文档库 最新最全的文档下载
当前位置:文档库 › 有机半导体材料

有机半导体材料

有机半导体材料
有机半导体材料

題目:organic semiconductor materials 指導教授:郭豔光老師

班級:物四乙

學生:陳衍榮

學號:8522072

有機半導體材料

前言

早在1960年代初期,Pope等人在Anthracene之有機芳香族化合物晶體上入數百伏之跨壓下,發現存在電流流通與發光的現象,而啟開後人研究有機發光之大門。在後續的二十餘年間,因其元件特性距離實用仍有相當大的距離,因此仍專注在其相關的發光機制與電荷傳導等基礎研究。及至80年代末期,美國科達公司實驗室利用真空蒸鍍有機薄膜的技術和異質接面(heterojunction)多層有機膜(multilayer)之元件特性。諸如操作電壓<10V,量子效率>1﹪,與元件穩定性

等均已有大幅之改善,因而激增有機電激發光元件之實用性,也引發全球OEL之研究熱潮。另一方面則是在聚合物散料上的發展也令人囑目。Patridge在80年代初期便發表PVK材料(poly vinylcarbazole)亦具有機光導體之性質。此一發現,使得有機化合物在發光體上之應用更趨於廣泛。然而在1990年有機發光材料又有更進一步地發展。英國劍橋大學卡文迪實驗室(Calvendish Lab)發表第一個利用聚苯基乙烯(PPV, Poly p-phenylenevinylene)之共軛聚合物(conjugate polymer)製成的OEL元件。由於此類共軛聚合物具有類似半導體的特性與簡易的製程,從而激起對OEL元件的研究熱。而各種的研究材料,諸如摻雜發光的染料小分子或大分子之OEL元件,甚至在塑膠基板上可彎曲之OEL元件等均是被研究的主題。可見OEL之研究廣度與深度,而應用範圍也隨之更加寬廣。由於大部分OEL元件都具有類似二極體的特性,因此OEL又稱有有機發光二極體(OLED),而目前其最潛力之應用即在平面顯示器之發揮。以下圖一摘述OEL發展的簡史。

圖一OEL發展簡史

元件製作流程

OEL的元件製作流程(如圖二),包含了ITO玻璃的處理、有機層蒸鍍、金屬層蒸鍍、元件封裝及元件測試,依序簡述如下:

圖二有機電激發光元件的製作流程

(一)ITO(導電透光膜銦氧化錫)玻璃的處理

所使用的ITO玻璃,面電阻(sheet resistance)Rs約為25Ω/sq,ITO 的厚度約為1000?。ITO玻璃於鍍膜前先需經過適當的清洗程序,為表面擦拭後,依序浸於清潔劑、去離子水、丙酮及異丙酮中各以超音波振盪十分鐘,在至於烘箱內烘乾,最後ITO的表面再經氧氣之電漿處理過。ITO玻璃的清潔程序應於無塵室中進行,盡量防止灰塵為力的附著,以免所製得的元件會有漏電流產生。

(二)膜層蒸鍍

真空系統使用Cryo pump以降低真空時的水氣的殘存含量,鍍膜時的真空度為6×10-6Torr;有基層與金屬層的蒸鍍皆採熱阻絲加熱的

方式,前者使用石英坩堝,以鎢絲圈直接加熱,蒸鍍速度約為2?/s;後者使用鉭舟直接加熱,蒸鍍速度約為5?/s。

(三)封裝與測試

水氣與氧氣的影響OEL的元件效能甚巨,因此元件最後的封裝工作十分重要,元件的封裝程序採用UV-Curing epoxy 封裝,在一充滿乾燥的手套箱進行。元件的測試利用Keithley電源供應量測系統配合Topcon BM-8型的輝度計,可同步量測出OEL元件之I-V-B的特性關係。使用壽命的測試條件為在空氣與常溫環境下,以定電流密度模式連續操作以封裝的元件,操作製亮度衰減為初始值得一半時結束測試。

有機發光材料與元件原理

OEL元件的薄膜是採用熱蒸鍍的方式,薄膜的的成長是靠分子間的凡得瓦力作用而推疊成,薄膜的結構偏屬於無結晶(amorphous),薄膜的成長相當容易,並不需要像無機發光二極體的磊晶(epitaxy)程序考慮到得格配位的間題。

OEL是以有機分子為主之態半導體元件,而無機發光元件(EL)則是以原子為主之材料。相較而言,OEL之元件特性來自其分子之作用力而EL是來自其原子之作用力。一般而言,有機分子是共價鍵化合物,因其電子被區域化(localization),故其通導性不佳,如烷類。然而有一類有機分子因其具有π—電子,而在適當組合下,這些π—電子不會被區域化(delocalization),而其鍵結是以單、雙鍵方式交互形成,故此類分子稱為共軛分子(conju gate molecule), 而其特性是因π—電子能夠在其共軛π—軌域上移動,故具有電通性。利用此類之分子單體(monomer)便能聚合產生「共軛聚合物」(conjugate polymer)。最早的共軛聚合物即為聚乙烯(PA),其具有高導度。目前被發現或較重要之共軛導電聚合物包括:聚呲咯(PPy)、聚塞吩(PT)、聚苯胺(PAn)、聚對位苯(PPP)、聚苯基乙烯(PPV)和聚塞吩乙烯(PTV)等。見下圖三:

