文档库 最新最全的文档下载
当前位置:文档库 › 实时图形学报告

实时图形学报告

实时图形学报告虚拟仿真

姓名:蔡胜勇

学号:20127610802

虚拟仿真又称虚拟现实技术或模拟技术,就是用一个虚拟的系统模仿另一个真实系统的技术。从狭义上讲,虚拟仿真是指20世纪40年代伴随着计算机技术的发展而逐步形成的一类试验研究的新技术;从广义上来说,虚拟仿真则是在人类认识自然界客观规律的历程中一直被有效地使用着。由于计算机技术的发展,仿真技术逐步自成体系,成为继数学推理、科学实验之后人类认识自然界客观规律的第三类基本方法,而且正在发展成为人类认识、改造和创造客观世界的一项通用性、战略性技术。

同时,人们对仿真技术的期望也越来越高,过去,人们只用仿真技术来模拟某个物理现象、设备或简单系统;今天,人们要求能用仿真技术来描述复杂系统,甚至由众多不同系统组成的系统体系。这就要求仿真技术需要进一步发展,并吸纳、融合其他相关技术。

虚拟现实(Virtual Reality)技术,简称VR,是20世纪80年代新崛起的一种综合集成技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等。它由计算机硬件、软件以及各种传感器构成的三维信息的人工环境——虚拟环境,可以逼真地模拟现实世界(甚至是不存在的)的事物和环境,人投入到这种环境中,立即有“亲临其境”的感觉,并可亲自操作,自然地与虚拟环境进行交互。

VR技术主要有三方面的含义:第一,是借助于计算机生成的环境是虚幻的;第二,人对这种环境的感觉(视、听、触、嗅等)是逼真的;

第三,人可以通过自然的方法(手动、眼动、口说、其他肢体动作等)与这个环境进行交互,虚拟环境还能够实时地作出相应的反应。

虚拟仿真技术,则是在多媒体技术、虚拟现实技术与网络通信技术等信息科技迅猛发展的基础上,将仿真技术与虚拟现实技术相结合的产物,是一种更高级的仿真技术。虚拟仿真技术以构建全系统统一的完整的虚拟环境为典型特征,并通过虚拟环境集成与控制为数众多的实体。实体可以是模拟器,也可以是其他的虚拟仿真系统,也可用一些简单的数学模型表示。实体在虚拟环境中相互作用,或与虚拟环境作用,以表现客观世界的真实特征。虚拟仿真技术的这种集成化、虚拟化与网络化的特征,充分满足了现代仿真技术的发展需求。虚拟现实技术与计算机仿真技术的关系

虚拟现实虚拟现实技术,涉及计算机图形学、人机交互技术、传感技术、人工智能等领域,它用计算机生成逼真的三维视、听、嗅觉等感觉,使人作为参与者通过适当装置,自然地对虚拟世界进行体验和交互作用。使用者进行位置移动时,电脑可以立即进行复杂的运算,将精确的3D世界影像传回产生临场感。该技术集成了计算机图形(CG)技术、计算机仿真技术、人工智能、传感技术、显示技术、网络并行处理等技术的最新发展成果,是一种由计算机技术辅助生成的高技术模拟系统。

概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相

比,虚拟现实在技术思想上有了质的飞跃。

虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于

世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。而“虚拟”是指用计算机生成的意思。因此,虚拟现实是指用计算机生成的一种特殊环境,人可以通过使用各种特殊装置将自己“投射”到这个环境中,并操作、控制环境,实现特殊的目的,即人是这种环境的主宰。

国内产业编辑

目前来看,市场需求是很大的,而供应方面却略显不足,尤其是拥有核心知识产权,技术过硬的企业并不多,行业整体缺乏品牌效应。傲唯刃道号召业内企业共同努力,尤其发挥吹毛求疵的研发精神,进一步提高研发能力,降低成本,真正解决客户的实际困难,严把质量关,提供最可靠的产品和技术。

基本特性编辑

虚拟仿真技术具有以下四个基本特性:

沉浸性

沉浸性(Immersion):虚拟仿真系统中,使用者可获得视觉、听觉、嗅觉、触觉、运动感觉等多种感知,从而获得身临其境的感受。理想的虚拟仿真系统应该具有能够给人所有感知信息的功能。

交互性

交互性(Interaction):虚拟仿真系统中,不仅环境能够作用于人,人也可以对环境进行控制,而且人是以近乎自然的行为(自身的语言、肢体的动作等)进行控制的,虚拟环境还能够对人的操作予以实时的反应。例如,当飞行员按动导弹发射按钮时,会看见虚拟的导弹发射出去并跟踪虚拟的目标;当导弹碰到目标时会发生爆炸,能够看到爆炸的碎片和火光。

虚幻性

虚幻性(Imagination):即系统中的环境是虚幻的,是由人利用计算机等工具模拟出来的。既可以模拟客观世界中以前存在过的或是现在真实存在的环境,也可模拟出客观世界中当前并不存在的但将来可能出现的环境,还可模拟客观世界中并不会存在的而仅仅属于人们幻想的环境。

