文档库 最新最全的文档下载
当前位置:文档库 › 工学超声波测距扩展卡的设计

工学超声波测距扩展卡的设计

工学超声波测距扩展卡的设计
工学超声波测距扩展卡的设计

目录

第1章绪论2

1.1 机器人研究的意义2

1.1.1 机器人足球的发展3

1.1.2 传感器技术与超声波应用3

1.2 能力风暴机器人概述4

1.2.1 开设能力风暴机器人教育的意义4

1.2.2 能力风暴机器人结构4

1.2.3 能力风暴机器人的硬件5

1.2.4 能力风暴机器人的开发能力6

第2章超声波测距扩展卡的设计7

2.1 超声波扩展卡设计思路7

2.1.1 超声波简介7

2.1.2 超声波测距原理7

2.1.3 课题设计的任务和要求9

2.1.4 方案设计比较9

第3章系统硬件结构设计11

3.1 系统主要结构11

3.2 51系列单片机功能结构特点11

3.2.1 AT89C51的引脚介绍13

3.2.2 AT89C51的定时计数系统13

3.2.3 AT89C51的中断系统14

3.3 LM555定时器介绍15

3.4 硬件扩展总线ASBUS (19)

第4章绘制电路板20

4.1 PROTEL介绍及作图流程20

4.2 超声波测距扩展卡的软件调试22

4.2.1 VJC简介22

4.2.2 JC语言22

4.3 单片机汇编语言调试24

4.3.1 采用汇编语言的优点24

4.3.2 程序流程图24

第5章结论26

致谢30

参考文献31

附录32

第1章绪论

1.1机器人研究的意义

机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预

先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取

代人类工作的工作,例如生产业、建筑业,或是危险的工作。它可以说是高级整合控制论、机械电子、计算机、材料和仿生学的产物。目前在工业、医学、农业甚至军事等领

域中均有重要用途。机器人是近年来的研究热点,其研究水平是一个国际科技实力的重

要标志。

“能力风暴”(Ability Storms)机器人由上海广茂达电子信息有限公司开发,呈单片机结构,外形酷似UFO,是专为个人机器人的需求设计的,它是最优秀的科技类探索性课程及课外活动的教具,它融合了光学、机械、电子、计算机等学科的高科技知识,集辅助教学和娱乐于一身。能力风暴个人机器人的配有5种十几个传感器,另外还可以根据需要扩展其他传感器,对环境的感知能力很强。感知环境的能力是产生智能行为的前提,因此能力风暴能产生许多智能性行为。

本课题主要是设计一块基于能力风暴机器人的超声波测距模块,用于解决“能力风暴”大学版机器人在比赛过程中识别障碍物的问题。

1.1.1机器人足球的发展

足球机器人比赛虽然刚刚开展几年时间,但是它吸引了越来越多人的关注。因为它以喜闻乐见的方式走进了我们的视野,虽然它的体积很小,但是它的意义非常重大。它是综合了计算机技术,自动化技术,机电一体化技术,人工智能技术,模式识别技术的一门综合技术。

足球机器人的核心技术是人工智能技术,它的目地是使机器具有人的智慧。它能使机器具有像人一样的感知环境,向环境学习的能力。人工智能包括智能控制、机器感知、机器情感、专家系统、人工生命、神经元网络和遗传算法等等。

1.1.2传感器技术与超声波应用

传感器技术是现代信息技术的主要内容之一。信息技术包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外传感器、压力传感器等等,其中,超声波传感器在测量方面有着广泛、普遍的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。

超声波测距系统主要应用于汽车的倒车雷达、机器人自动避障行走、建筑施工工地以及一些工业现场例如:液位、井深、管道长度等场合。因此研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。

1.2能力风暴机器人概述

1.2.1开设能力风暴机器人教育的意义

自从20世纪60年代初世界第一台机器人诞生以后,机器人技术得到了迅速地发展。在21世纪,机器人技术的进步将会对科学与技术的发展产生重要影响。

高技术研究发展计划("863"计划)是我国关于高技术的中长期研究发展计划,智能机器人是自动化领域的主题之一。"863"计划开始实施以来,在特种机器人,机器人应用工程,机器人基础技术等方面取得了很大成绩,组织和培养了一支数量可观的研究开发队伍,建立了一批各具特色的研究开发环境,"863"计划已成为我国发展智能机器人技术的最重要的阵地。

能力风暴机器人AS-UⅡ(以下简称:AS-UⅡ)是上海广茂达公司生产的专门面向教育的机器人。它融合了现代工业设计、机械、电子、传感器、计算机和人工智能等诸多领域的先进技术,学生可以通过使用能力风暴个人机器人接触到多方面的知识和技术。它提供了一个接口平台,可供用户进行扩展,实现二次开发,在软件,机械,电子等方面均有较强的延拓能力。它采用图形化交互C语言(简称VJC)完成AS-UⅡ的软件开发,具有基于流程图的编程语言和交互式C语言(简称JC),便于用户自由发挥。

开展能力风暴机器人研究活动,旨在进一步加强未成年人思想道德教育,提高广大青少年的科学素养,发展自身潜能,引导更多的大中小学生关注科技、热爱科技、走进科技,涌现出更多的未来科学家和未来工程师。在积极推进基础教育和高等教育改革的过程中渗透科学技术教育,努力培养大中小学学生的实践能力和创新精神。

1.2.2能力风暴机器人结构

AS-UII 是面向教育的新一代智能移动机器人。AS-UII结构参见图1.1

AS-UII有一个功能强大的微处理系统和传感器系统,而且它还能扩展听觉、视觉、和触觉,成为真正意义上的智能机器人。

AS-UII的身体结构主要由控制部分、传感器部分和执行部分三大部分组成。每一部分介绍如下:

1.控制部分

控制部分是AS-UII机器人的核心组成部分,AS-UII的大脑有记忆功能,这主要由主板上的内存来实现,至于“大脑”的分析、判断、决断功能则由主板上的众多芯片共同完成。