圖三一些常用共軛導電聚合物之化學結構

因其導電度範圍介於導體與半導體之間,故其應用範圍非常廣,可用於導體、電子元件(electrouic devices)、電磁波遮蔽體(EMI Shielding)、抗靜電塗佈(antistatic coating)等;而應用其摻雜及去摻雜之行為,可發展為可反覆充電式電池(rechargeable battery)、顯示器、化學檢測器(chemical sensor)、電變色窗(smart window);此外,當可應用於太陽電池、光學記憶體、非線性光學元件等。而目前最熱門的應用當是發光二極體。

有機LED的構造其實相當簡單,基本上只是把一層或多層的有機薄膜夾在兩個電極之間,並且讓其中之一為透明,當在兩個電極之間外加約2至3伏特電壓時,當子自陰極(通常為金屬)射出,而電洞則自陽極(通常為ITO)射出,二者分別進入中間夾層的有機材料中。

在外加電場的驅動下,電子和電洞就在有機薄膜中做相對運動,一直到兩者在薄層中間相遇,電子落入電洞中而進入發光激態

(luminescent excited state),形成Exciton,衰減時將多餘能量以光子的

形態釋出而發光,如下圖四。

圖四電激發光的基本原理

當然,發出特定波長的光只是理想中的結果,事實上多餘能量的釋放方式除了發光之外,能量消散也可能是以放熱或者是分子振動的方式來釋出,其結果將成元件材質的燒毀或亮度的衰退。事實上,元件燒毀的發生通常起源於膜中的雜質或缺陷,因為雜質或缺陷造會成薄膜的材質不均,當加入外昌電場時,薄膜較薄的部分受到較高的電場而形成熱點,常因而導致此一區域的局部燒毀。因此,發光機制的掌握和材料的成膜技術顯然是開發電激發光材料的重心所在。

能夠被用來作為有機LED的材料,大致上必須具備有能夠形成薄膜、具有適當的半導體性質、能夠放射特定波長的光和足夠的強度等基本條件。以下所列即為目前被研究的較為廣泛的有機發光材料:

1.低分子有機染料(dye)薄膜。

2.完全共軛的有機高分子材料。

3.在主鏈上具有發色團(chromophore)的高分子物質。

4.側鏈上具有發色團的高分子物質。

5.染料和高分子志成的複合膜。

在這些材料之中,尤其以染料和共軛有機高分子研究的最多,商

品化的可行性也大。使用染料的優點,在於它能夠經由分子的結構設計和合成技巧,調節放射光的顏色和量子效率,薄膜的形成還可以用真空蒸鍍的方式來調節厚度;而染料的缺點則是其穩定性較差,而且小分子物質本身欠缺機械性物質。

反觀共軛高分子材料,由於安定性佳,機械性能良好,加工方法容易,而且可製成具可橈曲性的薄膜,再加上可經由能階和導電度的調整而發出不同顏色的光,因此應用的潛力備受矚目。如下圖五:

圖五聚乙烯,(CH)n與CH長度與π電子分子軌域能階之關係圖

由上可知,我們可以整理出OLED的影響元件特性因素有:

(1)載子的注入的效率。

(2)載子在薄膜中的傳導特性。

(3)載子的輻射復合效率。

有機發光元件可分為:

單層元件(single layer devices)

典型的有機發光元件的基本構造,見下圖六:

圖六單層元件結構與能帶示意圖,EML:發光層;ITO:透明電極

電極中間夾層薄膜的成形可用蒸鍍(evaporation)、旋轉塗佈(spin-coating)或其他的成膜技術來處理,其厚度一般控制在幾個單分子層(monolayer)到大約1000至2000?之間。

在這類元件之中,對有機層材料的基本要求,就是它必須是個有效率的發光體,同時也是個良好的電荷傳輸體,材料本身必須能夠在兩電極之間進行有效的電荷傳輸。不過要找到這種材料在單一層中是比較困難的,因為:

(1)載子注入效率和電極及有機半導體之能階相對位置有關,適合電

洞注入,不見得適合電子注入。

(2)有機半導體常是單極性的材料,通常一種材料只適合一種載子傳

導。

(3)良好的載子傳導材料未必是良好的發光材料。

也就因為如此,單層元件時常容易有射出電荷不平衡的傾向發生,當電子和電洞在薄膜的邊緣的地帶相遇,或者有機層和電極的界面附近結合時,因為電荷不均勻現象和缺陷,使的產生的光度明顯變弱,因而造成元件的效率低落。

雙層元件

為了解決單層元件的問題,通常加入另一層有機分子,做為電荷(電子或電洞)的傳送層,並將元件製成如下圖七:

圖七雙層OEL元件結構與能帶示意圖,ETL:電子傳導層

這個元件將電子、電洞分開注入功能不同的材料層。電洞傳導層負責電洞注入和傳導,電子傳導層負責電子注入和傳導。此種結構之另一優點也是利用其異質接面(heterojunction),可增加載子之輻射複合效率。這雙層結構已發展出多層結構而改善其發光特性。

