文档库 最新最全的文档下载
当前位置:文档库 › Itris数据降维分类

Itris数据降维分类

Itris数据降维分类
Itris数据降维分类

课程作业

课程名称:模式识别

作业名称:Itris数据降维分类学生姓名:

学号:

提交时间:2018年4月12日

一、问题重述

对Iris 数据进行两个特征选取,共6种组合,计算类别可分性准则函数J 值,得出最好的分类组合,画出各种组合的分布图;

使用前期作业里面的程序、对6种组合分别使用不同方法进行基于120个训练样本30个测试样本的学习误差和测试计算,方法包括:最小距离法(均值为代表点)、最近邻法、k 近邻法(k 取3、5)等;

从错误率角度分析,寻找最优组合,并与基于可分性准则函数J 值的判断结果对比。

使用PCA 方法对4维数据进行压缩至2维,进行2维显示,并进行错误率测试。在进行数据压缩特征选择的时候,对所有150个样本数据进行操作,处理后再划分训练和测试集合。

二、方法原理

完整的数据分类过程如下图所示:

图1 数据分类过程

本次作业的重点在于特征选择与提取以及分类器的选择。

特征应该根据类别可分性准则函数值J 来进行选择,J 是类别可分程度的度量,J 值越大,数据的可分性越好。

特征选取方法有很多,其中PCA 算法是一种常用的选取方法。PCA 算法可以

求出从高维度转换为低维度的最佳变换矩阵,以此实现降维处理。

本次作业选择基于类均值的最小距离法和KNN 近邻法(k 取1、3、5)作为分类算法。

1、类别可分性准则函数值J

类别可分性准则函数值J 的计算公式如下所示

11

(x m )(x m )n (m m )(m m )i c

T

w i i i x c c T B i i i i B

w

S S S J S =∈==--=--=

∑∑∑

其中C 为类别数,m 为总样本均值,m i 为某一类均值,X 表示样本数据,对应算法如下所示。

2、PCA降维算法

图2 PCA降维算法流程

3、基于类均值的最小距离法

基于类均值的最小距离法思想是首先计算每类训练样本的均值点,再分别计算每个均值点到测试样本的距离,测试样本归属于距其最近的均值点所在的数据类型。算法流程如下:

图3基于类均值的最小距离法流程图

4、KNN近邻法

KNN近邻法源自近邻法。KNN近邻法不再单单寻找距测试样本最近的一个点,而是寻找距其最近的K个点,然后按这K个点类型确定测试样本的类型。判断原则往往是少数服从多数。算法流程如下:

开始

训练样本:FirstTrain、

SecondTrain、ThirdTrain

测试样本:Study

Pdist2函数计算每个训练样本点到测

试样本的距离

借助tabulate(求元素出现频率)、

sort(对向量进行排序)等函数求得距

测试样本最近的k个点

根据K个点的类型,少数服从多数,

给出测试样本的数据类型。

结束

图4 KNN近邻法流程图

将最近邻法和KNN近邻法写作一个函数,通过参数k的选取进行不同近邻法

特别的k取1即为最近邻法。

三、解决结果

1、组合分布图

Iris 数据有四种特征,任取两种特征构成六种组合,现将六种组合以二维图形的形式展现于下方。

图5 特征1,2样本分布图

图6 特征1,3样本分布图

特征1

特征2

类别可分性准则函数值J=1.2599

特征1

特征3

类别可分性准则函数值J=7.2627

图7 特征1,4样本分布图

图8 特征2,3样本分布图

特征1

特征4

类别可分性准则函数值J=2.9332

特征2

特征3

类别可分性准则函数值J=10.1236

图9 特征2,4样本分布图

图10 特征3,4样本分布图

特征2

特征4

类别可分性准则函数值J=3.8458

特征3

特征4

类别可分性准则函数值J=15.3779

图11 PCA 降维后样本二维分布图

表1 不同特征值下类别可分性准则值J

特征组合

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) PCA J

1.2599

7.2627

2.9332

10.1236

3.8458

15.3779

7.5344

结合以上几张分布图,可以发现对于同样的数据,选取不同特征值,样本的二维分布情况明显不同,相应的可分性准则值J 也差别很大。J 值越大,不同类样本的区分度越大。PCA 降维可以很好的将高维度的数据将为有明显区分度的低维度数据,但是结合表格也可以发现,PCA 降维后的J 值并不一定小于任选两个特征所组成的二维样本数据。