逼真性

逼真性(reality):虚拟仿真系统的逼真性表现在两个方面:一方面,虚拟环境给人的的各种感觉与所模拟的客观世界非常相像,一

切感觉都是那么逼真,如同在真实世界一样;另一方面,当人以自然的行为作用于虚拟环境时,环境做出的反应也符合客观世界的有关规律。如当给虚幻物体一个作用力,该物体的运动就会符合力学定律,会沿着力的方向产生相应的加速度;当它遇到障碍物时,会被阻挡。虚拟仿真技术的应用编辑

数字城市

虚拟现实技术可以通过三维建模逼真地模拟现在和未来的城市,支持数据分析、方案论证和优化,支持地理信息系统等,通过这些详实的数据和相关资料可以是直观真实固化方案评估、审核以及管理等日常工作,更为重要的是它可以为多部门参与和协同工作提供了有效的平台。

场馆仿真

利用虚拟现实技术,通过计算机将在建或已建的场馆虚拟出来,达到一个触手可及的真实三维环境,以提前展示场馆面貌,供市民浏览,从而对场馆的规划设计进行现场评估。通过市民虚拟游览后的反馈意见,及时发现并解决场馆存在的问题。

地产漫游

地产漫游是集影视广告、动画、多媒体、网络科技于一身的最新型的房地产营销方式。通过虚拟现实技术可以让购房者看到直观的样

板房形象,让购房者在电脑上亲眼看到几年后才建成的小区,游观赏到优美的小区环境设计,甚至能够在电脑上选户型,从而帮助地产开发商在逆境中求生存,顺境中谋发展。

室内设计

虚拟现实不仅仅是一个演示媒体,而且还是一个设计工具。它以视觉形式反映了设计者的思想,把这种构思变成看得见的虚拟物体和环境,使以往只能借助传统的设计模式提升到数字化的即看即所得的完美境界,大大提高了设计和规划的质量与效率。

旅游教学

旅游和导游专业教学过程中存在实习资源匮乏而实地参观成本又高的难题。虚拟现实技术可以按照旅游专业的教学要求和实施特点,开发出适用于导游实训、旅游模拟、旅游规划的功能和模块,让师生足不出户,就能在三维立体的虚拟环境中遍览遥在万里之外的风光美景。形象逼真,细致生动。从而,通过情景化的学习界面、人机交互式的模拟旅游体验,改善教学环境、优化教学过程、增强教学效果。文物古迹

虚拟现实技术可以将文物建筑、文物景点、文物物品、古代人像及行为、古代自然现象及天体现象等进行虚拟展示和虚拟复原,从而

使文物脱离地域限制,实现资源共享,真正成为全人类可以“拥有”的文化遗产。

工业仿真

虚拟现实仿真平台,具有强大的物理实时计算功能,能够真实模拟场景重力、环境阻尼等环境特性,真实的模拟刚体动力学特性,提供了多种动力学交互手段,并能支持多种高速运算的碰撞替代体。为广大工业仿真需求用户轻而易举将此前许多只能停留于想法的优秀互动仿真创意方案完美的呈现于眼前,为国内广大工业仿真用户带来了仿真手段和技术实现水平的革命性进步。

汽车仿真

虚拟现实高画质渲染技术及汽车动力学仿真物理系统,将使汽车设计的数字化模型以更直观的方式在网络上展示出来,使世界各地的用户都可以更快捷得到丰富准确的汽车信息,实现人与计算机之间无缝连接。

道路桥梁

虚拟现实平台依靠其精美绝伦的三维视觉表现力,照片级的真实效果,使设计中的道路桥梁直观的呈现在人们面前,使得我们可以提前对其视觉效果和使用效率进行评估和预演,有效降低设计和施工风险,极大提高设计和施工效率。

油田矿井

在建立油田生产和管理流程优化应用模型的基础上,利用虚拟现实技术对数据实现可视化和多维表达,并且通过智能化分析模型,为企业的经营管理提供良好的信息支撑环境。

水利电力

虚拟现实平台可以与电力信息系统紧密结合,逼真再现变电站现场场地、变压器、母线、断路器、隔离开关、接地刀闸、操作机构、电压互感器、电流互感器、电抗器、电容器、高压熔断器、站用变压器等一次设备的操作过程和设备运行状态,从而为电力行业提供可视化系统解决方案。

数字展馆

虚拟现实技术可以与科技馆的功能进行完美的结合,充分发挥虚拟科技馆的种种优势,传统的声、光、电展览已经很难吸引观众的兴趣,而利用虚拟现实技术把枯燥的数据变为鲜活的图形,使科技馆进入公众可参与交互式的新时代,引发观众浓厚的兴趣,从而达到科普的目的。

