文档库 最新最全的文档下载
当前位置:文档库 › IC可靠性与失效分析

IC可靠性与失效分析

IC可靠性与失效分析
IC可靠性与失效分析

艺和复杂的测试方法。在这些设计和生产工艺中,任何一个环节控制的不好,都有可能导致IC产品的最终失效。能有效地寻找到导致IC失效的根源所在,并改进和控制生产工艺IC,以提供良率是各IC设计公司和制造厂孜孜以求的目标。因此,失效分析在IC领域占有举足轻重的作用。

失效分析的对象,以公司个体为研究对象,大体可以分为3类:

(1)到达最终客户后发现不良而退回分析的产品

(2)本公司生产最后道工艺后,最终测试发现的不良品

(3)第三类就是上面介绍的可靠度测试过程中或过程之后发现的测试NG的IC 产品。

2.失效分析的一般流程

失效分析需要遵守一定的流程。常见的IC失效分析流程如下(主要针对产品级的IC):

(1)接收不良品失效的信息反馈和分析请求。主要的信息包括:指失效模式,参数值,客户抱怨内容,型号,批号,失效率,所占比例等,与正常品相比不同之处。

(2)记录各项信息内容,以在长期记录中形成信息库,为今后的分析工作提供经验值

(3)收信工艺信息,包括与此产品有关的生产过程中的人,机,料,法,环变动的情况。

(4)失效确认。一般是用Tester或者Curve tracer量测失效IC的AC和DC 的电性能,以确认失效模式是否与收集的失效模式信息一致。AC方面的测试分析涉及到产品的功能层次,而DC方面的测试是设计针对产品的主要电性能(开路、短路、漏电、)。对于开路和短路情况,要观察开路和短路测试值是开路还是短路,还是芯片不良,如是开路或短路,则要注意是第几脚开路或短路;对于非开短路的漏电流情况,产品要彻底清洗(用冷热纯水或有机溶剂如丙酮)后再进行下述烘烤试验:125度烘烤24小时或175度烘烤4小时以上,烘箱关电源后门打开45度角缓慢冷却1小时后再测其功能,如功能变好,则极有可能是封装或者测试问题,要对封装工艺要严查。

(5)观察失效产品的外观和芯片分层情况,看是否有存在破裂、裂缝、鼓泡膨胀等情况。

(6)开冒分析。开冒分析是破坏性试验,产品开冒之后不能再恢复,因此必须放在外部非破坏性分析进行完毕之后进行。开冒一般会采用自动开冒机,手工开冒由于安全性不好、稳定性不足和对人身存在伤害而逐渐被取代。开冒之后,一般会结合带显微镜之分析探针台,观察切开剖面之金丝、金球、表面铝线是否有受伤,芯片是否有裂缝,光刻是否不良,芯片名是否与布线图芯片名相符。同时会采用探针测试和分析,以了解芯片内部的Wire bonding是否良好,Pad和Metal 的接触是否OK、相关Pad间的电性能参数(导通电压、阻抗、电容等)是否正常。这部分的电性测试可以用”探针台+Curve Tracer”来完成。

(7)对开帽后漏电流偏大的IC产品,可以采用探针台的LC液晶漏电分析功能,以方便查找漏电点。

(8)找出相关失效点之后,失效分析基本完成。撰写失效分析报告,通知相关的责任部门进行改进。

PCB失效分析技术及部分案例

PCB失效分析技术及部分案例 作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。 对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。 1.外观检查 外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB 的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。 2.X射线透视检查 对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X 射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。 3.切片分析 切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB

多层陶瓷外壳的可靠性设计和失效分析

多层陶瓷外壳的可靠性设计和失效分析 时间:2007-03-13来源:发表评论进入论坛投稿 1 引言 多次陶瓷外壳以其优良的性能被广泛应应用于航天、航空、军事电子装备及民用投资类电子产品的集成电路和电子元器件的封装,常用的陶瓷外壳有集成电路陶瓷外壳,如D型(DIP)、F型(FP)、G型(PGA)、Q型(QFP)、C型(LCC)、BGA型等;混合集成电路陶瓷外壳,光电器件陶瓷外壳,微波器件陶瓷外壳,声表面波器件陶瓷外壳,晶体振荡器陶瓷外壳,固体继电器陶瓷外壳及各种传感器(如霍尔传感器)用陶瓷外壳等等。 多层陶瓷外壳采用多层陶瓷金属化共烧工艺进行生产。多层陶瓷外壳分为高温共烧陶瓷外壳(HTCC)和低温共烧陶瓷外壳(LTCC)两类。本文仅对高温共烧陶瓷外壳(HTCC)进行讨论。 多层陶瓷外壳由于其体积小、导热性好、密封性好、机械强度高、引起封装可靠性高而得到广泛应用,但是,使用中仍然会出现失效。本文就多层陶瓷外壳的失效模式、失效机理和可靠性设计进行探讨。 2 多层陶瓷外壳的失效模式 多层陶瓷外壳在生产和使用中出现的失效模式通常有以下几种: (1)在机械试验中出现陶瓷底座断裂失效; (2)在使用中出现绝缘电阻小于标准规定值,出现失效; 中国可靠性论坛:https://www.wendangku.net/doc/9e1864943.html,/club (3)在使用中外壳出现断、短路失效; (4)在使用中出现外壳外引线脱落、或无引线外壳的引出端焊盘与外电路连接失效; (5)使用中出现电镀层锈蚀失效; (6)使用中出现密封失效; (7)键合和芯片剪切失效; (8)使用不当造成失效。 3 多层陶瓷外壳的失效机理分析 3.1 陶瓷底座的断裂失效

失效案例分析

工程材料失效分析 姓名:丁静 学号:201421803012

案例一乙烯裂解炉炉管破裂原因分析某石化公司化工一厂裂解车间CBL一Ⅲ型乙烯裂解炉于1998年9月投入运行,1 999年4月检查发现一根裂解炉管发生泄漏。为查明炉管泄漏原因,对失效炉管进行了综合分析。 CBL一Ⅲ型乙烯裂解炉炉管工作温度为1050~llOO℃,材质化学成分(质量分数)为0.35~0.60%C;1.0%~2.0%Si;1.O%~1.50%Mn;33%~38%Ni;23%~28%Cr及微量Nb.Ti.Zr等。宏观观察失效炉管表面可以看出,泄漏部位炉管内、外壁均有两个孔坑,两个孔坑在内、外表面相互对应,孔坑边缘金属略有凸起,呈火山口状。仔细观察发现,在内壁两个孔坑附近表面有一约3 mm xl mm凸棱,凸棱略高于附近炉管表面(图11-1、图11-2)。

化学成分分析结果表明,失效炉管化学成分符合厂家技术要求。金相检查结果表明,失效炉管显微组织基体为奥氏体,晶界分布有骨架状碳化物,晶内和晶界分布有一定数量的颗粒状碳化物(图11-3)。 能谱分析结果表明,这些颗粒状碳化物为Nb.Zr.Ti或Cr的

碳化物。晶界分布的骨架状碳化物系以铬为主的碳化物。首先,采用扫描电镜观察了泄漏部位炉管内、外表面的放大形貌,观察发现,所有孔坑均存在白亮色块状物。通常,不导电的非金属氧化物或金属氧化物在电子束作用下因积累电荷而呈白亮色。能谱分析结果表明,白亮色块状物含有很高的稀土铈。分析认为,白亮色块状物为稀土氧化物。在泄漏部位,分别在内壁凸棱和孔坑两处,垂直于内表面制备了炉管横截面金相试样。可以看出,不论是凸棱对应部位,还是炉管内、外表面两个孔坑之间,炉管横截面均分布有宏观深灰色金属夹杂物,夹杂物在内、外表面两个孔坑之间连续贯通(图11-4)。 在扫描电镜下进一步观察、分析结果表明,两个横截面深灰色区域同样是稀土铈的氧化物(图11-5)。采用微型拉伸试样,对失效炉管进行了1100℃短时高温拉伸试验,其结果如表11-1所示。可以看出,失效炉管1100℃高温短时拉伸性能低于厂家相关技术要求。