六组特征组合样本数据利用基于类均值的最小距离法、最近邻法、3NN 近邻法、5NN 近邻法进行分类,得到的分类结果如下所示。

特征5

特征6

类别可分性准则函数值J=7.5344

2、基于类均值的最小距离法分类结果

图12 含特征1、2的样本最小距离法分类结果

图13 含特征1、3的样本最小距离法分类结果

图14 含特征1、4的样本最小距离法分类结果

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征4

特征1

特征4

特征1

特征4

特征1

特征4

图15 含特征2、3的样本最小距离法分类结果

图16 含特征2、4的样本最小距离法分类结果

图17 含特征3、4的样本最小距离法分类结果

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征4

特征2

特征4

特征2

特征4

特征2

特征4

特征3

特征4

特征3

特征4

特征3

特征4

特征3

特征4

图18 PCA 降维后的最小距离分类结果

3、近邻法分类结果

图19 含特征1、2的样本近邻法分类结果

图20 含特征1、3的样本近邻法分类结果

特征5

特征6

特征5

特征6

特征5

特征6

特征5

特征6

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征3

图21 含特征1、4的样本近邻法分类结果

图22 含特征2、3的样本近邻法分类结果

图23 含特征2、4的样本近邻法分类结果

特征1

特征4

特征1

特征4

特征1

特征4

特征1

特征4

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征4

特征2

特征4

特征2

特征4

特征2

特征4

图24 含特征3、4的样本近邻法分类结果

图25 PCA 降维后的样本近邻法分类结果

3、3NN 近邻法分类结果

图26 含特征1、2的样本3NN 近邻法分类结果

特征3

特征4

特征3

特征4

特征3

特征4

特征3

特征4

特征5

特征6

特征5

特征6

特征5

特征6

特征5

特征6

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征2

图27 含特征1、3的样本3NN 近邻法分类结果

图28 含特征1、4的样本3NN 近邻法分类结果

图29 含特征2、3的样本3NN 近邻法分类结果

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征4

特征1

特征4

特征1

特征4

特征1

特征4

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征3

图30 含特征2、4的样本3NN 近邻法分类结果

图31 含特征3、4的样本3NN 近邻法分类结果

图32 PCA 降维后样本3NN 近邻法分类结果

特征2

特征4

特征2

特征4

特征2

特征4

特征2

特征4

特征3

特征4

特征3

特征4

特征3

特征4

特征3

特征4

特征5

特征6

特征5

特征6

特征5

特征6

特征5

特征6

4、5NN 近邻法

图33 含特征1、2的样本5NN 近邻法分类结果

图34 含特征1、3的样本5NN 近邻法分类结果

图35 含特征1、4的样本5NN 近邻法分类结果

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征2

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征3

特征1

特征4

特征1

特征4

特征1

特征4

特征1

特征4

图36 含特征2、3的样本5NN 近邻法分类结果

图37 含特征2、4的样本5NN 近邻法分类结果

图38 含特征3、4的样本5NN 近邻法分类结果

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征3

特征2

特征4

特征2

特征4

特征2

特征4

特征2

特征4

特征3

特征4

特征3

特征4

特征3

特征4

特征3

特征4

高维数据降维方法研究

·博士论坛· 高维数据降维方法研究 余肖生,周 宁 (武汉大学信息资源研究中心,湖北武汉430072) 摘 要:本文介绍了MDS 、Isomap 等三种主要的高维数据降维方法,同时对这些降维方法的作用进 行了探讨。 关键词:高维数据;降维;MDS ;Isomap ;LLE 中图分类号:G354 文献标识码:A 文章编号:1007-7634(2007)08-1248-04 Research on Methods of Dimensionality Reduction in High -dimensional Data YU Xiao -s heng ,ZH OU Ning (Research Center for Information Resourc es of Wuhan University ,W uhan 430072,China ) A bstract :In the paper the authors introduce three ke y methods of dimensionality r eduction in high -dimen -sional dataset ,such as MDS ,Isomap .At the same time the authors discuss applications of those methods .Key words :high -dimensional data ;dimensionality reduction ;MDS ;Isomap ;LLE 收稿日期:2006-12-20 基金项目:国家自科基金资助项目(70473068) 作者简介:余肖生(1973-),男,湖北监利人,博士研究生,从事信息管理与电子商务研究;周 宁(1943-),男, 湖北钟祥人,教授,博士生导师,从事信息组织与检索、信息系统工程、电子商务与电子政务研究. 1 引 言 随着计算机技术、多媒体技术的发展,在实际应用中经常会碰到高维数据,如文档词频数据、交易数据及多媒体数据等。