除由不同的發光材料可得到各種

光色外,亦可藉發光體摻合方式得到

各種光色。所謂的發光摻雜物

(emissive dopant),在發光層主體(host)

中摻雜少量的高效率發光染料以提高

載子輻射複合效率。這些發光摻雜物

具有:(1)比主體小的能隙,(2)非常高

的發光效率,以及(3)比主體短的複合

生命週期(recombination lifetime),因

而能透過能量轉換的方式將主體分子

(host molecule)上形成的激子(exciton)轉移到這些發光摻雜物上,快速有效率地輻射複合,如上圖。除了提升發光效率之外,改換所使用的發光摻雜物而不需改變傳導載子的主體,可以很輕易地改變發光顏色及改善色彩飽和度。

載子注入的效率(難易度)對於元件的發光量子效率以工作電壓影響至鉅,除了改變及調整所使用的有機載子注入層散料外,電極所使用的材料及極/有機層之間的介面亦須謹慎地選用及處理。一般而言,基於載子注入能障的考量,高工作函數(work function)之導體,例如ITO、Pt…等,似較適用於陽極,低工作函數之導體,例如Li、Mg、Ca、…等高活性金屬,較適用於陰極。近來亦發現在電極導體和有機層之間插入一層極薄之介電層,如LiF、MgO等,可大幅提升載子注入及元件量子效率,降低元件工作電壓,並容許使用穩定的金

屬如Al等作為陰極。

在載子傳導方面,由

於OLED所用之非晶有

機半導體薄膜多半沒有

像無機半導體般作不純

物摻雜以提昇導電性,再

加上其本身相當低之載

子移動率(<0.1㎝

2/V.s),以及材料中分布之

載子陷井(Traps),導致有

機半導體薄膜之導電性

不佳,以及在高電流時相

當程度之壓降。如何提高

OLED材料的導電性而

不降低其它的特性仍是

目前一個相當大的挑

戰。左圖是OLED的示意

圖。

不過有機發光元件

有一個很大的缺點,即是

亮度不夠,使得有機發光元件在顯示器上的用途形成重重阻礙,而亮度不夠的問題,通常是因為薄膜中有機分子的排列不規則,形成缺陷有造成的,當移動的電子

或電洞通過這些缺陷附近時,極易落入這些陷井之中,而當這些電子或電洞被缺陷困住時,自然而然放出其部分的能量而失去運動能力,最後即使仍然能夠和相對電荷結合,但是已經不再擁有足夠的能量來放出可見光的光子,取而代之的能量釋放方式為發出熱量和產生分子振動。這種非預期的能量消散方式,不但降低了發光的效率,更導致薄膜內更多缺陷的產生,使發光元件效能更進一步惡化。

在這方面,小分子有機LED來得順利,原因是因為小分子發光薄膜的製造一般是用真空長晶技術,製成超薄的薄膜,薄膜中有機分子的排列非常規律,結構中存在的缺限極少,電荷在小分子間很容易運動,因此可以得到較高的發光效率。

而高分子LED的研發進展雖然較小分子LED來得緩慢,但是由於高分子散料本身具有可撓曲性(flexibility),加上高分子的成膜技術

不但成本較低,而

且操作較簡單,不

像小分子的結晶

必須煞費苦心的

在真空中長成晶

體,因此待一些關

鍵性問題陸續解

決之後,其應用潛

力仍然相當可

觀。左圖為一些公

司在OLED上的

表現。

結論

雖然有機發光二極體的發展似乎已經準備進入商品化的階段了,但是可靠度的問題仍然是影響成敗的一個關鍵因素,目前許多試

圖提升可靠度的基本研究也正方興未艾。在未來的數年之中,應該不難預見這項技術領域的長足進展,屆時也必將帶給元件和系統的設計者們一些更高效而耐久的材料,以及更新的製程。

參考文獻

1.電子資訊第四卷2期

2.光學工程第六十六期

3.電子月刊第五卷第七期

4.光訊第79期、第80期

5.工業材料147期、156期

半导体材料发展情况

实用标准文案 1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

半导体信息功能材料与器件的研究新进展_图文(精)

第28卷第1期 中国材料进展v。1.28N。.1 2009年1月MATERIALS CHINA Jan.2009 半导体信息功能材料与器件的研究新进展 王占国 (中国科学院半导体研究所半导体材料科学重点实验室,北京100083 摘要:首先简要地介绍了作为现代信息社会基础的半导体材料和器件极其重要的地位,进而同顾了近年来半导体光电信息功能材料,包括半导体微电子、光电子材料,宽带隙半导体材料,自旋电子材料和有机光电子材料等的研究进展,最后对半导体信息功能材料的发展趋势做了评述。 关键词:半导体微电子;光电子材料;宽带隙半导体材料;自旋电子材料;有机光电子材料 中图法分类号:TN304:TB34文献标识码:A文章编号:1674—3962(2009Ol-0026一05 Recent Progress of Semiconductor Information Functional Materials WANG Zhanguo (Institute ofSemiconductors,Chinese Academy ofSciences,Beijing100083,China Abstract:The extreme importance of semiconductor materials and devices as a foundation of the modern informational society js briefly introduced first in this paper,Then the recent progress of semiconductor microelectronic and optoeleetron?iC materiMs including silicon,GaAs and InP crystals and itS mierostructures,wide band gap semiconductors materials, spintronic materisis and organic semiconductor optoelectronic