图1.1 AS-UII的内部结构图

1.2.3能力风暴机器人的硬件

人对周围环境的反应过程主要是感觉→大脑思考→作出反映,机器人的信息处理流程也是如此。

能力风暴智能机器人的配有5种十几个传感器,另外还可以根据需要扩展其他传感器,对环境的感知能力很强。感知环境的能力是产生智能行为的前提,因此能力风暴能产生许多智能性行为。

能力风暴通过微控制器(microcontroller)来思维。我们采用的是Motorola公司8位单片机中功能最强、集成功能最全的高档机种。它的可靠性很高,有程序自下载功能。能力风暴连上串口线就可自动下载程序。

计算机硬件决定了机器的极限潜能,去开发这种潜能是软件的工作。能力风暴机器人为用户提供了交互式图形化编程C语言—VJC,它使开发能力风暴的高层行为充满了乐趣。有的低层的驱动软件与硬件相关太紧密或实时要求很高,需要用汇编语言来处理。

能力风暴智能机器人的执行器有:二只高性能直流电机;一只喇叭;一只2*16字符的液晶显示器。

能力风暴机器人的系统结构如图1.2所示。

图1.2 能力风暴机器人的系统结构

能力风暴计算机硬件的设计策略是尽量选择功能齐全、可靠、周边设备集成度高的微控制器,价格也需控制,能让中国的学生以可以承受的价格获得世界上先进的智能机器人计算平台。Motorola生产的68HC11,以极少的周边芯片获得了齐全的功能,8个模拟口,5个输入捕捉,3个PWM输出,16位地址,8位数据总线,串口,以及4个通用I/O。

同时,充分考虑到软件开发工具问题。因为没有优秀方便的软件开发工具,硬件只能成为专有系统,而无法成为开发平台。68HC11的自下载功能,使我们拥有了纯软件开发调试的优秀工具JC。JC即可用于开发高层应用软件,又便于开发低层驱动,还能交互调试。

1.2.4能力风暴机器人的开发能力

(1)软件开发能力

标准C语言子集,简洁的专业程序员语言支持浮点运算、指针、多维数组;先进的多任务操作系统ASOS;便于学习的图形化交互式C语言;众多的驱动程序和应用程序代码,在高手的基础上学习编程。

(2)能力风暴机器人AS- UⅡ它采用图形化交互C 语言( 简称VJC)完成AS- UⅡ的软件开发, 具有基于流程图的编程语言和交互式C 语言(简称JC),便于用户自由发挥。

(3)机械扩展能力

1至32个直流电机;1至4个步进电机交流伺服电机;1至32个继电器、电继阀、记忆合金;1至32个灯泡、电热丝、蜂鸣器。扩展实例:灭火风扇,机械手臂,装饰彩

灯等。

(4)电子扩展能力

1至几百路8位模拟输入;3至几十路输出捕捉;32路数字式输出。扩展实例:超声测距卡,红外测距卡,6路伺服电机驱动卡,8路输入输出。

第2章超声波测距扩展卡的设计

2.1超声波扩展卡设计思路

2.1.1超声波简介

超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距,测速,清洗,焊接,碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大约等于人的听觉上限而得名。

2.1.2超声波测距原理

2.1.2.1超声波发生器

为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。在本次设计中我们采用市场上较为普遍的型号为TR40-16B的超声波传感器。TR40-16B是分体式超声波传感器,共分为接收和发射两部分。其中,标有T的是发射部分,标有R的是接收部分。

压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

若对发送传感器内谐振频率为40KHz的压电陶瓷片(双晶振子超声波传感器)施加40KHz高频电压,则压电陶瓷片就根据所加高频电压极性伸长与缩短,于是发送40KHz 频率的超声波,其超声波以疏密形式传播(疏密程度可由控制电路调制),并传给波接收器。接收器是利用压力传感器所采用的压电效应的原理,即在压电元件上施加压力,使压电元件发生应变,则产生一面为“+ ”极,另一面为“-”极的40KHz正弦电压。因该高频电压幅值较小,故必须进行放大。超声波传感器使得驾驶员可以安全地倒车,其原理是利用探测倒车路径上或附近存在的任何障碍物,并及时发出警告。所设计的检测系统可以同时提供声光并茂的听觉和视觉警告,其警告表示是探测到了在盲区内障碍物的距离和方向。这样,在狭窄的地方不管是泊车还是开车,借助倒车障碍报警检测系统,驾驶员心理压力就会减少,并可以游刃有余地采取必要的动作。

2.1.2.2超声波测距原理

超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。

测距的公式表示为:L=C×T

式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。

超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。

由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,以及用LM92温度传感器进行声波传播速度的补偿后,我们设计的高精度超声波测距仪能达到毫米级的测量精度。

超声波测距误差分析

根据超声波测距公式L=C×T,可知测距的误差是由超声波的传播速度误差和测量距

离传播的时间误差引起的。时间误差当要求测距误差小于1mm时,假设已知超声波速度C=340m/s (20℃室温),忽略声速的传播误差。测距时间误差△t<(0.001/344) ≈0.000002907s 即2.907ms。

在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1mm的误差。使用的12MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用89C51定时器能保证时间误差在1mm的测量范围内。由于本方案设计只用到八位数据传输,因此测量误并主要体现在传送数据上。5米定时计数器的最大值为72E3H,左移一位后的高八位为E5H,转化成十进制后是229,测量误差为5m/229=21.8mm。

2.1.3课题设计的任务和要求

(1) 超声测距卡能发射超声波并检测被障碍物反射回来的声波,测量出两者的时间差,然后根据声音在空气中传播的速度,计算出障碍物与机器人之间的距离。在机器人比赛中可对周围环境进行探测,确定对手所在的方位。

(2)Protel格式的电路原理图和印刷电路板图各一张。

(3)自制的无线通讯模块一块。

(4)利用VJC1.6编程工具调试通过。

2.1.4方案设计比较

2.1.4.1方案一:

发射电路与接收电路如图2.1所示。超声波的发射电路由LM555定时器构成40KHz 的多谐振荡器。LM555第3引脚输出端经过功率放大后驱动超声波传感器TR40-16,使之发射出超声波信号。电路工作电压12V。