随着数据维数的升高,高维索引结构的性能迅速下降,在低维空间中,我们经常采用Lp 距离(当p =1时,Lp 距离称为Man -hattan 距离;当p =2时,Lp 距离称为Euclidean 距离)作为数据之间的相似性度量,在高维空间中很多情况下这种相似性的概念不复存在,这就给基于高维数据的知识挖掘带来了严峻的考验【1】 。而这些高维数据通常包含许多冗余,其本质维往往比原始的数据维要小得多,因此高维数据的处理问题可以归结为通过相关的降维方法减少一些不太相关的数据而降低它的维数,然后用低维数据的处理办法进行处理 【2-3】 。高维数据成功处理的关键在于降维方 法的选择,因此笔者拟先介绍三种主要降维方法, 接着讨论高维数据降维方法的一些应用。 2 高维数据的主要降维方法 高维数据的降维方法有多种,本文主要讨论有代表性的几种方法。 2.1 MDS (multidimensional scaling )方法 MDS 是数据分析技术的集合,不仅在这个空间上忠实地表达数据之间联系,而且还要降低数据集的维数,以便人们对数据集的观察。这种方法实质是一种加入矩阵转换的统计模式,它将多维信息 通过矩阵运算转换到低维空间中,并保持原始信息之间的相互关系 【4】 。 每个对象或事件在多维空间上都可以通过一个 点表示。在这个空间上点与点之间的距离和对象与对象之间的相似性密切相关。即两个相似的对象通过空间临近的两个点来表示,且两个不相似的对象 第25卷第8期2007年8月 情 报 科 学 Vol .25,No .8 August ,2007

较大规模数据应用PCA降维的一种方法

计算机工程应用技术 本栏目责任编辑:梁 书 较大规模数据应用PCA 降维的一种方法 赵桂儒 (中国地震台网中心,北京100045) 摘要:PCA 是一种常用的线性降维方法,但在实际应用中,当数据规模比较大时无法将样本数据全部读入内存进行分析计 算。文章提出了一种针对较大规模数据应用PCA 进行降维的方法,该方法在不借助Hadoop 云计算平台的条件下解决了较大规模数据不能直接降维的问题,实际证明该方法具有很好的应用效果。关键词:主成分分析;降维;大数据中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2014)08-1835-03 A Method of Dimensionality Reduction for Large Scale Data Using PCA ZHAO Gui-ru (China Earthquake Networks Center,Beijing 100045,China) Abstract:PCA is a general method of linear dimensionality reduction.It is unable to read all the sample data into the memory to do analysis when the data scale becomes large.A method of dimensionality reduction for large scale data using PCA without Ha?doop is proposed in this paper.This method solves the problem that it can ’t do dimensionality reduction directly on large scale data.Practice proves that this method has a good application effect.Key words:PCA;dimensionality reduction;large scale data 现实生活中人们往往需要用多变量描述大量的复杂事物和现象,这些变量抽象出来就是高维数据。高维数据提供了有关客观现象极其丰富、详细的信息,但另一方面,数据维数的大幅度提高给随后的数据处理工作带来了前所未有的困难。因此数据降维在许多领域起着越来越重要的作用,通过数据降维可以减轻维数灾难和高维空间中其他不相关属性。所谓数据降维是指通过线性或非线性映射将样本从高维空间映射到低维空间,从而获得高维数据的一个有意义的低维表示的过程。 主成分分析(Principal Component Analysis ,PCA )是通过对原始变量的相关矩阵或协方差矩阵内部结构的研究,将多个变量转换为少数几个综合变量即主成分,从而达到降维目的的一种常用的线性降维方法。这些主成分能够反映原始变量的绝大部分信息,它们通常表示为原始变量的线性组合。在实际应用中当数据规模超过计算机内存容量(例如16G)时就无法将样本数据全部读入内存来分析原始变量的内部结构,这成为PCA 在实际应用中存在的一个问题。该文从描述PCA 变换的基本步骤出发,提出了一种不需要Hadoop 等云计算平台即可对较大规模数据进行降维的一种方法,实际证明该方法具有很好的应用效果。 1PCA 变换的基本步骤 PCA 是对数据进行分析的一种技术,主要用于数据降维,方法是利用投影矩阵将高维数据投影到较低维空间。PCA 降维的一般步骤是求取样本矩阵的协方差矩阵,计算协方差矩阵的特征值及其对应的特征向量,由选择出的特征向量构成这个投影矩阵。 ?è???????? ÷÷÷÷÷÷cov(x 1,x 1),cov(x 1,x 2),cov(x 1,x 3),?,cov(x 1,x N )cov(x 2,x 1),cov(x 2,x 2),cov(x 2,x 3),?,cov(x 2,x N ) ?cov(x N ,x 1),cov(x N ,x 2),cov(x N ,x 3),?,cov(x N ,x N )(1)假设X M ×N 是一个M ×N (M >N ),用PCA 对X M ×N 进行降维分析,其步骤为:1)将矩阵X M ×N 特征中心化,计算矩阵X M ×N 的样本的协方差矩阵C N ×N ,计算出的协方差矩阵如式(1)所示,式中x i 代表X M ×N 特征中心化后的第i 列; 2)计算协方差矩阵C N ×N 的特征向量e 1,e 2...e N 和对应的特征值λ1,λ2...λN ,将特征值按从大到小排序; 3)根据特征值大小计算协方差矩阵的贡献率及累计贡献率,计算公式为: θi =λi ∑n =1 N λn i =1,2,...,N (2) 收稿日期:2014-01-20基金项目:国家留学基金资助项目(201204190040)作者简介:赵桂儒(1983-),男,山东聊城人,工程师,硕士,迈阿密大学访问学者,主要研究方向为多媒体信息处理。 1835