半导体材料研究的新进展(精)

半导体材料研究的新进展* 王占国 (中国科学院半导体研究所,半导体材料科学实验室,北京100083 摘要:首先对作为现代信息社会的核心和基础的半导体材料在国民经济建设、社会可持续发展以及国家安全中的战略地位和作用进行了分析,进而介绍几种重要半导体材料如,硅材料、GaAs和InP单晶材料、半导体超晶格和量子阱材料、一维量子线、零维量子点半导体微结构材料、宽带隙半导体材料、光学微腔和光子晶体材料、量子比特构造和量子计算机用材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。本文未涉及II-VI族宽禁带与II-VI族窄禁带红外半导体材料、高效太阳电池材料Cu(In,GaSe 2 、CuIn(Se,S等以及发展迅速的有机半导体材料等。 关键词:半导体材料;量子线;量子点材料;光子晶体 中图分类号:TN304.01文献标识码:A文章编 号:1003-353X(200203-0008-05 New progress of studies on semiconductor materials WANG Zhan-guo (Lab.of Semiconductor Materials Science,Institute of Semiconductors, Chinese Academy of Sciences,Beijing100083,China Abstract:The strategic position and important role of semiconductor materials,as a core and foundation of the information society,for development of national economic,national safety and society progress

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料研究的新进展精

半导体材料研究的新进展 王占国 (中国科学院半导体研究所,半导体材料科学实验室,北京100083 摘要:首先对作为现代信息社会的核心和基础的半导体材料在国民经济建设、 社会可持续发展以及国家安全中的战略地位和作用进行了分析,进而介绍几种重要半导体材料如,硅材料、GaAs和InP单晶材料、半导体超晶格和量子阱材料、一维量子线、零维量子点半导体微结构材料、宽带隙半导体材料、光学微腔和光子晶体材料、量子比特构造和量子计算机用材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。本文未涉及II-VI族宽禁带与II-VI族窄禁带红外半导体材料、高效太阳电池材料Cu(In,GaSe 2 、CuIn(Se,S等以及发展迅速的有机半导体材料等。 关键词:半导体材料;量子线;量子点材料;光子晶体 中图分类号:TN304.01 文献标识码:A 文章编 号:1003-353X(200203-0008-05 New progress of studies on semiconductor materials WANG Zha n-guo (Lab. of Semic on ductor Materials Scien ce,I nstitute of Semico nductors, Chinese Academy of Sciences , Beijing 100083, China Abstract:The strategic positi on and importa nt role of semic on ductor materials, as a core and foundation of the information society, for development of national economic, national safety and society progress

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体材料的历史现状及研究进展(精)

半导体材料的研究进展 摘要:随着全球科技的快速发展,当今世界已经进入了信息时代,作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。半导体材料凭借着自身的性能特点也在迅速地扩大着它的使用领域。本文重点对半导体材料的发展历程、性能、种类和主要的半导体材料进行了讨论,并对半导体硅材料应用概况及其发展趋势作了概述。 关键词:半导体材料、性能、种类、应用概况、发展趋势 一、半导体材料的发展历程 半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。 新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展.以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表和第二代半导体材料(以砷化镓和磷化铟为代表之后,在近10年发展起来的新型宽带半导体材料.作为第一代半导体材料,硅基半导体材料及其集成电路的发展导致了微型计算机的出现和整个计算机产业的飞跃,并广泛应用于信息处理、自动控制等领域,对人类社会的发展起了极大的促进作用.硅基半导体材料虽然在微电子领域得到广泛应用,但硅材料本身间接能带结构的特点限制了其在光电子领域的应用.随着以光

有机半导体材料

有机半导体材料 1 有机半导体材料的分子特征 有机半导体材料与传统半导体材料的区别不言自明,即有机半导体材料都是由有机分子组成的。有机半导体材料的分子中必须含有 键结构。如图1所示,在碳-碳双键结构中,两个碳原子的pz 轨道组成一对 轨道( 和 ),其成键轨道( )与反键轨道( )的能级差远小于两个 轨道之间的能级差。按照前线轨道理论, 轨道是最高填充轨道(HOMO), 是最低未填充轨道(LUMO)。在有机半导体的研究中,这两个轨道可以与无机半导体材料中的价带和导带类比。当HOMO 能级上的电子被激发到LUMO 能级上时,就会形成一对束缚在一起的空穴-电子对。有机半导体材料的电学和电子学性能正是由这些激发态的空穴和电子决定的。

在有机半导体材料分子里, 键结构会扩展到相邻的许多个原子上。根据分子结构单元的重复性,有机半导体材料可分为小分子型和高分子型两大类。 小分子型有机半导体材料的分子中没有呈链状交替存在的结构片断,通常只由一个比较大的 共轭体系构成。常见的小分子型有机半导体材料有并五苯、三苯基胺、富勒烯、酞菁、苝衍生物和花菁等(如图2),常见的高分子型有机半导体材料则主要包括聚乙炔型、聚芳环型和共聚物型几大类,其中聚芳环型又包括聚苯、聚噻吩、聚苯胺、聚吡咯等类型(如图3)。 事实上,由于有机分子的无限可修饰性,有机半导体材料的结构类型可以说是无穷无尽的。 图2: 几种常见的小分子有机半导体材料:(1)并五苯型,(2)三苯基胺类,(3)富勒烯,(4)酞菁,(5)苝衍生物和(6)花菁类。