图2.1 方案一的超声波发射电电路

超声波接收电路超声波接收电路主要由接收换能器、功率放大电路、比较及控制等环节组成。9当超声波遇到障碍物返回时,超声波接收传感器TR40-16接收由于回波电压的数量级在毫伏量级,并且在距离较远的情况下,回波更弱,因而必须将信号放大。如图2所示,设计中采用高速精密放大器LM318。其带宽为15M,第1级放大50倍,第2级电路接可变电阻,理论放大倍数50倍这样两级放大倍数最大可达到2500倍,能充分满足因为较远距离传播而变得相当微弱的信号得到足够增益。然后由L M5 6 7(音频检测器芯片)来完成信号的滤波、检波、选频等功能。

图2.2 方案一的超声波接收电路

该方案优点:接收电路具有滤波功能,能最大幅度地减小干扰的影响,发射电路由555定时器上的可调电阻可以很方便地调整发射频率。

该方案缺点:该方案使用集成元件较多,体积较大。

2.1.4.2方案二:

发射电路

图2.3 方案二的发射电路

发射电路如图2.3所示。单片机信号经与非门后经过三极管放大,直接传送到超声

波发射传感器。

图2.4 方案二的超声波接收电路

接收电路如图2.4所示,接收过来的信号经两级放大后直传入单片机。

优点:发射接收电路简单,成本低,制作方便。

缺点:发射频率不能够调整,在机器人足球比赛当中若每个机器人的发射频率相同,则容易互相干扰,因此测距可靠性要差一些。接收电路没有滤波过程,容易形成干扰。

综合两种方案的优缺点,本设计选择使用第一种方案。

第3章系统硬件结构设计

3.1系统主要结构

在方案一中超声测距的电路主要组成如图3.1所示

图3.1 系统的主要构成

3.251系列单片机功能结构特点

5l系列单片机中典型芯片(AT89C51)采用40引脚双列直插封装(DIP)形式,内部由

CPU,4kB的ROM,256B的RAM,2个16b的定时/计数器TO和T1,4个8b的I/O

端:P0,P1,P2,P3,一个全双功串行通信口等组成。特别是该系列单片机片内的Flash 可编程、可擦除只读存储器(E~PROM),使其在实际中有着十分广泛的用途,在便携式、省电及特殊信息保存的仪器和系统中更为有用。该系列单片机引脚与封装如图3.2所示。

单片机与一般的微型机比较有如下优点。

体积小

由于单片机内部包含了计算机的基本功能部件,能满足很多应用领域对硬件功能的基本要求。因此单片机组成的就用系统结构简单,小而全。

可靠性高

单片机内CPU访问存储器、I/O接口的信息传输线(即总线)大多数在芯片内部,因此不易受外界的干扰:另一方面,由于单片机体积小,在应用环境比较差的情况下,容易采取对系统进行电磁屏蔽等措施。所以单片机应用系统的可靠性比一般的微机系统高得多。

控制功能强

单片机面向控制,它的实时控制功能特别强。CPU可以直接对I/O口进行各种操作,运算速度高,时钟可达16MHz以上。对实时事件的响应和处理速度快。

使用方便

由于单片机内部功能强,系统扩展方便,因此应用系统的硬件设计非常简单,又因为市场上提供多种多样的单片机开发工具,它们具有很强的软硬件调试功能和辅助设计功能。

性价比高

由于单片机功能强,价格便宜,其应用系统的印板小,接插件少,安装调试简单等一系列原因,使单片机应用系统的性能价格比高于一般的微机系统。

图3.2 AR89C51的引脚示意图。

5l系列单片机提供以下功能:4 KB存储器;256B RAM;32条I/O线;2个16b定时/计数器;5个2级中断源;1个双向的串行口以及时钟电路。

5l系列单片机为许多控制提供了高度灵活和低成本的解决办法。充分利用他的片内资源,即可在较少外围电路的情况下构成功能完善的超声波测距系统。

3.2.1AT89C51的引脚介绍

以下只对在本设计当中就用到的引脚作简要介绍。

RST/VPD(9脚)复位信号

时钟电路工作后芯片内部进行初始复位,复位后P0-P3口输出高电平,初值07H写入堆栈指针SP,清0程序计数器PC和其他特殊功能寄存器。

EA/Vpp(31引脚)片外程序存储器地址选择信号

若EA接地,则不使用内部程序存储器,不管地址大小,取指时总是访问外部程序存储器。本超声波测距扩展卡并不需要外部存储器,故该引脚直接接高电平。

AT89C51的I/O口

AT89C51单片机有4个双向位I/O口P0-P3,P0为三态双向口,负载能力为8个LSTTL 门电路,P1-P3为准双向口,负载能力为4个LSTTL门电路。

P3口作第二功能口使用时实际上际上是系统具有控制功能的控制线。

3.2.2AT89C51的定时计数系统

一般单片机内部都设有定时计数器,因为有的测控系统是按时间间隔定时控制的,

如定时对物理过程的采样等。虽然可以通过延时程序实现定时,但这会降低CPU的工作效率。如果能利用一个可编程的实时时钟获得延时定时,就可以提高CPU的工作效率。另外,也有一些测控系统是根据外部信号的计数结果来实现控制的。必须对外部随机事件进行计数。因此,单片机内部一般都设置可编程的定时计数器,以简化系统设计,提高系统功能。

AT89C51内部有两个定时计数器,分别称为定时计数器0和定时计数器1简称T0、T1,它们都具备定时计数功能,有4种工作方式可以选择。

在超声波测距扩展卡的设计中我们需要定时计数器的定时功能,定时功能的工作方式是对芯片内的机器周期计数,或者说计数脉冲来自芯片内部,每来一个机器周期,计数器加1,直到计数器满,再来一个机器周期,定时计数器全部回0,这就是溢出。每个机器周期的时固定(振为12MHz,机器周期为1μs,晶振为6MHz,机器周期为2μs)。