常见的特征选择或特征降维方法

URL:https://www.wendangku.net/doc/9c1884181.html,/14072.html 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更强,减少过拟合 2.增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。 在许多机器学习的书里,很难找到关于特征选择的容,因为特征选择要解决的问题往往被视为机器学习的一种副作用,一般不会单独拿出来讨论。本文将介绍几种常用的特征选择方法,它们各自的优缺点和问题。 1 去掉取值变化小的特征Removing features with low variance 这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。

2 单变量特征选择Univariate feature selection 单变量特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征。对于回归和分类问题可以采用卡方检验等方式对特征进行测试。 这种方法比较简单,易于运行,易于理解,通常对于理解数据有较好的效果(但对特征优化、提高泛化能力来说不一定有效);这种方法有许多改进的版本、变种。 2.1 Pearson相关系数Pearson Correlation 皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性,结果的取值区间为[-1,1],-1表示完全的负相关(这个变量下降,那个就会上升),+1表示完全的正相关,0表示没有线性相关。 Pearson Correlation速度快、易于计算,经常在拿到数据(经过清洗和特征提取之后的)之后第一时间就执行。 Pearson相关系数的一个明显缺陷是,作为特征排序机制,他只对线性关系敏感。如果关系是非线性的,即便两个变量具有一一对应的关系, Pearson相关性也可能会接近0。 2.2 互信息和最大信息系数Mutual information and maximal information coefficient (MIC)

数据降维方法分析与研究_吴晓婷

收稿日期:2008211226;修回日期:2009201224 基金项目:国家自然科学基金资助项目(60372071);中国科学院自动化研究所复杂系统与智能科学重点实验室开放课题基金资助项目(20070101);辽宁省教育厅高等学校科学研究基金资助项目(2004C031) 作者简介:吴晓婷(19852),女(蒙古族),内蒙古呼伦贝尔人,硕士研究生,主要研究方向为数据降维、模式识别等(xiaoting wu85@hot m ail . com );闫德勤(19622),男,博士,主要研究方向为模式识别、数字水印和数据挖掘等. 数据降维方法分析与研究 3 吴晓婷,闫德勤 (辽宁师范大学计算机与信息技术学院,辽宁大连116081) 摘 要:全面总结现有的数据降维方法,对具有代表性的降维方法进行了系统分类,详细地阐述了典型的降维方法,并从算法的时间复杂度和优缺点两方面对这些算法进行了深入的分析和比较。最后提出了数据降维中仍待解决的问题。 关键词:数据降维;主成分分析;局部线性嵌入;等度规映射;计算复杂度 中图分类号:TP301 文献标志码:A 文章编号:100123695(2009)0822832204 doi:10.3969/j .jssn .100123695.2009.08.008 Analysis and research on method of data dimensi onality reducti on WU Xiao 2ting,Y AN De 2qin (School of Co m puter &Infor m ation Technology,L iaoning N or m al U niversity,D alian L iaoning 116081,China ) Abstract:This paper gave a comp rehensive su mmarizati on of existing di m ensi onality reducti on methods,as well as made a classificati on t o the rep resentative methods systematically and described s ome typ ical methods in detail.Further more,it deep ly analyzed and compared these methods by their computati onal comp lexity and their advantages and disadvantages .Finally,it p r oposed the crucial p r oble m s which needed t o be res olved in future work in data di m ensi onality reducti on . Key words:data di m ensi onality reducti on;p rinci pal component analysis (PCA );l ocally linear e mbedding (LLE );is ometric mapp ing;computati onal comp lexity 近年来,数据降维在许多领域起着越来越重要的作用。通过数据降维可以减轻维数灾难和高维空间中其他不相关属性,从而促进高维数据的分类、可视化及压缩。所谓数据降维是指通过线性或非线性映射将样本从高维空间映射到低维空间,从而获得高维数据的一个有意义的低维表示的过程。数据降维的数学描述如下:a )X ={x i }N i =1是D 维空间中的一个样本集, Y ={y i }N i =1是d (d <