可靠性失效分析常见方法

可靠性失效分析常见思路 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。 1 失效分析思路的内涵 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如“顺藤摸瓜”,即以失效过程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果“;顺藤找根”,即以失效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因“;顺瓜摸藤”,即从过程中的终点结果出发,不断由过程的结果推断其原因“顺;根摸藤”,即从过程起始状态的原因出发,不断由过程的原因推断其结果。再如“顺瓜摸藤+顺藤找根”、“顺根摸藤+顺藤摸瓜”、“顺藤摸瓜+顺藤找根”等。 2 失效分析的主要思路 常用的失效分析思路很多,笔者介绍几种主要思路。

√MOS器件及其集成电路的可靠性与失效分析

MOS 器件及其集成电路的可靠性与失效分析(提要) 作者:Xie M. X. (UESTC ,成都市) 影响MOS 器件及其集成电路可靠性的因素很多,有设计方面的,如材料、器件和工艺等的选取;有工艺方面的,如物理、化学等工艺的不稳定性;也有使用方面的,如电、热、机械等的应力和水汽等的侵入等。 从器件和工艺方面来考虑,影响MOS 集成电路可靠性的主要因素有三个:一是栅极氧化层性能退化;二是热电子效应;三是电极布线的退化。 由于器件和电路存在有一定失效的可能性,所以为了保证器件和电路能够正常工作一定的年限(例如,对于集成电路一般要求在10年以上),在出厂前就需要进行所谓可靠性评估,即事先预测出器件或者IC 的寿命或者失效率。 (1)可靠性评估: 对于各种元器件进行可靠性评估,实际上也就是根据检测到的元器件失效的数据来估算出元器件的有效使用寿命——能够正常工作的平均时间(MTTF ,mean time to failure )的一种处理过程。 因为对于元器件通过可靠性试验而获得的失效数据,往往遵从某种规律的分布,因此根据这些数据,由一定的分布规律出发,即可估算出MTTF 和失效率。 比较符合实际情况、使用最广泛的分布规律有两种,即对数正态分布和Weibull 分布。 ①对数正态分布: 若一个随机变量x 的对数服从正态分布,则该随机变量x 就服从对数正态分布;对数正态分布的概率密度函数为 222/)(ln 21 )(σμπσ--?=x e x x f 该分布函数的形式如图1所示。 对数正态分布是对数为正态分布的任 意随机变量的概率分布;如果x 是正态分布 的随机变量,则exp(x)为对数分布;同样, 如果y 是对数正态分布,则log(y)为正态分 布。 ②Weibull 分布: 由于Weibull 分布是根据最弱环节模型 或串联模型得到的,能充分反映材料缺陷和 应力集中源对材料疲劳寿命的影响,而且具 有递增的失效率,所以,将它作为材料或零件的寿命分布模型或给定寿命下的疲劳强 度模型是合适的;而且尤其适用于机电类产品的磨损累计失效的分布形式。由于它可以根据失效概率密度来容易地推断出其分布参数,故被广泛地应用于各种寿命试验的数据处理。与对数正态分布相比,Weibull 分布具有更大的适用性。 Weibull 分布的失效概率密度函数为 m t m t m e t m t f )/()(ηη--?= 图1 对数正态分布

电子元器件可靠性试验、失效分析、故障复现及筛选技术培训

电子元器件可靠性试验、失效分析、故障复现及筛选技术培训 讲讲师师介介绍绍:: 费老师 男,原信息产业部电子五所高级工程师,理学硕士,“电子产品可靠性与环境试验”杂志编委,长期从事电子元器件的失效机理、失效分析技术和可靠性技术研究。分别于1989年、1992-1993年、2001年由联合国、原国家教委和中国国家留学基金管理委员会资助赴联邦德国、加拿大和美国作访问学者。曾在国内外刊物和学术会议上发表论文三十余篇。他领导的“VLSI 失效分析技术”课题组荣获2003年度“国防科技二等奖”。他领导的“VLSI 失效分析与可靠性评价技术”课题组荣获2006年度“国防科技二等奖”。2001年起多次应邀外出讲学,获得广大学员的一致好评。 【培训对象】系统总质量师、产品质量师、设计师、工艺师、研究员,质量可靠性管理和从事电子元器件(包括集成电路)失效分析工程师 【主办单位】中 国 电 子 标 准 协 会 培 训 中 心 【协办单位】深 圳 市 威 硕 企 业 管 理 咨 询 有 限 公 司 为了满足广大元器件生产企业对产品质量及可靠性方面的要求,我司决定在全国组织召开“电子元器件可靠性试验、失效分析、故障复现及筛选技术”高级研修班。研修班将由具有工程实践和教学丰富经验的教师主讲,通过讲解大量实例,帮助学员了解各种主要电子元器件的可靠性试验方法和试验结果的分析方法.