图3: 几种常见的高分子有机半导体材料:(1)聚乙炔型,(2)聚芳环型,(3)共聚物型。 2 有机半导体材料中的载流子 我们知道无机半导体材料中的载流子只有电子和空穴两种,自由的电子和空穴分别在材料的导带和价带中传输。相形之下,有机半导体材料中的载流子构成则要复杂得多。 首先,由于能稳定存在的有机半导体材料的能隙(即LUMO 与HOMO 的能级差)通常较大,且电子亲和势较低,大多数有机半导体材料是p 型的,也就是说多数材料只能传导正电荷。无机半导体材料中的正电荷(即空穴)是高度离域、可以自由移动的,而有机半导体材料中的正电荷所代表的则是有机分子失去一个电子(通常是HOMO 能级上的电子)后呈现的氧化状态。因此,在有机半导体材料中引入一个正电荷,必然导致有机分子构型的改变。

有机光伏材料 严涌

有机光伏材料综述 能源是人类社会发展的驱动力,是人类文明存在的基础。目前我们所能利用的能源主要是煤、石油和天然气等传统石化资源。自从18世纪工业革命以来,人类对能源的需求不断增长,由此导致的能源安全问题日益凸显。太阳直径为1.39*106km,质量为1.99*1030kg,距离地球1.5*108km。组成太阳的质量大多是些普通的气体,其中氢约占71.3%、氦约占27%,其它元素占2%。太阳从中心向外可分为核反应区、核辐射区和对流去区、太阳大气。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000k。太阳每分钟发出的总能量为2.27*1025kJ,尽管只有22亿分之一的能量辐射到地球上,但太阳每秒钟照射到地球上的能量就相当于500万吨煤燃烧所产生的能量。 1太阳能电池 1.1太阳能的利用 太阳能的利用包括很多种技术手段,例如太阳能热水器、光解水制氢气、太阳能热发电以及光伏发电。前二者的应用水平较低,要想大规模地提供能源,主要得靠后两种技术。 太阳能热发电目前主要有三种实现方式,即塔式、槽式和碟式。这三种技术的基本原理都是通过将太阳光聚焦,加热水或者其他工质(例如热熔盐和空气),通过热循环驱动发电机组来发电。 太阳能热发电技术以较为成熟的机械工艺为基础,在规模足够大之后可望实现经济运行。但是这样的热电站也兼具传统热电站的缺点,即建设成本高,机械损耗大,维护成本高,而且只能在专用地上建设,无法与已有城乡建筑物进行集成。在太阳能热发电领域,我国起步较晚,技术积累较少,目前尚不具备对外的竞争优势。 1.2光伏技术 “光伏”这个词译自“Photovoltaic”,即“光”和“伏特”的组合。这个词最早是用来描述一些材料在光照下形成电压的现象,后来人们认识到光电压的形成是由于材料中的电子被入射的光子激发而形成了电势差,从而形成对外的电流电压输出。采用光伏原理发电的设备,我们称之为“太阳能电池”。 最早的光伏效应是Edmund Bequerel 在1839 年发现的,一百多年后(1954年),随着硅半导体工业的发展,第一个能用于实际发电的太阳能电池才在贝尔实验室问世。这个太阳能电池以硅半导体的p-n 结为基础,光电转化效率为6%。 半导体p- n 结的结构及原理如图1所示。当p 型和n 型的半导体相互接触时,由于浓度差的存在,p 型半导体中的空穴会向n 型半导体扩散,n 型半导体中的电子也会向p 型半导体扩散,造成接触面双侧的电荷不平衡,从而形成由n 型区指向p 型区的空间电场。反映在能级图上,即p 型区和n 型区的费米能级一致化后,两个区域间形成了一个能级差,这个能级差即是内建电场(Ebi)。p 型区和n 型区之间的过渡区域,称为p-n 结的结区。在结区内,内建电场会驱使电荷进行定向传输。