数据挖掘经典方法

在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 1.分类 分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 分类的方法有:决策树、贝叶斯、人工神经网络。 1.1决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 1.2贝叶斯 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯

多组分分析方法综述

重金属多组分分析的研究现状 近年来,随着科技的进步,单组分重金属的检测技术已经非常成熟,但是在实际污染体系中重金属离子种类繁多,且它们之间往往存在相互干扰,传统的化学分析方法和化学分析仪器难以一次性精确的检测出各个重金属离子的浓度,需要对共存组分进行同时测定。 对共存组分进行同时测定,传统的化学分析方法是首先通过加入各种掩蔽剂进行组分的预分离,然后采用单组分重金属检测技术进行分析检测。这种方法的分离过程往往冗长繁琐,实验条件苛刻,费时费力,而且检测精度低,无法应用于污染现场的检测。 随着计算机科学技术、光谱学和化学信息学的发展,复杂体系的多组分分析已成为当今光谱技术的研究热点,应用范围涉及环境监测、石油化工、高分子化工、食品工业和制药工业等领域,而且需求日益显著。由于多重金属离子共存时会产生重金属离子间的相互作用,因此在用化学分析仪器检测时会产生相干数据干扰,对实验结果产生影响,为了使测试结果更加准确,需要在实验的基础上建立数学模型,用于数据处理,消除各重金属离子共存时产生的相干数据干扰。近年来,引入化学计量学手段,用“数学分离”部分代替复杂的“化学分离”,从而达到重金属离子的快速、简便分析测定[1]。 化学计量学是一门通过统计学或数学方法将对化学体系的测量值与体系的状态之间建立联系的学科,它应用数学、统计学和其他方法和手段(包括计算机)选择最优试验设计和测量方法,并通过对测量数据的处理和解析,最大限度地获取有关物质系统的成分、结构及其他相关信息。目前,已有许多化学计量学方法从不同程度和不同方面解决了分析化学中多组分同时测定的问题,如偏最小二乘法(PLS)、主成分回归法(PCR)、Kalman滤波法、多元线性回归(MLR)等,这些方法减少了分离的麻烦,并使试验更加科学合理。 (1) 光谱预处理技术 这些方法用来降噪、消除无关信息。 ①主成分分析法 在处理多元样本数据时,假设总体为X=(x1,x1,x3…xn),其中每个xi (i=1,2,3,…n)为要考察的数量指标,在实践中常常遇到的情况是这n个指标之间存在着相关关系。如果能从这n个指标中构造出k个互不相关的所谓综合指标(k

高维数据的低维表示综述

高维数据的低维表示综述 一、研究背景 在科学研究中,我们经常要对数据进行处理。而这些数据通常都位于维数较高的空间,例如,当我们处理200个256*256的图片序列时,通常我们将图片拉成一个向量,这样,我们得到了65536*200的数据,如果直接对这些数据进行处理,会有以下问题:首先,会出现所谓的“位数灾难”问题,巨大的计算量将使我们无法忍受;其次,这些数据通常没有反映出数据的本质特征,如果直接对他们进行处理,不会得到理想的结果。所以,通常我们需要首先对数据进行降维,然后对降维后的数据进行处理。 降维的基本原理是把数据样本从高维输入空间通过线性或非线性映射投影到一个低维空间,从而找出隐藏在高维观测数据中有意义的低维结构。(8) 之所以能对高维数据进行降维,是因为数据的原始表示常常包含大量冗余: · 有些变量的变化比测量引入的噪声还要小,因此可以看作是无关的 · 有些变量和其他的变量有很强的相关性(例如是其他变量的线性组合或是其他函数依赖关系),可以找到一组新的不相关的变量。(3) 从几何的观点来看,降维可以看成是挖掘嵌入在高维数据中的低维线性或非线性流形。这种嵌入保留了原始数据的几何特性,即在高维空间中靠近的点在嵌入空间中也相互靠近。(12) 数据降维是以牺牲一部分信息为代价的,把高维数据通过投影映射到低维空间中,势必会造成一些原始信息的损失。所以在对高维数据实施降维的过程中如何在最优的保持原始数据的本质的前提下,实现高维数据的低维表示,是研究的重点。(8) 二、降维问题 1.定义 定义1.1降维问题的模型为(,)X F ,其中D 维数据空间集合{}1N l l X x == (一 般为D R 的一个子集),映射F :F X Y →(),x y F x →=