与定时计数器有关的控制寄存器共有4个,分别是TCON,TMOD,IE,IP特殊功能寄存器。

根据TMOD寄存器中的M1和M0位的设定,定时计数器可选择4种不同的工作方式。根据超声测距的要求我们选择工作方式1。

方式1是16位计数结构,定时器计数器由TH的全部高8位和TL的全部低8位组成。

3.2.3AT89C51的中断系统

计算机工作时由于系统内外某种原因而发生的随机事件,计算机必须尽可能快终止正在运行的原程序,转向相应的处理程序为其服务,待处理完毕,再返回去执行被中止的原程序,这个过程就是中断。引起中断的设备或原因称为中断源。一个计算机系统的中断源会有多个,用来管理这些中断的逻辑称为中断系统。

采用中断的优点有:

分时操作;

实时处理;

故障处理。

AT89C51单片机中有5个中断源,外部有两个中断请求输入,INT0,INT1。内部有3个中断请求。定时计数器T0,T1和片内串行口。当系统产生中断请求时,5个中断源中的请求标志根子别由特殊功能寄存器TCON和SCON的相位来锁存。

3.3LM555定时器介绍

图3.3 LM555定时器内部结构图

LM555定时器的电路和外引线排列如图3.3所示。LM555/LM555C 系列是美国国家半导体公司的时基电路。我国和世界各大集成电路生产商均有同类产品可供选用,是使用极为广泛的一种通用集成电路。LM555/LM555C 系列功能强大、使用灵活、适用范围宽,可用来产生时间延迟和多种脉冲信号,被广泛用于各种电子产品中。

555时基电路有双极型和CMOS型两种。LM555/LM555C系列属于双极型。优点是输出功率大,驱动电流达200mA。而另一种CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率要小得多,输出驱动电流只有几毫安

LM555 时基电路内部由分压器、比较器、触发器、输出管和放电管等组成,是模拟电路和数字电路的混合体。其中6脚为阀值端(TH),是上比较器的输入。2脚为触发端(TR),是下比较器的输入。3脚为输出端(OUT),有0和1两种状态,它的状态由输入端所加的电平决定。7脚为放电端(DIS),是内部放电管的输出,它有悬空和接地两种状态,也是由输入端的状态决定。4脚为复位端(R),叫上低电平(<0.3V)时可使输出端为低电平。5脚为控制电压端(CV),可以用它来改变上下触发电平值。8脚为电源(VCC),1脚为地(GND)。

一般可以把LM555电路等效成一个大放电开关的R-S触发器。这个特殊的触发器有两个输入端:阀值端(TH)可看成是置零端R,要求高电平;触发端(TR)可看成是置位端S,低电平有效。它只有一个输出端OUT,OUT可等效成触发器的Q端。放电端(DIS)可看成由内部放电开关控制的一个接点,放电开关由触发器的反Q端控制:反Q=1时DIS端接地;反Q=0时DIS端悬空。此外这个触发器还有复位端R,控制电压端CV,电源端VCC和接地端GND。

这个特殊的R-S触发器有两个特点:(1)两个输入端的触发电平要求一高一低:置零端R即阀值端TH要求高电平,而置位端S即触发端TR则要求低电平。(2)两个输入端的触发电平,也就是使它们翻转的阀值电压值也不同,当CV端不接控制电压是,对TH(R)端来讲,>2/3VCC是高电平1,<2/3VCC是低电平0;而对TR(S)端来讲,>1/3VCC是高电平1,<1/3VCC是低电平0。如果在控制端CV加上控制电压VC,这时上触发电平就变成VC值,而下触发电平则变成1/2VC。可见改变控制端的控制电压值可以改变上下触发电平值。

图3.4是由LM555定时器组成的多谐振荡器,Ra与Rb和C是外接元件。接通电源Vcc后,它Ra与Rb对电容C充电,当Uc上升略高于2/3Ucc时,电压输出为0。这时内部的三极管导通,电容通过Rb与三极管放电,当Uc下降略低于1/3Vcc时,电压输出为1。

图3.4 由LM555定时器构成的双稳态触发器电路图

图3.5 超声波测距发射电路

超声波发射电路如图3.5所示。

超声波发射过程中三极管需要接+12V电压,必须接一个升压元件,在此我人选择LT1073作为升压元件对+5V稳压电源升压。

图3.6 12V电压升压电路

超声波发射电路如图3.6所示。

当需要发射超声波时,由单片机发送高电平信号,送入4脚RESET端,LM555定时计数器开始工作。

LM555定时器输出的功率还不能够完全驱动TR40-16,因此在输出端接功率放大电路。本设计采用互补对称功率放大电路。互补对称功率放大电路主要由两个三极管组成,型号分别为9012与9013。在LM555输出端接一个0.1uF的电容起隔直通交的作用。

3.4LM567介绍

接收电路当中用到了LM567音频选择器。LM567音频选择器原理如图3.7所示。

图3.7 LM567内部原理图

。LM567 是一片锁相环电路,采用8脚双列直插塑封。其5、6脚外接的电阻和电容决定了内部压控振荡器的中心频率f2,f2≈1/1.1RC。其1、2脚通常分别通过一电容器接地,形成输出滤波网络和环路单级低通滤波网络。2脚所接电容决定锁相环路的捕捉带宽:电容值越大,环路带宽越窄。1脚所接电容的容量应至少是2脚电容的2倍。3脚是输入端,要求输入信号≥25mV。8脚是逻辑输出端,其内部是一个集电极开路的三

极管,允许最大灌电流为100mA。LM567的工作电压为4.75~9V,工作频率从直流到500kHz,静态工作电流约8mA。LM567的内部电路及详细工作过程非常复杂,这里仅将其基本功能概述如下:当LM567的3脚输入幅度≥25mV、频率在其带宽内的信号时,8脚由高电平变成低电平,2脚输出经频率/电压变换的调制信号。如果在器件的2脚输入音频信号,则在5脚输出受2脚输入调制信号调制的调频方波信号。在图4的电路中我们仅利用了LM567接收到相同频率的载波信号后8脚电压由高变低这一特性,来形成对控制对象的控制。

图3.8 由LM567组成的频率测试电路

由LM567组成的频率测试电路如图3.8所示。

音频选择器所选取的中心频率计算公式为

(1)

频率误差范围为

(2)