有机高分子半导体材料的导电与工作原理

有机高分子半导体材料的导电与工作原理 及与硅基材料的比较 摘要: 本文从原理角度出发,对有机高分子半导体材料的导电模型与原理,有机高分子半导体材料器件的简要工作原理进行阐述,并将该材料的性能与硅基半导体材料相比较,最后对有机高分子半导体材料的发展提出自己的看法。 关键词:有机高分子半导体原理器件性能比较 1.背景: 随着无机半导体材料的发展、成熟与产业化,有机半导体材料以其种类多样性与巨大的应用潜力逐渐受到广泛关注。在有机电子领域的几项杰出成就,如1986年和1987年由Eastman Kodak 的Tang[4,5]等提出的有机光生伏打电池(OPVC)和有机发光二极管(OLED),为有机半导体的实际应用打下了基础。1986年有机场效应晶体管(OFET)也随之出现。与此同时,关于有机半导体的结构模型与导电原理的研究也成为了进一步解决其不足与优化其性能的基本出发点。高分子链紧束缚模型(SSH)的建立,高分子二聚现象的发现,1979年Su,Schrieffer与Heegerd对于孤子、极化子、双极化子等载流子概念的提出,激子在有机材料中的重新定位,跃迁机制对于迁移率的解释等,使人们对其基本规律有了一定程度的认识,并在积极地发展与完善。 2.有机高分子导体材料的分子结构与基本特征 有机高分子半导体,如聚乙炔,普遍存在共轭大π键结构,由成键π轨道与反键π*轨道构成。两者可分别相当于能带理论中的导带与价带,两个轨道之间的能级差称为带隙。许多高分子半导体的带隙处于1.5~3.0eV之间,处于可见光范围,十分合适作为太阳能电池。然而从整体来看,诸多较长的分子链通过范德华力相互纠缠在一起形成无序结构,一条分子链自身也有许多扭转变形,产生的结点破坏了共轭作用,由此关联的导电机制也更加复杂。 SSH模型认为,有机高分子固体可简化为具有一维特性的高分子弱耦合而成,并且电子在某一个碳原子附近时,将较紧地被该碳原子束缚而其他碳原子对其影响较小,及“紧束缚近似”,通过一系列计算描述晶格原子(碳原子)的移动和与电子的相互作用。之后又出现了修饰完善的TLM模型与PPP模型。一维体系Peierls不稳定性借助于SSH模型并通过计算说明,等距离排列的碳原子是不稳定的,碳原子将发生微小位移从而二聚化,使得有机高分子如聚乙炔分子中出现一定程度的单双键交替现象,这使得原来连续的能带分裂成导

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

(新)半导体材料发展现状及趋势 李霄 1111044081

序号:3 半导体材料的发展现状及趋势 姓名:李霄 学号:1111044081 班级:电科1103 科目:微电子设计导论 二〇一三年12 月23 日

半导体材料的发展进展近况及趋向 引言:随着全球科技的飞速发展成长,半导体材料在科技进展中的首要性毋庸置疑,半导体的发展进展历史很短,但半导体材料彻底改变了我们的生活,从半导体材料的发展历程、半导体材料的特性、半导体材料的种类、半导体材料的制备、半导体材料的发展。从中我们可以感悟到半导体材料的重要性 关键词:半导体、半导体材料。 一、半导体材料的进展历程 20世纪50年代,锗在半导体产业中占主导位置,但锗半导体器件的耐高温和辐射性能机能较差,到20世纪60年代后期逐步被硅材料代替。用硅制作的半导体器件,耐高温和抗辐射机能较好,非常适合制作大功率器件。因而,硅已经成为运用最多的一种半导体材料,现在的集成电路多半是用硅材料制作的。二是化合物半导体,它是由两种或者两种以上的元素化合而成的半导体材料。它的种类不少,主要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。此中砷化镓是除了硅以外研讨最深切、运用最普遍的半导体材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)构成合金InGaN、AlGaN,如许可以调制禁带宽度,进而调理发光管、激光管等的波长。三是非晶半导体。上面介绍的都是拥有晶格构造的半导体材料,在这些材料中原子布列拥有对称性和周期性。但是,一些不拥有长程有序的无定形固体也拥有显著的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方式来分类。从现在}研讨的深度来看,很有适用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低本钱太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有普遍的运用远景。四是有机半导体,比方芳香族有机化合物就拥有典范的半导体特征。有机半导体的电导特征研讨可能对于生物体内的基础物理历程研究起着重大推进作用,是半导体研讨的一个热点领域,此中有机发光二极管(OLED)的研讨尤为受到人们的看重。 二、半导体材料的特性 半导体材料是常温下导电性介于导电材料以及绝缘材料之间的一类功效材

半导体材料文献综述

姓名:高东阳 学号:1511090121 学院:化工与材料学院专业:化学工程与工艺班级:B0901 指导教师:张芳 日期: 2011 年12月 7日

半导体材料的研究综述 高东阳辽东学院B0901 118003 摘要:半导体材料的价值在于它的光学、电学特性可充分应用与器件。随着社会的进步和现代科学技术的发展,半导体材料越来越多的与现代高科技相结合,其产品更好的服务于人类,改变着人类的生活及生产。文章从半导体材料基本概念的界定、半导体材料产业的发展现状、半导体材料未来发展趋势等方面对我国近十年针对此问题的研究进行了综述,希望能引起全社会的关注和重视。 关键词:半导体材料,研究,综述 20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;20世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。彻底改变人们的生活方式。在此笔者主要针对半导体材料产业的发展、半导体材料的未来发展趋势等进行综述,希望引起社会的关注,并提出了切实可行的建议。 一、关于半导体材料基础材料概念界定的研究 陈良惠指出自然界的物质、材料按导电能力大小可分为导体、半导体、和绝缘体三大类。半导体的电导率在10-3~ 109欧·厘米范围。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。凡具有上述两种特征的材料都可归入半导体材料的范围。[1] 半导体材料(semiconductormaterial)是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。[2]随着社会的进步以及科学技术的发展,对于半导体材料的界定会越来越精确。 二、关于半导体材料产业的发展现状及解决对策的分析 王占国指出中国半导体产业市场需求强劲,市场规模的增速远高于全球平均水平。不过,产业规模的扩大和市场的繁荣并不表明国内企业分得的份额更大。相反,中国的半导体市场正日益成为外资公司的乐土。[3]