大数据降维的经典方法

大数据降维的经典方法 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。 最新的一个例子是采用2009 KDD Challenge 大数据集来预测客户流失量。该数据集维度达到15000 维。大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。该项目的最重要的就是在减少数据列数的同时保证丢失的数据信息尽可能少。 以该项目为例,我们开始来探讨在当前数据分析领域中最为数据分析人员称道和接受的数据降维方法。 缺失值比率(Missing Values Ratio) 该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。该方法示意图如下: 低方差滤波(Low Variance Filter) 与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。算法示意图如下: 高相关滤波(High Correlation Filter) 高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使

用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。算法示意图如下: 随机森林/组合树(Random Forests) 组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属性经常成为最佳分裂属性,那么它很有可能是需要保留的信息特征。对随机森林数据属性的统计评分会向我们揭示与其它属性相比,哪个属性才是预测能力最好的属性。算法示意图如下: 主成分分析(PCA) 主成分分析是一个统计过程,该过程通过正交变换将原始的n 维数据集变换到一个新的被称做主成分的数据集中。变换后的结果中,第一个主成分具有最大的方差值,每个后续的成分在与前述主成分正交条件限制下与具有最大方差。降维时仅保存前m(m < n) 个主成分即可保持最大的数据信息量。需要注意的是主成分变换对正交向量的尺度敏感。数据在变换前需要进行归一化处理。同样也需要注意的是,新的主成分并不是由实际系统产生的,因此在进行PCA 变换后会丧失数据的解释性。如果说,数据的解释能力对你的分析来说很重要,那么PCA 对你来说可能就不适用了。算法示意图如下: 反向特征消除(Backward Feature Elimination)

数据分析中常用的降维方法有哪些

数据分析中常用的降维方法有哪些 对大数据分析感兴趣的小伙伴们是否了解数据分析中常用的降维方法都有哪些呢?本篇文章小编和大家分享一下数据分析领域中最为人称道的七种降维方法,对大数据开发技术感兴趣的小伙伴或者是想要参加大数据培训进入大数据领域的小伙伴就随小编一起来看一下吧。 近来由于数据记录和属性规模的急剧增长,大数据处理平台和并行数据分析算法也随之出现。于此同时,这也推动了数据降维处理的应用。实际上,数据量有时过犹不及。有时在数据分析应用中大量的数据反而会产生更坏的性能。 我们今天以2009 KDD Challenge 大数据集来预测客户流失量为例来探讨一下,大多数数据挖掘算法都直接对数据逐列处理,在数据数目一大时,导致算法越来越慢。因此,下面我们一下来了解一下数据分析中常用的降维方法。 缺失值比率(Missing Values Ratio) 该方法的是基于包含太多缺失值的数据列包含有用信息的可能性较少。因此,可以将数据列缺失值大于某个阈值的列去掉。阈值越高,降维方法更为积极,即降维越少。 低方差滤波(Low Variance Filter) 与上个方法相似,该方法假设数据列变化非常小的列包含的信息量少。因此,所有的数据列方差小的列被移除。需要注意的一点是:方差与数据范围相关的,因此在采用该方法前需要对数据做归一化处理。 高相关滤波(High Correlation Filter) 高相关滤波认为当两列数据变化趋势相似时,它们包含的信息也显示。这样,使用相似列中的一列就可以满足机器学习模型。对于数值列之间的相似性通过计算相关系数来表示,对于名词类列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。同样要注意的是:相关系数对范围敏感,所以在计算之前也需要对数据进行归一化处理。 随机森林/组合树(Random Forests) 组合决策树通常又被成为随机森林,它在进行特征选择与构建有效的分类器时非常有用。一种常用的降维方法是对目标属性产生许多巨大的树,然后根据对每个属性的统计结果找到信息量最大的特征子集。例如,我们能够对一个非常巨大的数据集生成非常层次非常浅的树,每颗树只训练一小部分属性。如果一个属