图3.9 超声波接收电路

超声波接收电路如图3.9所示。超声波接收过来的信号十分微弱,必须经过放大才能被LM567接收。在放大过程中,为了调试方便,我们在第二级放大中运用了可变电阻,这样就可以实现放大倍率的手动调整。因为LM567接收的是正弦信号,正弦电压变化范围在正负五伏区间,因此我们选择供电电压为正负五负的LM258集成运算放大器。

由于LM567采用的是正负五伏电压供电,所以必须加一个将+5V电压变为-5V电压。在此我们采用MAX660将+5V稳压电源变为-5V电压。原理如图310所示。

图3.10 负五伏电压变换电路

MAX660共有八个引脚,其中1脚是内部晶振控制端,当晶振外接时该引脚无用。2脚是外接电容正极的接入端,3脚接地,4脚是外接电容负极的接入端5脚是负电压输出端,6是低电压输入控制端,在源电压小于3.5V时,接地,在源电压大于3.5V 时可以接地也可以悬空。7脚提供晶振频率输入,内接一个15pF的电容,可以外部再接一个电容以减小晶振频率,8脚提供源电压。

3.5硬件扩展总线ASBUS

能力风暴控制板设计了ASBUS总线见(图3.7),简单类似于ISA和PCI总线。采用堆叠式的ASBUS扩展卡可以方便扩展控制板的功能,它分为ASBUSA和ASBUSB两部分。机器人主板上ASBUSA和ASBUSB插槽用于插各种功能的扩展卡。

ASBUSA和ASBUSB引脚图和各部分功能如图3.11所示:

图3.11 ASBUS信号线

ASBUSA和ASBUSB分别有14个信号线。各信号线功能如下:

PCO-PC7:数据总线

/RESET:复位信号

/IRQ:外部中断输入脚

VCC:+5V电源(负载不要超过300MA),可用于扩展卡的电源输入端。

Vmotor:电机电压,也即电池电压,可接较大负载。

GND:地

IS0-IS3:输入选择线0-3

OS0-0S3:输出选择线0-3

PA1-PA2:输入捕捉口,可用来扩展数字或脉冲输入的传感器。

PA3:输出比较口,已被喇叭、DC3,servo使用,

PE5-PE7:模拟输入口,可用来扩展温度传感器、力传感器等模拟量输入传感器。

第4章绘制电路板

4.1PROTEL介绍及作图流程

在EDA ( Electronic Design Automation) 工具中,Protel 系列软件一直是比较常用的。Protel99SE是应用于Windows9X/2000/NT操作系统下的EDA设计软件,采用设计库管理模式,可以进行联网设计,具有很强的数据交换能力和开放性及3D模拟功能,是一个32位的设计软件,可以完成电路原理图设计,印制电路板设计和可编程逻辑器件设计等工作,可以设计32个信号层,16个电源--地层和16个机加工层。Protel 99 SE (Second Edition)在原理图设计和电路仿真方面增加了许多小的功能,而其最主要的改进体现在电路板设计系统方面。Protel99 SE共分5个模块,分别是原理图设计、PCB设

超声波测距仪硬件电路的设计

超声波测距仪电路设计实验报告 轮机系楼宇071 周钰泉2007212117 实验目的:了解超声波测距仪的原理,掌握焊接方法,掌握电路串接方法,熟悉电路元件。 实验设备及器材:电烙铁,锡线,电路元件 实验步骤:1,学习keil软件编写程序2、焊接电路板3、运行调试 超声波测距程序: #include unsigned char code dispbitcode[]={0x31,0x32,0x34,0x38,0x30,0x30, 0x30,0x30}; unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x77,0x7c,0x 39}; unsigned char dispbuf[8]={10,10,10,10,10,10,0,0}; unsigned char dispcount; unsigned char getdata; unsigned int temp; unsigned int temp1;

unsigned char i; sbit ST=P3^0; sbit OE=P3^1; sbit EOC=P3^4; sbit CLK=P3^5; sbit M1=P3^6; sbit M2=P3^7; sbit SPK=P2^6; sbit LA=P3^3; sbit LB=P3^2; sbit LC=P2^7; sbit K1=P2^4; sbit K2=P2^5; bit wd; bit yw; bit shuid; bit shuig; unsigned int cnta; unsigned int cntb; bit alarmflag; void delay10ms(void) { unsigned char i,j; for(i=20;i>0;i--) for(j=248;j>0;j--); } void main(void) { M1=0; M2=0; yw=1; wd=0; SPK=0; ST=0; OE=0; TMOD=0x12; TH0=0x216; TL0=0x216; TH1=(65536-500)/256; TL1=(65536-500)%256; TR1=1; TR0=1; ET0=1; ET1=1; EA=1; ST=1; ST=0; while(1) { if(K1==0) { delay10ms(); if(K1==0) { yw=1; wd=0; } } else if(K2==0) { delay10ms(); if(K2==0) { wd=1; yw=0; } } else if(LC==1) { delay10ms(); if(LC==1) { M1=0; M2=1; temp1=13; shuid=0; shuig=1; LB=0; } } else if((LC==0) && (LB==1)) { delay10ms(); if((LC==0) && (LB==1)) { M1=0; M2=0; temp1=12; shuig=0; shuid=0; LB=0; }

超声波测距系统设计

目录 一、课程设计目的 (2) 二、内容及要求 (2) 2.1、设计内容 (2) 2.2、设计要求 (2) 三、超声波传感器的工作原理 (2) 四、系统框图 (3) 五、单元电路设计原理 (3) 5.1、51系列单片机的功能特 (4) 5.2、超声波发射电路 (4) 5.3、超声波检测接收电路 (5) 六、完整的电路图………………………………………………………………… 七、程序流程图 (6) 八、参考文献 (7) 九、设计中的问题及解决方法 (7) 十、总结 (7)

