z -a 2, 若使GF ⊥平面PCB ,则

由FG →·CB →=???x -a

2,-a 2,z -a 2·(a,0,0) =a ????x -a 2=0,得x =a

2

; 由FG →·CP →=????x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22

+a ????

z -a 2=0,得z =0. ∴G 点坐标为????a 2,0,0,即G 点为AD 的中点.

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

6.2 立体几何中的向量方法(A卷提升篇)【解析版】

专题6.2 立体几何中的向量方法(A 卷基础篇)(浙江专用) 参考答案与试题解析 第Ⅰ卷(选择题) 一.选择题(共10小题,满分50分,每小题5分) 1.(2020·全国高二课时练习)已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 法向量的是( ) A .(1,1,1)- B .(1,1,1)- C .? ? ? ??? D .?? ? ??? 【答案】C 【解析】 (1,1,0),(1,0,1)AB AC =-=-, 设(,,)n x y z =为平面ABC 的法向量, 则00n AB n AC ??=??=? ,化简得00x y x z -+=??-+=?, ∴x y z ==,故选C. 2.(2020·全国高二课时练习)空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .无法确定 【答案】A 【解析】 ∵空间直角坐标系中, A (1,2,3), B (﹣1,0,5), C (3,0,4), D (4,1,3), ∴AB =(﹣2,﹣2,2),CD =(1,1,﹣1), ∴AB =﹣2CD , ∴直线AB 与CD 平行. 故选A .

3.(2020·全国高二课时练习)已知平面α的法向量为(2,2,1)n =--,点(,3,0)A x 在平面α内,则点(2,1,4)P -到平面α的距离为 103,则x =( ) A .-1 B .-11 C .-1或-11 D .-21 【答案】C 【解析】 (2,2,4)PA x =+-,而103n d n PA ?= =, 103=,解得1x =-或-11. 故选:C 4.(2020·全国高二课时练习)已知向量,m n 分别是直线l 和平面α的方向向量和法向量,若 1cos ,2 m n =-,则l 与α所成的角为( ) A .030 B .060 C .0120 D .0150 【答案】A 【解析】 设线面角为θ,则1sin cos ,,302 m n θθ=??==. 5.(2020·全国高二课时练习)设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若2,3a n π= ,则l 与α所成的角为( ) A .23π B .3π C .6π D .56 π 【答案】C 【解析】 结合题意,作出图形如下:

(完整版)高中立体几何证明垂直的专题训练

高中立体几何证明垂直的专题训练 深圳龙岗区东升学校—— 罗虎胜 立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。 (1) 通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 分析:取PC 的中点F ,易证AE//BF ,易证 B F ⊥平面PDC 2.如图,四棱锥P -ABCD ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 分析:取PC 的中点G ,易证EG//AF ,又易证A F 于是E G ⊥平面PCD,则平面PCE ⊥平面PCD (第2题图)

3、如图所示,在四棱锥P ABCD -中, AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且 1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若121PH AD FC ===,,,求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. 分析:要证EF PAB ⊥平面,只要把FE 平移到DG ,也即是取AP 的中点G ,易证EF//GD, 易证D G ⊥平面PAB 4.如图所示, 四棱锥P -ABCD 底面是直角梯形 ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面; 分析:取PD 的中点F ,易证AF//BE, 易证A F ⊥平面PDC (2)利用等腰三角形底边上的中线的性质 5、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=o ,AP BP AB ==, PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; A C B P

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

高中数学立体几何线面垂直的证明

立体几何证明 【知识梳理】 1. 直线与平面平行 判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) 性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线平行”) 2..直线与平面垂直 判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直?线面垂直”) 判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。 (线面垂直?线线垂直) 性质2:如果两条直线同垂直于一个平面,那么这两条直线平行. 三。平面与平面 空间两个平面的位置关系:相交、平行. 1. 平面与平面平行 判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行?面面平行”) 2. 两个平面垂直 判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直?面面垂直”) 性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直?线面垂直)

知识点一 【例题精讲】 1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。 (1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V. 2.如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的 中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V . 3、如图所示,在四棱锥P ﹣ABCD 中,PA ⊥底面 ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA=AB=BC ,E 是PC 的中点,证明: (1)AE ⊥CD (2)PD ⊥平面ABE .