课程提纲: 第一部分电子元器件的可靠性试验 1 可靠性试验的基本概念 1.1 概率论基础 1.2 可靠性特征量 1.3 寿命分布函数 1.4 可靠性试验的目的和分类 1.5 可靠性试验设计的关键问题 2 寿命试验技术 2.1 加速寿命试验 2.2 定性寿命保证试验 2.3 截尾寿命试验 2.4 抽样寿命试验 3 试验结果的分析方法:威布尔分布的图估法 4 可靠性测定试验 4.1 点估计法 4.2 置信区间 5 可靠性验证试验 5.1 失效率等级和置信度 5.2 试验程序和抽样表 5.3 标准和应用 6 电子元器件可靠性培训试验案例

失效分析案例

佳木斯大学 失效分析案例

失效分析案例 0 零件背景: 某?外径为?450 mm, 壁厚为 50mm 的GCrl5SiMn 钢轴承圈 ,在最终热处理后进?磨削加?时,批量产?沿径向由外表?迅速向内表?扩展的开裂,造成很大的经济损失。其?产?艺为轧制(1050~1150℃锻造) 球化退火→机械加?→淬?(840 ℃)?回?(170℃)→磨削等?序。 1.1化学成分分析 取一部分试样碎末,利用化学元素分析仪分析零件成分。 从上表看出,零件的化学成分符合标准要求。 1.2 硬度分析 在?相抛光?上,从裂纹源处开始沿轴向至壁厚中部每隔 3 mm 检测其硬度。 表 2 显?,裂纹边缘硬度与内部硬度基本?致,硬度均大于 60 HRC,符合标准要求;?明显脱碳软化现象。

1.3 断口宏观形貌 采?机械加压?法使套圈沿裂纹断开,?先对断?形貌??眼观察。 ?线切割从试样断?处切取?块含有裂纹源区?裂纹扩展区?压断区的断?试样。?酒精清洗后在丙酮中?超声波清洗 20 min 取出?燥,?扫描电镜观察该断?形貌 通过?眼观察发现,裂纹源位于轴承套圈外表?沟槽尖?处。试样两断?均为裂纹扩展形成,裂纹长?平直,由轴承套圈外表?沿径向向内表?扩展,初始裂纹最深处约为 15 mm,裂纹总长约 60mm。初始裂纹有褐?氧化条纹,继续向?扩展为灰?,裂纹表?光滑细腻呈瓷状,属典型的脆性断?特征。新断?呈银灰?,断?组织细密有?属光泽,说明晶粒很细?。

由图 2a 可见,断?平齐呈放射状特征,没有明显的塑性变形迹象,断?结构呈细瓷状,边缘?明显剪切唇,也?纤维状。 由图 2b 可见,断?形貌为韧窝?解理断?,呈混合断?特征。大部分属于沿晶脆性开裂,沿晶分离?平滑,?微观塑性变形特征,晶粒均匀细?,?过热特征。但发现有很长很深的?条穿晶带(如箭头所?),认为应该存在某种链条状脆性组织缺陷。 由图 3 可见,新压断?处形貌与起裂处大体相同 ,断?形貌仍为韧窝?解理断? ,混合断?特征不变。说明裂纹处与新压断?处的组织相同。另外均未发现有明显的非?属夹杂物和?孔等缺陷。