一、课程设计目的 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、内容及要求 超声波测距系统设计 2.1设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LED数码管显示测量距离,精确到小数点后一位(单位:cm)。 2)测量范围:30cm~200cm。 3)误差<0.5cm。 4)其它。 2.2设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。 三、超声波传感器的工作原理 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。 目前在近距离测量方面常用的是压电式超声波换能器。根据设计要求并综合各方面因素,本文采用AT89C51单片机作为控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器。 超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。 理论计算 如图1所示为反射时间法,是利用检测声波发出到接收到被测物反射回波的时间来测量距离其原理如图所示,对于距离较短和要求不高的场合我们可认为空气中的声速为常数,我们通过测量回波时间T利用公式(T/2) C S=其中,S为被 * 测距离、V为空气中声速、T为回波时间(T2 =),这样可以求出距离: T1 T+

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

超声波测距的电路设计与单片机编程

[收稿日期]2003207208 [作者简介]李建法(1955— ),男,河南林州人,副教授,从事自动控制研究。超声波测距的电路设计与单片机编程 李建法,李立新,李勇,牛洹波 (安阳师范学院物理系,河南安阳455000) [摘 要]介绍了基于单片机处理的超声波测距系统的组成,工作原理和程序设计方法。本系统可用于需要测量距离参数的各种应用场合。 [关键词]超声波;单片机;测距电路 [中图分类号]TP36811 [文献标识码]A [文章编号]167125330(2003)0520047202 距离是在不同的场合和控制中需要检测的一个参数,所以,测距就成为数据采集中要解决的一个问题。尽管测距有多种方式,比如,激光测距,微波测距,红外线测距和超声波测距等。但是,超声波测距不失为一种简单可行的方法。虽然超声波测距电路多种多样,甚至已有专用超声波测距集成电路。但是,有的电路复杂,技术难度大,有的调试困难,有的元件不易购买。本文介绍的电路,成本低廉,性能可靠,所用元件易购,并且利用测距原理,结合单片机的数据处理,使测量精度提高,电路实现容易,无须调试,工作稳定可靠。 超声波测距通常采用度越时间法,即利用s =vt/2计 算被测物体的距离。式中s 为收发头与被测物体之间的距离,v 为超声波在介质中的传播速度(v =331.4 1+T/273m/s ),t 为超声波的往返时间间隔。工作原理 为:发射头发出的超声波以速度v 在空气中传播,在到达 被测物体时被其表面反射返回,由接收头接收,其往返时间为t ,由s 算出被测物体的距离。T 为环境温度,在测量精度要求高的场合必须考虑此影响,但在一般情况下 ,可舍去此法,由软件进行调整补偿。 1 电路设计 电路框图如图1所示。 图1 整机电路框图 111超声波发送电路 超声波发送电路如图2所示。555电路产生40K H 的振荡信号,门电路产生低频调制脉冲,脉冲持续时间为 160μs 左右,脉冲间隔为30—40ms (视需要调整)。此脉冲信号一路作为振荡器的置位脉冲,另一路作为计时的起始脉冲。在置位期间,振荡器输出频率为40K H 的脉冲信号(约8个脉冲),由超声波发射头T 40—16发射出去。 图2 超声波发送电路 112超声波接收电路 图3 超声波收电路 超声波的接收电路如图3所示。它采用通用的FPS —4091红外接收组件,但是,需要将红外接收管PH302换为超声波接收头R40—16。因为在距离较远时,回波信号很弱,使用此接收组件,可以在有效的测距范围内保证接收到的信号其输出达到TT L 电平,避免了为达到几十万倍的放大量而采用多级运放组成的调试困难的高增益放大电路,十分便于制作,且电路无需调试。图中T 为进一步整 形放大,可增大测量距离,反相器为满足单片机需要不同极性的信号而加入。 2 软件设计 本系统的程序主要包括启、停脉冲检测,计时,盲区延 7 42003年 安阳师范学院学报

超声波测距系统设计

中北大学 物联网工程专业 无线传感器网络课程设计 报告 课题名称:超声波测距系统设计 班级: 13270841 指导教师:马永 开设时间: 2016 年 6 月

目录 一、课程设计目的 (1) 二、课程设计题目 (1) 三、课程设计内容、要求 (1) 1、设计内容 (1) 2、设计要求 (1) 四、传感器工作原理 (1) 1.超声波传感器 (1) 2.温度传感器DS18B20 (3) 五、系统框图 (3) 六、单元电路设计原理 (4) 1、超声波发射电路 (4) 2、超声波检测接收电路 (4) 3、单片机最小系统 (5) 3.1、STC89C52芯片 (5) 3.2 复位电路 (5) 3.3 晶振电路 (6) 4、显示部分 (7) 5、温度检测电路 (7) 七、软件设计与系统调试 (8) 1、主程序流程图 (8) 1.1发射程序与接收程序流程图 (9) 1.2 中断子程序流程图 (10) 1.3 距离计算与显示子程序 (11) 2.系统调试 (12) 八、设计中的问题及解决方法 (12) 九、总结 (13) 十、参考文献 (14)

一、课程设计目的 通过《无线传感器网络》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、课程设计题目 超声波测距系统设计 三、课程设计内容、要求 1、设计内容 采用40KHz的超声波发射和接收传感器测量距离。采用发射和接收平行放在一起,通过反射测量距离。根据温度传感器DS18B20所采集的温度数据来修正测距系统中的声速,从而使超声波测得的距离更准确。 功能:1)所有测距和温度数据均通过液晶显示器LCD1602 显示出来,距离精确到毫米,温度精确到小数点后一位(单位:摄氏度)。 2)测量范围:30mm~2000mm。 3)误差<5mm。 4)其它。 2、设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图 四、传感器工作原理 1. 超声波传感器 本次设计超声波传感器采用电气方式中的压电式超声波传感器分机械方式

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

超声波测距电子电路设计详解

超声波测距电子电路设计详解 在自主行走机器人系统中,机器人要实现在未知和不确定环境下行走,必须实时采集环境信息,以实现避障和导航,这必须依靠能实现感知环境信息的传感器系统来实现。视觉、红外、激光、超声波等传感器都在行走机器人中得到广泛应用。由于超声波测距方法设备简单、价格便宜、体积小、设计简单、易于做到实时控制,并且在测量距离、测量精度等方面能达到工业实用的要求,因此得到了广泛的应用。本文所介绍的机器人采用三方超声波测距系统,该系统可为机器人识别其运动的前方、左方和右方环境而提供关于运动距离的信息。 超声波测距原理 超声波发生器内部由两个压电片和一个共振板组成。当它的两极外加脉冲信号,且其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两极间未加外电压,当共振板接收到超声波时,就成为超声波接收器。超声波测距一般有两种方法:①取输出脉冲的平均电压值,该电压与距离成正比,测量电压即可测量距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,根据被测距离s=vt?2来得到测