权重确定方法综述

权重确定方法综述 引言 多指标综合评价是指人们根据不同的评价目的,选择相应的评价形式据此选择多个因素或指标,并通过一定的评价方法将多个评价因素或指标转化为能反映评价对象总体特征的信息,其中评价指标与权重系数确定将直接影响综合评价的结果。评价指标权重的确定是多目标决策的一个重要环节,因为多目标决策的基本思想是将多目标决策结果值纯量化,也就是应用一定的方法、技术、规则(常用的有加法规则、距离规则等)将各目标的实际价值或效用值转换为一个综合值;或按一定的方法、技术将多目标决策问题转化为单目标决策问题。指标权重是指标在评价过程中不同重要程度的反映,是决策(或评估)问题中指标相对重要程度的一种主观评价和客观反映的综合度量。按照权数产生方法的不同多指标综合评价方法可分为主观赋权评价法和客观赋权评价法两大类,其中主观赋权评价法采取定性的方法由专家根据经验进行主观判断而得到权数,然后再对指标进行综合评价,如层次分析法、综合评分法、模糊评价法、指数加权法和功效系数法等。客观赋权评价法则根据指标之间的相关关系或各项指标的变异系数来确定权数进行综合评价,如熵值法、神经网络分析法、TOPSIS法、灰色关联分析法、主成分分析法、变异系数法等。权重的赋值合理与否,对评价结果的科学合理性起着至关重要的作用;若某一因素的权重发生变化,将会影响整个评判结果。因此,权重的赋值必须做到科学和客观,这就要求寻求合适的权重确定方法。下面就对当前应用较多的评价方法进行阐述。 一、变异系数法 变异系数法是直接利用各项指标所包含的信息,通过计算得到指标的权重。是一种客观赋权的方法。此方法的基本做法是:在评价指标体系中,指标取值差异越大的指标,也就是越难以实现的指标,这样的指标更能反映被评价单位的差

如何进行数据降维—主成分分析与因子分析的比较

如何进行数据降维 —主成分分析与因子分析的比较 当我们使用统计分析方法进行多变量分析的时候,变量个数太多就会增加分析的复杂性。遇到这种情况,我们一般需要采取降维的方法对变量进行降维,以期更好来进行后续的分析工作。因子分析和主成分分析就是我们常用的两种变量降维的方法。但哪种方法更好呢?本文将对这两种方法来进行比较,希望大家能从相互的比较过程中,找到适合自己分析的降维方法。 首先,先来给大家简单的介绍下这两种方法的原理。 一般而言,针对某一个响应的若干因子之间存在着一定的相关性,因子分析就是在这些变量中找出隐藏的具有代表性的因子,将相同本质的变量归入一个因子,以此来减少变量的数目。 而对于主成分来说,这种相关性意味着这些变量之间存在着一定的信息重叠,主成分分析将重复的因子(相关性强的因子)删去,通过建立尽可能保持原有信息、彼此不相关的新因子来对响应进行重新的刻画。 从统计学上来看,主成分分析本质上是一种通过线性变换来进行数据集简化的技术,它是将数据从现有的坐标系统变换到一个新的坐标系统中,然后将数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。 相比较主成分分析,因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分,然后通过构造因子模型,将原始观察变量分解为公共因子因子的线性组合。简而言之,主成分分析是将主要成分表示为原始观察变量的线性组合,而因子分析是将原始观察变量表示为新因子的线性组合。 基于两个方法的原理及实施步骤,我们不难看出,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。 此外,主成分分析主要是作为一种探索性的技术,可以同聚类分析和判别分析一起使用,帮助我们更好的进行多元分析,特别是当变量很多,数据样本量少的情况,一些统计分析方

常见的特征选择或特征降维方法

URL:https://www.wendangku.net/doc/9c1884181.html,/14072.html 特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。 特征选择主要有两个功能: 1.减少特征数量、降维,使模型泛化能力更强,减少过拟合 2.增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,选择一种自己最熟悉或者最方便的特征选择方法(往往目的是降维,而忽略了对特征和数据理解的目的)。 在许多机器学习的书里,很难找到关于特征选择的内容,因为特征选择要解决的问题往往被视为机器学习的一种副作用,一般不会单独拿出来讨论。本文将介绍几种常用的特征选择方法,它们各自的优缺点和问题。 1 去掉取值变化小的特征 Removing features with low variance 这应该是最简单的特征选择方法了:假设某种特征的特征值只有0和1,并且在所有输入样本中,95%的实例的该特征取值都是1,那就可以认为这个特征作用不大。如果100%都是1,那这个特征就没意义了。当特征值都是离散型变量的时候这种方法才能用,如果是连续型变量,就需要将连续变量离散化之后才能用,而且实际当中,一般不太会有95%以上都取某个值的特征存在,所以这种方法虽然简单但是不太好用。可以把它作为特征选择的预处理,先去掉那些取值变化小的特征,然后再从接下来提到的特征选择方法中选择合适的进行进一步的特征选择。 2 单变量特征选择 Univariate feature selection