失效分析及其在保证电子产品可靠性中的作用

失效分析及其在保证电子产品可靠性中的作用 本报编辑:韩双露时间: 2009-3-19 10:55:13 来源: 电子制造商情 中国赛宝实验室可靠性研究分析中心 李少平 1 电子产品失效分析概述 失效分析(FA)是指为了确定失效部件的失效模式、失效机理、失效原因以及失效后果所作的检查和分析。 电子产品失效分析利用电分析、形貌分析、成分分析、物理参量分析、应力试验分析等手段求证失效样品的失效证据,根据失效证据与失效机理的内在联系,并结合样品现场的失效信息,诊断失效样品的失效机理、失效原因。 在电子产品中,FA的对象是电子元器件,电子元器件主要包括要电容器、电阻器、电感器、继电器、连接器、滤波器、开关、晶体器件、半导体器件(包括半导体分立器件、集成电路)、纤维光学器件、组件(具有一定功能、独立封装的电子部件,如DC/DC电源,晶体振荡器等)等。 失效是指电子元器件丧失或部分丧失了预定的功能。 失效模式是指电子元器件失效的外在宏观表现。对于半导体分立器件失效模式主要有开路、短路、参数漂移(退化)、间歇失效,密封继电器失效模式主要有接触不良、触点粘接、开路、断路,瓷介电容失效模式主要有开裂、短路、低电压失效。不同类别的电子元器件失效模式的表现各不相同,既使对同一门类的电子元器件,由于其原理、结构和电气性能的差异失效模式的表现也不尽相同。失效模式的确认是失效分析工作的重要的环节,失效模式确认需要借助于观察、测试等技术方法。 失效机理是指电子元器件失效的物理、化学变化,这种变化深层次的意义指失效过程中元器件内部的原子、分子、离子的变化,以及结构的变化,是失效发生的内在本质。电子元器件的失效机理可分为机械失效机理,如磨损、疲劳、断裂等;电失效机理,如静电放电损伤、电压引起的场致击穿和退化、电流引起热致击穿和退化等;热失效机理,如热引起的物态变化、结构变化等;反应失效机理,如腐蚀、合金、降解等;电化学机理,如化学电迁移、源电池效应等;产品特有的失效机理,如CMOS集成电路的闩锁效应、金属化铝电迁移效应、热电子

董斌—模具失效分析完整版

董斌—模具失效分析 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

模具失效分析 目录 1引言模具失效 2模具失效形式案例分析及其改进 模具磨损失效 模具断裂失效 模具塑性变形失效 3总结 4参考文献 1引言模具失效 冲压模具是冲压生产中必不可少的工艺装备,是技术密集型产品。冲压件的质量、生产效率以及生产成本等,与模具设计和制造有直接关系。模具设计与制造技术水平的高低,是衡量一个国家产品制造水平高低的重要标志之一,在很大程度上决定着产品的质量、效益和新产品的开发能力。 生产中的冲压模具经过一定时间使用后,由于种种原因不能再冲出合格的产品,同时又不能修复的现象称为冲压模具的失效。由于冲压模具类型、结构、模具材料、工作条件的不同,所以冲压模失效的原因也各不相同。 一般为塑性变形、磨损、断裂或开裂、金属疲劳及腐蚀等等。 模具的失效也可分为: 正常失效和早期失效

模具模具在工作中,与成形坯料接触,并受到相互作用力产生一定的相对运动造成磨损。当磨损使模具的尺寸、精度、表面质量等发生变化而不能冲出合格的产品时,称为磨损失效,磨损失效是模具的主要失效形式,为冲模的正常失效形式,不可避免。 按磨损机理,模具磨损可分为磨粒磨损、黏着磨损、疲劳磨损、腐蚀磨损。 ①磨粒磨损硬质颗粒存在于坯料与模具接触表面之间,或坯料表面的硬突出物,刮擦模具表面引起材料脱落的现象称为磨粒磨损。 ②黏着磨损坯料与模具表面相对运动,由于表面凹凸不平,黏着部分发生剪切断裂,使模具表面材料转移或脱落的现象称为黏着磨损。 ③疲劳磨损坯料与模具表面相对运动,在循环应力的作用下,使表面材料疲劳脱落的现象称为疲劳磨损。 ④腐蚀磨损在摩擦过程中,模具表面与周围介质发生化学或电化学反应,引起表层材料脱落的现象称为腐蚀磨损。 在模具与坯料相对运动过程中,实际磨损情况非常复杂。工作中可能出现多种磨损形式,它们相互促进,最后以一种磨损形式失效。 冲裁模的工作条件 冲裁模具主要用于各种板料的冲切。从冲裁工艺分析中我们已经得知,板料的冲裁过程可以分为三个阶段: 弹性变形阶段