量距离,由于超声波速度v与温度有关,所以如果温度变化比较大,应通过温度补偿的方法加以校正。 本测量系统采用第二种方法,由于测量精度要求不是特别高,所以可以认为温度基本不变。本系统以PIC16F877单片机为核心,通过软件编程实现其对外围电路的实时控制,并提供给外围电路所需的信号,包括频率振动信号、数据处理信号等,从而简化了外围电路,且移植性好。系统硬件电路方框图见图1。 图1 系统硬件电路方框图 由于本系统只需要清楚机器人前方、左方、右方是否有障碍物,并不需要知道障碍物与机器人的具体距离,因此不需要显示电路,只需要设定一距离阀值,使障碍物与机器人的距离达到某一值时,单片机控制机器人电机停转,这可通过软件编程实现。

超声波测距系统设计

摘要 随着科技的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。控制系统核心部分就是超声波测距仪的研制。因此,设计好的超声波测距仪就显得非常重要了。 介绍了一种以A T 89C2051 单片机为核心, 利用超声波的特性设计出低成本、高精度测距仪的方法。给出了这种测距仪的硬件原理电路和主要的软件设计思路,用Psp ice 对硬件的主要部分进行了模拟仿真。根据理论分析和试验统计对设计进行改进, 电路达到了预期的效果。 关键词:AT89C2051; 超声波;测距 Abstract With the development of science and technology, the improvement of people's tandard of living, speeding up the development and construction of the city. Urban rainage system have greatly developed their situation is constantly improving. However,due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction.Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system. comfort is very important to people's lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robot, the robot is designed to clear the culvert sewage to the core. Control System is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder. A kind of u lt rason ic telem eter based on A T 89C205 is in t roduced. Th is telem eter is provided w ith som e m er it s such as low co st and h igh2accu racy becau se of the u lt rason ic w ave character ist ic. The hardw are p r incip le elect r ic circu it and them ain sof tw are design idea are show ed. The sim u lat ion of the m ain par t of the hardw are has been done w ith P sp ice. A t last, acco rding to the theo ret ical analysis and the exper ience som e imp rovem en t s of the design are m ade. The system has ach ieved the an t icipated effect. Key words:AT89C2051; Silent Wave;Measure Distance

简易超声波测距仪的设计

摘要 超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。 本课题详细介绍了超声波传感器的原理和特性,以及Atmel公司的AT89C51单片机的性能和特点,并在分析了超声波测距的原理的基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。整个电路采用模块化设计,由主程序、预置子程序、发射子程序、接收子程序、显示子程序等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。 经实验证明,这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以有效地解决汽车倒车、建筑施工工地以及一些工业现场的位置监控。 关键词AT89C51;超声波;测距

Abstract Ultrasonic wave has strong pointing to nature ,slowly energy consumption ,propagating distance farther ,so, in utilizing the scheme of distance finding that sensor technology and automatic control technology combine together ,ultrasonic wave finds range to use the most general one at present ,it applies to guard against theft , move backward the radar , water level measuring,building construction site and some industrial scenes extensively. This subject has introduced principle and characteristic of the ultrasonic sensor in detail ,and the performance and characteristic of one-chip computer AT89C51 of Atmel Company ,and on the basis of analyzing principle that ultrasonic wave finds range ,the systematic thinking and questions needed to consider that have pointed out that designs and finds range ,provide low cost , the hardware circuit of high accuracy , ultrasonic range finder of miniature digital display and software design method taking AT89C51 as the core. Modular design of the whole circuit from the main program, pre subroutine fired subroutine receive subroutine. display subroutine modules form. SCM comprehensive analysis of the probe signal processing, and the ultrasonic range finder function. On the basis of the overall system design, hardware and software by the end of each module. The research has led to the discovery that the software and hardware designing is justified, the anti-disturbance competence is powerful and the real-time capability is satisfactory and by extension and upgrade, this system can resolve the problem of the car availably, building construction the position of the workplace and some industries spot supervision. Key words AT89C51; Ultrasonic Wave; Measure Distance

高精度超声波测距系统设计

高精度超声波测距系统设计。 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差, 然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求, 因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上, 给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播 的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于 1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在 1 mm的测量范围内。

基于单片机的超声波测距仪的设计与实现毕业论文

基于单片机的超声波测距仪的设计与实现

中文摘要 本设计基于单片机AT89C52,利用超声波传感器HC-SR04、LCD显示屏及蜂鸣器等元件共同实现了带温度补偿功能可报警的超声波测距仪。我们以AT89C52作为主控芯片,通过计算超声波往返时间从而测量与前方障碍物的距离,并在LCD显示。单片机控制超声波的发射。然后单片机进行处理运算,把测量距离与设定的报警距离值进行比较判断,当测量距离小于设定值时,AT89C52发出指令控制蜂鸣器报警,并且AT89C52控制各部件刷新各测量值。在不同温度下,超声波的传播速度是有差别的,所以我们通过DS18B20测温单元进行温度补偿,减小因温度变化引起的测量误差,提高测量精度。超声波测距仪可以实现4m以内的精确测距,经验证误差小于3mm。 关键词:超声波;测距仪;AT89C52;DS18B20;报警

Design and Realization of ultrasonic range finder based ABSTRACT The design objective is to design and implement microcontroller based ultrasonic range finder. The main use of AT89C52, HC-SR04 ultrasonic sensor alarm system complete ranging production. We AT89C52 as the main chip, by calculating the round-trip time ultrasound to measure the distance to obstacles in front of, and displayed in the LCD. SCM ultrasonic transmitter. Then the microcontroller for processing operation to measure the distance and set alarm values are compared to judge distance, when measured distance is less than the set value, AT89C52 issue commands to control the buzzer alarm, and control each member refresh AT89C52 measured values. Because at different temperatures, ultrasonic wave propagation velocity is a difference, so we DS18B20 temperature measurement by the temperature compensation unit, reducing errors due to temperature changes, and improve measurement accuracy. Good design can achieve precise range ultrasonic distance within 4m, proven error is less than 3mm. Keywords:Ultrasonic;Location;AT89C52;DS18B20;Alarm