有机半导体材料OrganicSemiconductorMaterials

題目:organic semiconductor materials 指導教授:郭豔光老師 班級:物四乙

學生:陳衍榮 學號:8522072 有機半導體材料 前言 早在1960年代初期,Pope等人在Anthracene之有機芳香族化合物晶體上入數百伏之跨壓下,發現存在電流流通與發光的現象,而啟開後人研究有機發光之大門。在後續的二十餘年間,因其元件特性距離實用仍有相當大的距離,因此仍專注在其相關的發光機制與電荷傳導等基礎研究。及至80年代末期,美國科達公司實驗室利用真空蒸鍍有機薄膜的技術和異質接面(heterojunction)多層有機膜(multilayer)之元件特性。諸如操作電壓<10V,量子效率>1﹪,與元件穩定性

等均已有大幅之改善,因而激增有機電激發光元件之實用性,也引發全球OEL之研究熱潮。另一方面則是在聚合物散料上的發展也令人囑目。Patridge在80年代初期便發表PVK材料(poly vinylcarbazole)亦具有機光導體之性質。此一發現,使得有機化合物在發光體上之應用更趨於廣泛。然而在1990年有機發光材料又有更進一步地發展。英國劍橋大學卡文迪實驗室(Calvendish Lab)發表第一個利用聚苯基乙烯(PPV, Poly p-phenylenevinylene)之共軛聚合物(conjugate polymer)製成的OEL元件。由於此類共軛聚合物具有類似半導體的特性與簡易的製程,從而激起對OEL元件的研究熱。而各種的研究材料,諸如摻雜發光的染料小分子或大分子之OEL元件,甚至在塑膠基板上可彎曲之OEL元件等均是被研究的主題。可見OEL之研究廣度與深度,而應用範圍也隨之更加寬廣。由於大部分OEL元件都具有類似二極體的特性,因此OEL又稱有有機發光二極體(OLED),而目前其最潛力之應用即在平面顯示器之發揮。以下圖一摘述OEL發展的簡史。

半导体材料有哪些

半导体材料有哪些 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 什么是半导体材料_常见半导体材料有哪些 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。 硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~ 99.9999999%)的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种

ZnO半导体材料及器件

ZnO半导体材料及器件 【摘要】在过去的十多年时间里里,ZnO作为半导体具有独特的性质而倍受瞩目和广泛研究。例如,ZnO具有较高的电子迁移率,是直接带隙半导体,具有较宽的禁带宽度和较大的激子束缚能。在光电器件的应用上,ZnO已经被认为是一种很有潜力的材料,而制造高质量的p型ZnO是实现其应用的关键。由本征缺陷或者氢杂质引起的较强的自补偿效应使得通过掺杂来制得p型ZnO半导体非常困难。尽管如此,通过研究者们的努力,在制备高质量的p型ZnO半导体和基于ZnO的器件上已经取得了很大的进步。 【关键词】p型ZnO;ZnO器件 1997年D. M. Bagnall等人在室温下得到了ZnO薄膜的光泵浦受激发射[1]。美国Science杂志以“Will UV Lasers Beat the Blues?”为题对该结果作了报道.由此,掀起了对ZnO的研究热潮。D. M. Bagnal等利用等离子体增强分子束外延在蓝宝石的(0001)衬底上生长的ZnO 薄膜,在室温下、阈值激励强度为240kW cm-2的条件下发出了激光(见下图)。 一、ZnO的性质 (1)ZnO作为一种新型的直接宽带隙光电半导体材料,其晶体结构与GaN一致,晶格常数与GaN的非常接近,在电子和光电子器件应用方面具有很多吸引人的特征与优点。 (2)ZnO的直接带隙很宽(Eg~3.37 eV 在300 K下),与GaN的相当(Eg~3.4 eV 在300 K下)。而GaN已经广泛应用于制作绿光、蓝光以及白光发光器件。 (3)室温下ZnO的激子束缚能高达60meV,是GaN(约24meV)的2倍,也比室温热离