“电子产品可靠性设计、试验技术与失效分析”系列培训班

“电子产品可靠性设计、试验技术与失效分析”系列 培训班 招生对象 --------------------------------- 1、各企事业单位从事电子电器相关的工作人员(电子电气检测实验室工作人员、产品研发、技术、品质管理、安全监督、可靠性设计、质量检验、测试、采购等); 【主办单位】中国电子标准协会 【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生 【报名邮箱】martin#https://www.wendangku.net/doc/9e1864943.html, (请将#换成@) 课程内容 --------------------------------- 随着电子电器产品的体积与重量日益缩小,技术含量不断扩大、智能化程度成倍提高,对电子电器产品可靠性的要求已成为衡量产品质量最重要的技术指标之一。可靠性不仅在国防、航天、航空等尖端技术领域倍受关注,在工业、民用电子等领域也同样得到重视。国家标准委近期公布了GB2423、GB2424等相关一系列标准的更新,进一步规范化现在可靠性试验、测试等相关内容。重视程度可见一斑。 为进一步加强各企事业单位相关人员针对产品可靠性方面的技术能力及国家标准的应用理解,解决各企事业单位没有相关检验人员或者检验人员没有经过正式培训并持证上岗的现状,实现国家对相关技能人员必须持证上岗的要求。我中心定于近期于深圳、杭州两地分别举办“电子产品可靠性设计、试验技术与失效分析系列培训班”学习结束后,统一考核,考核合格者颁发《可靠性实用工程》专业技能资格证书。具体安排如下: 一、学习内容及时间地点 A 班《电子产品可靠性设计、试验技术》 时间地点:2013年8月30日-9月1日深圳(30日报到) 内容:◆可靠性设计技术 1、可靠性设计的基本概念和运用(A、可靠性设计的思路B、降额设计C、简化设计D、储备(冗余)设计 E、容差设计F、可靠性预计G、可靠性增长(RGT)

失效分析(和可靠性)没有那么高深莫测

失效分析(和可靠性)没有那么高深莫测 失效分析现在已经成为了热门技术。业界也有不少专家在讲授失效分析知识。总的来说,失效分析在一般人的眼中,是很高深莫测的一门学问。 这以失效分析方面的专家动辄就拿昂贵的仪器,拿高深IC的解剖来说事不无关系。事实上,有的仪器他们可能也没用过,只有美国的大机构才用得起。 学院派的专家就不用说了,他们由于没有工作经验,所以只能讲解一些理论,他们的主要东西基本上是靠照搬美国的理论来的。所以,大理论一听,真的很高深。而一些研究所的专家,可能用过一些仪器(但是他们用得也不全),也做过一些解剖,但是,很少有企业用到那些仪器。 即使是一些有工作经验的专家出来传授失效分析知识,也不能免俗,总是以那些高深的分析和解剖为主要讲解内容。(我不清楚他们是有所保留,还是觉得不讲高深一点镇不住人) 在我看来,一味地强调高深的失效分析,不顾中国企业现状,就像没有教会人走路就先教人跑步一样。 中国电子行业现在的状况可以说是可靠性非常差。即使一些大公司有可靠性相关部门,很多大公司对可靠性测试花了大投入,但是对失效分析不够重视,失效分析人员沦为修理人员。而可靠性测试的理论基础也是基于发达国家的理论过来的,所以有时并不是那么符合我国,因为我国的技术水平以发达国家不在同一个层面,所以出的问题也不是同层面的问题。中国人有个很大的缺点,就是喜欢形式主义,所以不管是大公司还是小公司,在失效分析和可靠性方面,空有形式,少有实质。 可靠性领域,有两个榜样。美国和日本。美国以严格全面的测试保证可靠性。日本却是更重视失效分析。当然,美国失效分析也是老大,但是日本相对来说更重视实用的失效分析(当然日本也重视可靠性实验)。美国是技术巨无霸,可靠性测试方面日本也没办法达到那样的水平,所以日本实事求是地选择失效分析为重点,不断完善,从而使品质不断提升。 日本的电子产品曾经是劣质品的代名词,但是后来很多地方,特别是家电,赶上了甚至超越了美国。日本的电子产品成为了价廉物美的代名词。日本没有美国的大手笔投入来搞那么全面的可靠性测试,所以其可靠性成本也比美国低。但是,他们通过失效分析,不断提升了品质,所以物美。 举一个实际的例子。 塑封IC刚开始时,可靠性是很差的。当然,IC美国是老大,日本的IC更差。所以日本的电子产品大多要靠进口美国的IC。一开始,美国对塑封IC的可靠性差,认为是理所当然的。他们称要用高可靠性的IC,就要用陶瓷封装的IC,因为那是通过严格的测试的。但是,日本的失效分析专家做了实实在在的测试、失效分析、DPA(破坏性物理实验,以良品解剖为核心),把失效的问题找出来了,通过不断的改善,使日本的塑封IC可靠性也大大提高。美国后来才反过来学习日本的经验,从而提升了他们的塑封IC可靠性,最后重新超越日本。(有几个地方都是这样,美国一开始很厉害,但是日本采用了更合适的方法超过了美国,美国后来重新检讨改进,重新超越日本。比如美国在目标管理和绩效考核进行得如火如荼的时候,日本推行全面质量管理,结果最后日本胜出,美国领悟过来后,抛掉目标管理和绩效考核,才重新赶超日本的)。