超声波测距课程设计样本

目录 前言 1课题设计目及意义----------------------------------------------- 1 1.1设计目----------------------------------------------------- 1 1.2设计意义----------------------------------------------------- 1 1.3课题设计任务和规定------------------------------------------- 1 正文 1 课程方案设计------------------------------------------------- 2 1.1系统整体方案--------------------------------------------------- 2 1.2系统整体方案论证-------------------------------------------- 2 2系统硬件构造设计------------------------------------- 2 2.1 51系列单片机功能特点及测距原理------------------------------ 3 2.1.1 51系列单片机功能特点------------------------------------- 3 2.1.2 单片机实现测距原理 ----------------------------------------- 3 2.2 超声波电路构造------------------------------------------------ 4 2.3 超声波测距系统硬件电路设计---------------------------------- 4 2.4 PCB版图设计---------------------------------------------------- 5 3 系统软件设计----------------------------------------- 6 3.1 超声波测距仪算法设计---------------------------------------- 7 3.2 主程序流程图--------------------------------------------------- 7 3.3单片机某些C语言程序-------------------------------------------- 8 3.4超声波测距某些C语言程序-------------------------------------- 11

超声波测距电路设计

目录 摘要 (3) 第一章绪论 (5) 1.1 课题背景 (5) 1.2 论文研究内容 (7) 第二章方案论证 (8) 第三章整机的工作原理 (11) 3.1 测量与控制方法 (11) 3.2 检测与驱动电路设计 (12) 3.3 逻辑符合表 (16) 3.4 AT24C02简介 (18) 3.5 超声波测距发射电路 (19) 3.6 超声波测距接收电路 (20) 3.7 温度检测电路 (21) 3.8 显示电路原理 (21) 第四章整机电路的运行与调试 (25) 4.1 超声波测距电路误差分析 (25) 4.2 声速对测量精度的影响分析 (26) 结论 (27) 致谢 (28) 参考文献 (29)

毕业设计任务书 一、毕业设计题目: 超声波测距电路设计 二、技术要求: 采用测距专用集成电路SB5227,设计出发送电路和接收电路以及温度检测电路,并能显示出测量值。 三、毕业设计完成的具体内容 1、实习、搜集资料; 2、选择设计方案,设计实体电路; 3、电路原理说明及元器件选择; 4、绘制电器原理框图; 5、绘制电路图(2#图) 6、列写元器件资料表; 7、编写毕业设计说明书(一万字左右) 包括:封面、毕业设计(论文)任务书、论文题目、目录、摘要、正文、结束语、致谢、参考文献、附录等。 四、参考文献: 《传感器与检测技术》陈杰,黄鸿高等教育出版社2002.1-5 《传感器及应用》王煜东,北京:机械工业出版社,2003.11 《实用声光及无线电遥控电路》赵健,北京:中国电力出版社,2005 《传感器及其应用电路》何希光,北京:电子工业出版社,2001 《红外线热释电与超声波遥控电路》肖景和等,人民邮电出版社,2003

超声波测距系统设计

(一)题目 超声波测距系统设计 (二)内容及要求 1)设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LCD液晶显示测量距离,精确到小数点后一位(单位:cm)。 2)测量方式可通过硬件开关预置。 3)测量范围:30cm~200cm, 4)误差<0.5cm。 5)其它。 2)设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。(三)传感器工作原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 (四)系统框图 图1 超声波测距系统框图 (五)单元电路设计原理

1、AT89C2051的功能特点 AT89C2051是一个2k字节可编程EPROM的高性能微控制器。它与工业标准MCS-51的指令和引脚兼容,因而是一种功能强大的微控制器,它对很多嵌入式控制应用提供了一个高度灵活有效的解决方案。AT89C2051有以下特点:2k字节EPROM、128字节RAM、15根I/O线、2 个16位定时/计数器、5个向量二级中断结构、1个全双向的串行口、并且内含精密模拟比较器和片内振荡器,具有4.25V至5.5V的电压工作范围和12MHz/24MHz工作频率,同时还具有加密阵列的二级程序存储器加锁、掉电和时钟电路等。此外,AT89C2051还支持二种软件可选的电源节电方式。空闲时,CPU停止,而让RAM、定时/计数器、串行口和中断系统继续工作。可掉电保存RAM的内容,但可使振荡器停振以禁止芯片所有的其它功能直到下一次硬件复位。 AT89C2051有2个16位计时/计数器寄存器Timer0t Timer1。作为一个定时器,每个机器周期寄存器增加1,这样寄存器即可计数机器周期。因为一个机器周期有12个振荡器周期,所以计数率是振荡器频率的1/12。作为一个计数器,该寄存器在相应的外部输入脚P3.4/T0和P3.5/T1上出现从1至0的变化时增1。由于需要二个机器周期来辨认一次1到0的变化,所以最大的计数率是振荡器频率的1/24,可以对外部的输入端P3.2/INT0和P3.3/INT1编程,便于测量脉冲宽度的门。 图2 ATC2051示意图 2、LCD的工作原理 在两片玻璃基板上装有配向膜,所以液晶会沿着沟槽配向,具有偶极矩的液晶棒状分子在外加电场的作用下其排列状态发生变化,使得通过液晶显示器件的光被调制,从而呈现明与暗或透过与不透过的显示效果。液晶显示器件中的每个显示像素都可以单独被电场控制,不同的显示像素按照控制信号的“指挥”便可以在显示屏上组成不同的字符、数字及图形。因此建立显示所需的电场以及控制显示像素的组合就成为液晶显示驱动器和液晶显示控制器的功能。 LCD器件是由背光源发射的光通过偏振片和液晶盒时,控制投

相关文档
相关文档 最新文档