化能(25meV)高许多,激子复合可以在室温下稳定存在,也可以实现室温或更高温度下高效的激子受激发射,且激射阂值比较低。如此高的激子束缚能能够提高发光效率。 (3)通过掺杂Cd或者Mg,ZnO的禁带宽度(Eg~3.37 eV)可以有效地在3~4.5eV之间调整. (4)ZnO薄膜可以大面积、均匀地生长在多种衬底上,这样就具有更加广泛的应用范围,而GaN薄膜只能生长在一些如SiC、蓝宝石、Si等特定的衬底上。而且,ZnO可以生长在同质衬底上,而GaN不行。 (5)ZnO可以在相对较低的温度下生长,所使用的衬底多种多样,既可以生长在单晶衬底(如ZnO、蓝宝石A12O3、Si等)上,也可以生长在非晶衬底(如玻璃、塑料等)上。高质量的ZnO薄膜的生长温度大约为500℃,远低于GaN(>1000℃) (6)ZnO还具有更加简单的晶体生长工艺,因此基于ZnO器件的成本也将更加低廉。 (7)ZnO单晶中电子的室温霍尔迁移率在所有的氧化物半导体材料中是最高的,约为200 cm2V-1s-1,略小于GaN的电子迁移率,但其饱和速率却比GaN的高。 (8)除了体单晶和薄膜之外,ZnO的纳米结构异常丰富,纳米结构的高比表面积使之非常适合应用于传感与探测领域。 (8)ZnO具有良好的抗辐射性能,因而可以在太空或核应用等恶劣的环境下工作。此外,ZnO还具有热稳定性高、生物兼容性好、带隙宽度调节的合金体系(ZnMgO和ZnCdO)完备、体单晶易得、刻蚀工艺简单等优点,而且原料丰富、价格低廉、无毒无污染,是一种绿色环保型材料。基于以上特性,ZnO被认为是新一代的光电半导体材料,具有广阔的应用前景,在全球范围内掀起了研究热潮。 下表是ZnO和GaN性质的对比: 二、p型ZnO生长技术 ZnO材料由于存在大量的本征缺陷以及杂质的自补偿效应,使得原生的ZnO材料表现为n型导电,实现可重复稳定高效低阻的p型ZnO薄膜具有较大的挑战性。为了实现ZnO在光电器件上的应用,研究人员已经用了多种生长方法去获得低电阻率的p型ZnO材料,比如

2019年半导体材料现状研究及发展趋势共17页

中国半导体材料行业现状调研分析及市场前景预测报告(2016年版) 报告编号:1687281

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网Cir基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国半导体材料行业现状调研分析及市场前景预测报告(2016年版) 报告编号:1687281←咨询时,请说明此编号。 优惠价:¥6750 元可开具增值税专用发票 网上阅读:http://cir/R_JiXieDianZi/81/BanDaoTiCaiLiaoDeXianZhuangHeFaZhanQuSh i.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 半导体材料是一类具有半导体性能、是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。 2019年,全球半导体材料市场规模同比增长3%;收入达到443亿美元,同比增长1 0%,这是自2019年以来,全球半导体材料市场首次实现同比增长。台湾由于其庞大的代工和先进的封装基地,连续五年成为半导体材料的最大客户。 2019年中国半导体材料市场规模同比增长3%,收入达到了58.3亿美元。其中,2 019年我国多晶硅产量仍达到13.2万吨,同比增长57%.硅片产能达到38GW,同比增长28%.硅片产量达到近88亿片,约占全球76%. 中国产业调研网发布的中国半导体材料行业现状调研分析及市场前景预测报告(20 19年版)认为,近几年,由于市场需求的不断扩大、投资环境的日益改善、优惠政策的吸引及全球半导体产业向中国转移等等原因,我国集成电路产业每年都保持30%的增长率。集成电路制造过程中需要的主要关键原材料有几十种,材料的质量和供应直接影响着集成电路的质量和竞争力,因此支撑关键材料业是集成电路产业链中最上游也是最重要的一环。随着信息产业的快速发展,特别是光伏产业的迅速发展,进一步刺激了多晶硅、单晶硅等基础材料需求量的不断增长。 随着世界半导体行业巨头纷纷到国内投资,整个半导体行业快速发展,这也要求材料业要跟上半导体行业发展的步伐。可以说,市场发展为半导体支撑材料业带来前所未有的发展机遇。

半导体材料研究的新进展

半导体材料研究的新进展 作者简介王占国,1938年生,半导体材料物理学家,中科学院院士。现任中科院 半导体所研究员、半导体材料科学重点实验室学委会主任和多个国际会议顾问委员会 委员。主要从事半导体材料和材料物理研究,在半导体深能级物理和光谱物理研究, 半导体低维结构生长、性质和量子器件研制等方面,取得多项成果。先后获国家自然 科学二等奖、国家科技进步三等奖,中科院自然科学一等奖和科技进步一、二和三等 奖及何梁何利科技进步奖等多项,在国内外学术刊物和国际会议发表论文180多篇, 被引用数百次。摘要本文重点对半导体硅材料,GaAs和InP单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子 晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了 概述。最后,提出了发展我国半导体材料的建议。关键词半导体材料量子线量子点材 料光子晶体1半导体材料的战略地位上世纪中叶,单晶硅和半导体晶体管的发明及其 硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人 类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功, 彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水 平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、 经济格局和军事对抗的形式,彻底改变人们的生活方式。2几种主要半导体材料的发 展现状与趋势2.1硅材料从提高硅集成电路成品率,降低成本看,增大直拉硅(Z-Si)单晶的直径和减小微缺陷的密度仍是今后Z-Si发展的总趋势。目前直径为8英寸(200)的Si单晶已实现大规模工业生产,基于直径为12英寸(300)硅片的集成电 路(I’s)技术正处在由实验室向工业生产转变中。目前300,0.18μ工艺的硅 ULSI生产线已经投入生产,300,0.13μ工艺生产线也将在2003年完成评估。18英 寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单 晶研制也正在积极筹划中。从进一步提高硅I’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SI材料,包括智能剥离(Sartut)和SIX材料等也发展很快。目前,直径8英寸的硅外延片和 SI材料已研制成功,更大尺寸的片材也在开发中。理论分析指出30n左右将是硅S集

相关文档
相关文档 最新文档