立体几何中垂直地证明

全方位教学辅导教案

5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且 PA AB =,点E 是PD 的中点。 ⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面; 6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA = AB =BC ,E 是PC 的中点. (1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE. 题型二、面面垂直的判定与性质 1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平面PBC 。 2、如图,棱柱 111 ABC A B C -的侧面 11 BCC B 是菱形,11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC ; 3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且

1C ABD O AB 在平面上的射影恰好在上。 11(2). BDC ⊥⊥1 1()求证:AD BC 求证:面ADC 面 4、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 5、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。 (1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥; 6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC. O B C 1 A D C

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

高中数学向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、 ,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥ α,只需证明a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=.⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若

立体几何垂直证明(基础)

立体几何垂直的证明 类型一:线线垂直证明(共面垂直、异面垂直) (1)共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 【例1】在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面 (2)异面垂直(利用线面垂直来证明) 【例2】在正四面体ABCD 中, 求证:AC BD ⊥ 【变式1】如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知 ο60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

【变式2】如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点, 将△AED,△DCF分别沿, DE DF折起,使,A C两点重合于'A. 求证:'A D EF ⊥; 【变式3】如图,在三棱锥P ABC -中,⊿PAB是等边三角形,∠P AC=∠PBC=90 o。 证明:AB⊥PC 类型二:直线与平面垂直证明 方法○1利用线面垂直的判断定理 【例3】在正方体 1111 ABCD A B C D -中,,求证: 11 AC BDC ⊥平面 【变式1】如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90?.E为BB1的中点,D点在AB上且DE= 3 . 求证:CD⊥平面A1ABB1; B E ' A D F G

P C B A D E 【变式2】如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的 中点,2, 2.CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ; 【变式3】如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC = ()1求证:BD ⊥平面PAC ○ 2利用面面垂直的性质定理 【例4】在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。 【变式1】在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且 PAB ABCD ⊥面底面,求证:BC PAB ⊥面

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

立体几何垂直证明

立体几何垂直证明方法技巧授课教师:吴福炬

类型一:线线垂直证明(共面垂直、异面垂直) (1) 共面垂直:掌握几种模型 ①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形 ⑤利用相似或全等证明直角。 例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面

(2) 异面垂直(利用线面垂直来证明) 例1 在正四面体ABCD 中, 求证:AC BD ⊥ 变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形, 已知 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥;

变式2 如图,在边长为2的正方形ABCD中,点E是AB的中 点,点F是BC的中点,将△AED,△DCF分别沿, DE DF折起, 使,A C两点重合于'A. 求证:'A D EF ⊥; 变式3如图,在三棱锥P ABC -中,⊿PAB是等边三角形, ∠P AC=∠PBC=90 o证明:AB⊥PC 类型二:直线与平面垂直证明 B E ' A D F G

方法○1利用线面垂直的判断定理 例:在正方体1111ABCD A B C D -中,,求证:1 1AC BDC ⊥平面 变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1 的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1; 变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

专题:运用向量法证明立体几何问题

专题:运用向量法证明立体几何问题 一、知识点: 1、若向量m 与直线l 平行,则向量叫做直线l 的方向向量。 2、若⊥α,则叫做平面α的法向量。 (1)要证m 为平面α的法向量,只须让m 与平面α内的两条相交直线垂直。 (2)若χ轴与平面的法向量,可设为=(1,0,0) (3)若 y 轴为平面的法向量,可设为=(0,1,0) (4)若Z 轴为平面的法向量,可设为m =(0,0,1) 3、证明线面平行与线面垂直 若为平面α的法向量,n 为直线l 的方向向量,则 (1)l ⊥α?m ∥n ?m =λn (2)l ∥α ?m ⊥n ?m ·n =0 4、运用向量求角 (1)若两条异面直线l 1,l 2所成的角为 θ,为l 1 的方向向量, n 为l 2 的方向向量,则 cos (090)m n m n θθ=<≤ , (2)若两个平面12αα,所成的二面角的平面角为 θ,为1α的法向