我对元器件可靠性与失效性分析(转)

一、我对可靠性的基本认识 可靠性,是质量控制的一个分支。但是把可靠性提升到一个专门技术来看待,是产品不断追求完美的一个必要阶段。我国可靠性研究起步较晚,伴随而来的可靠性分析技术,可靠性设备相对落后。在质量管理体系的跟进方面,比如ISO9001,中国似乎很快就赶上先进国家了,但是ISO,形式主义严重,不管是大大小小的公司,几乎都通过了ISO认证,现在我国企业ISO运作的现实是,基本上对质量水平的提升没有突破性的进展。未来企业之间产品实力的竞争,将会是可靠性水平的竞争。所以,可靠性研究的地位,将会越来越重要。 二、关于可靠性研究的架构形式与运作模式 可靠性工程师,表面上是一种形式的设置,事实上体现了企业对可靠性的重视程度。 传统的产品质量控制,也有一些可靠性控制方面的工作。比如开发部门的DQE (开发测试工程师)、品质部的QA、QE,都有一部分的可靠性工作。但是,这种模式,以对产品的功能,性能,安全测试为主,失效分析也停留在比较表面的部分。所以,有时即使看起来在控制质量,也有一些措施,但是不良仍然不断在发生,原因就在于没有分析到本质问题。 可靠性研究的两大内容就是失效分析和可靠性测试(包括破坏性实验)。两者之间是相互影响和相互制约的。 不过为了使事前简化,可以把这两大内容分割开来看。把失效分析和可靠性测试当成是可靠性研究的两个境界(严格讲来,这种分法不是非常恰当,此处只是为了简化)。企业可以根据自身的实际作出不同的策略。 以失效分析为主要内容的模式,相对来说是比较被动的模式,是等问题发生后才去分析问题的。当然,失效分析结果出来之后,可以反过来影响测试、开发、工艺、流程、筛选标准等。这种模式又可以根据自身情况,把失效分析做到不同的境界。这种模式,即使是简单的境界,也能实现低投入高回报。规模较小时,比如我们公司开始时可以采取这种模式。 以可靠性测试(包括破坏性实验)为主要内容的模式,是从源头上保证可靠性的一种方法。这种模式是一个系统工程,要求的实验设备非常丰富,投入的人力和时间也多,还有对信息的收集和统计(“只有在统计受控的条件下生产的元器件才会具有高可靠性”)投资非常大。目前我们公司还不能完全满足这个条件。 下面谈的是我对以失效分析为主要内容的模式时,可靠性研究架构的看法。 这种模式,由于规模小,所以不足以成立一个专门部门。但是可靠性工程师(或失效分析工程师)是一个必要岗位。当然可靠性工程师分在品质部还是开发部直

相关文档
相关文档 最新文档