第九章 降维

第九章 降维 9.1k 近邻学习 k 近邻( k -Nearest Neighbor ,简称KNN )学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其靠近的k 个训练样本,然后基于k 个“邻居”的信息来进行预测。在分类任务中一般使用“投票法”,在回归任务中使用 “简单平均法”。还可以基于距离使用加权平均或加权投票。 9.2 低维嵌入 最近邻学习的一个重要建设:任意测试样本附近任意小的距离范围内总能找到一个训练样本,即训练样本的采样密度足够大。然而,这个假设在现实任务中通常很难满足。在低维数空间进行采样还比较容易满足一定条件,而在维数很高时,距离计算有时都面临困难。在高维情况下出现的数据样本稀疏、距离计算困难等问题,是所有机器学习共同面临的障碍, 被称为“维数灾难”。 缓解维数灾难的一个重要途径是降维(dimension reduction ),亦称“维数简约”,即通过 某种数学变换将原始高维属性空间转变为一个低维“子空间”,在这个子空间中样本的密度大幅增高,距离计算也变得容易。为什么能降维?这是因为在很多时候,人们观测或收集到的数据样本虽是高维的,但与学习任务密切相关的也许是某个低维分布,即高维空间中的一个低维嵌入。 若要求原始空间中样本之间的距离在低维空间中得以保持,即得到“多维缩放”(Multiple Dimensional Scaling ,简称MDS )[Cox ,2001]这样一种经典的降维方法。 假定m 个样本在原始空间的距离矩阵为m m R D ?∈,其元素ij d 表示样本i x 与j x 之间的 距离,原始空间的维数为d 。目标是获得样本在d '维空间的表示d d R Z m d ≤'∈?' ,,且任意两个样本在d '维空间中的欧式距离等于原始空间中的距离,即ij j i d z z =-。 令m m T R Z Z B ?∈=,其中B 为降维后样本的内积矩阵,j T i ij z z b =,有 j T i j i ij z z z z d 22 2 2-+= ij jj ii b b b 2-+= (1) 为了便于讨论,令降维后的样本Z 被中心化,即01=∑ =m i i z 。显然矩阵B 的行与列之和 均为零,即 ∑∑====m j m i ij bij b 110。易知 jj m i ij mb B tr d +=∑=)(1 2 (2) ii m j ij mb B tr d +=∑=)(1 2 (3)

数据降维

数据降维 随着信息获取与处理技术的飞速发展,人们获取信息和数据的能力越来越强,高维数据频繁地出现于科学研究以及产业界等相关领域。为了对客观事物进行细致的描述,人们往往需要利用到这些高维数据,如在图像处理中,数据通常为m*n大小的图像,若将单幅图像看成图像空间中的一个点,则该点的维数为m*n 维,其对应的维数是相当高的,在如此高维的空间中做数据处理无疑会给人们带来很大的困难,同时所取得的效果也是极其有限的;再如网页检索领域一个中等程度的文档集表示文档的特征词向量通常高达几万维甚至几十万维;而在遗传学中所采集的每个基因片段往往是成千上万维的。另外,若直接处理高维数据,会遇到所谓的“维数灾难”(Curse of dimensionality)问题:即在缺乏简化数据的前提下,要在给定的精度下准确地对某些变量的函数进行估计,我们所需要的样本数量会随着样本维数的增加而呈指数形式增长[1]。因此,人们通常会对原始数据进行“数据降维”。 数据降维是指通过线性或者非线性映射将高维空间中的原始数据投影到低维空间,且这种低维表示是对原始数据紧致而有意义的表示,通过寻求低维表示,能够尽可能地发现隐藏在高维数据后的规律[2]。对高维数据进行降维处理的优势体现在如下几个方面:1)对原始数据进行有效压缩以节省存储空间;2)可以消除原始数据中存在的噪声;3)便于提取特征以完成分类或者识别任务;4)将原始数据投影到2维或3维空间,实现数据可视化。主流的数据降维算法主要有七种,其名称和对比如图1所示,接下来会进行详细地介绍其中的五种:线性的PCA、MDS、LDA以及非线性的Isomap、LLE。 图1 七种不同降维算法及其对比 1.PCA(Principal Component Analysis, 主成成分分析法)

相关文档