量,为2α的法向量,则 cos (090)m n m n θθ=<≤ , 当二面角为锐时为θ;当二面角为钝角时为 π-θ。 (3)直线l 与平面α所成的角为θ,n 为直线l 的方向向量,m 为平面α 的法向量,则 sin (090)m n m n θθ=<≤ , 5、点P 到平面α的距离为d,若为平面α的法向量,A 为平面α内任 一点,则PA m d m = 例1.如图在四棱锥P-ABCD 中,底面AB 、CD 是正方形且边长为1,侧棱PD ⊥底面ABCD ,PD=DC ,点E 是PC 的中点,且F 的坐标是(31,31,3 2 )。 (1)求证:PA ∥平面EDB (2)求证:PB ⊥平面EFD 解:如图建立空间直角坐标系D xyz -。 设底面正方形的边长为1,则PD=1 D (0,0,0),P (0,0,1),A (1,0,0), B (1,1,0), C (0,1,0),E (0,21,2 1 ) (1)设(x,y,z)m = 为平面EDB 的法向量 则00m DB m DE ?=??=?? , 而(1,1,0)11(0,,)22 DB DE ?=??=?? ∴011022 x y y z +=?? ?+=?? , 即 x y z y =-??=-? 故m =(1,-1,1)(取Y=-1)

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线线垂直方法 (1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB= 2 1 DC ,中点为PD E .求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ; 3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点,且1 2 DF AB = ,PH 为PAD ?中AD 边上的高。 (1)证明:PH ABCD ⊥平面; (2)若11PH AD FC == =,, 求三棱锥E BCF -的体积; (3)证明:EF PAB ⊥平面. (第2题图)

4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为 PC 的中点, PA =AD 。 证明: BE PDC ⊥平面; 5.在三棱锥P ABC -中,2AC BC ==,90ACB ∠= ,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥; (Ⅱ)求二面角B AP C --的大小; 6.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC (3)利用勾股定理 7.如图,四棱锥P ABCD -的底面是边长为1 的正方形,,1,PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ; _ D _ C _ B _ A _ P A C B P

立体几何中垂直的证明

全方位教学辅导教案 线面垂直的判定及其性质 ●知识要点 1.线面垂直 (1)定义: 如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足. (2)判定定理:(线线垂直→线面垂直) 一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. ☆ 符号语言:若l ⊥m ,l ⊥n ,m ∩n =B ,m α,n α,则l ⊥α. (3)性质定理:(线面垂直→线线平行) 垂直于同一个平面的两条直线平行. 2.二面角 (1)定义: 从一条直线出发的两个半平面所组成的图形叫二面角. 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --) (2)二面角的平面角: 在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 范围:000180θ<<. 3.面面垂直 (1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥. (2)判定定理:(线面垂直→面面垂直) 一个平面过另一个平面的垂线,则这两个平面垂直. (3)性质定理:(面面垂直→线面垂直) 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. “垂直关系”常见证明方法 (一)直线与直线垂直的证明

4.在正方体''''ABCD A B C D -中,求直线'A B 和平面''''A B C D 所成的角. 题型一、线面垂直的判定与性质 1、已知:如图,P 是棱形ABCD 所在平面外一点,且PA=PC 求证:AC PBD ⊥平面 2、已知,如图,四面体A-BCD 中, ,,AB CD AD BC H BCD ⊥⊥V 为的垂心。 求证:AH BCD ⊥平面 3、如图,,,PA ABCD ABCD M N AB PC ⊥平面,是矩形,点分别为的中点, 求证:MN AB ⊥ 4、如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为 CD 中点. (1)求证:EF ⊥面BCD ; A D C B P H B C D A

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

相关文档
相关文档 最新文档