地质灾害

虚拟现实仿真平台可以实现水利工程仿真、地震应急救援仿真、地震应急推演仿真、地址灾害仿真,实现地质灾害虚拟环境功能与展

示的完美结合,通过在虚拟的环境中进行预防地质灾害的模拟演练,达到提升防灾、避灾安全意识的目的。

应急预案

应急虚拟现实仿真演练系统通过对各类灾害数值模拟和人员行为数值模拟的仿真,在虚拟空间中仿真灾害发生、发展的过程,以及人们在灾害环境中可能做出的各种反应;并在演练平台上,在最大限度仿真实际灾害的条件下,开展应急演练。在此基础上,制定各类企事业单位的数字化应急预案。应急仿真演练系统可以用来训练各级决策与指挥人员、事故处置人员,发现应急处置过程中存在的问题,检验和评估应急预案的可操作性和实用性,提高应急能力。

网上展馆

虚拟现实网上三维交互功能可以将有形的实物产品三维化并且放在网上进行虚拟展示,还能嵌入相应音频和视频等多媒体元素,用户可以对虚拟场景中的物品进行实时的交互操作,例如开门、打开电视和播放音乐等等。相比目前网上主流的以图片、Flash、视频等展示方式来说,VRPIE让用户有了浏览的自主感,可以以自己想看的角度去观察,还可以添加许多特效和互动操作,让用户体验身临其境上网冲浪的美妙感觉。

网上看房

虚拟现实网上三维交互功能可以虚拟房屋设计,展现独特的设计风格,使客户足不出户就可对房屋的全貌了如指掌,互动浏览,可以任意变换自己在房间中的位置,去观察设计的效果,了解房屋的精心布局。可以实现房屋三维户型图全景展示,使客户全面了解房屋内部结构,走进虚拟现实样板房。

网上产品

虚拟现实技术能够虚拟各类产品,以一种全新的方式演绎各类产品,使客户全方位全角度的了解最新产品。实现产品在互联网上的全新展示,让客户提前体验产品功能,更清楚的了解产品的特性及结构。将销售产品展示做成在线三维的形式,顾客通过对之进行观察和操作能够对产品有更加全面的认识了解,决定购买的几率必将大幅增加,为销售者带来更多的利润。展现出产品外形的方方面面,加上互动操作,演示产品的功能和使用操作,充分利用互联网高速迅捷的传播优势来推广公司的产品。

网上看车

随着虚拟现实技术的发展,对汽车的一种全新演绎方式产生。通过虚拟现实仿真平台可以实现网上看车及交互功能,提供使用者关于视觉、听觉、触觉等感官的模拟,及时、没有限制地观察三度空间内的汽车。

全景也称为全景摄影或虚拟实景,是基于静态图像的虚拟现实技术。是把相机环360°拍摄的一组照片拼接成一个全景图像,用一个专用的播放软件在互联网上显示,让使用者能用鼠标控制环视的方向,可左可右,可近可远观看物体或场景。

三维全景技术是一种桌面虚拟现实技术,并不是真正意义上的3D 图形技术。三维全景技术具有以下几个特点:一是实地拍摄,有照片级的真实感,是真是场景的三维展现。而是有一定的交互性,用户可以通过鼠标选择自己的视觉,任意放大和缩小,如亲临现场般环视、俯瞰和仰视。三是不需要单独下载插件,一个小小的JAVA程序,自动下载后就可以再网上观看全景照片,或者使用Quick Time播放器直接观看。并且,全景图片文件采用先进的图像压缩与还原算法,文件较小,一般只有100~150K,利于网络传输。四是素材的准备工作简单,制作容易,适于普通用户。

三维全景技术主要用于展示。例如:采用三维全景技术建立虚拟艺术馆,让学生还可通过计算机参观各个展馆,每个参观点都可以在空间360°范围内观察,对于感兴趣的艺术品,还可以将它拿起来仔细观看。

三维全景虚拟现实前景

三维全景技术是目前迅速发展并逐步流行的一个虚拟现实分支,可广泛应用于网络三维业务,也适用于网络虚拟教学领域,传统三维

技术涉及VRML为代表的网络三维技术都采用计算机生成图像的方式来建立三维模型。而三维全景技术则是利用实景照片建立虚拟环境,按照照片拍摄——数字化——图像拼接——生成场景的模式来完成虚拟现实的创建,更为简单实用。

2000年前后网游全球市场快速拓展,3D虚拟环境的大众化应用到现在开始进入主流化增长。对于使用3D环境,在3D环境下从事创造,分享,社交和交流,门槛已经逐步降低了。虚拟世界正在逐步走入人们的视野。

由此可见,未来虚拟世界会与扩大现实、替代现实、虚拟现实等诸多方面结合起来。其不一定能取代游戏及现有二维网络,但至少将成为一种大众生活中的主要应用,与真实世界大量融合。人们可以随时随地,通过计算机或手机访问虚拟世界,在其中娱乐、工作、学习。

并且,3D虚拟世界将会成为互动教育、商业、政治、关系、国际沟通、医药等领域的主要媒介。为企业提供巨大的商业价值,更将促进虚拟世界大步向前迈进。虚拟世界将很快超越游戏和社会网络。

图形学实验报告

计 算 机 图 形 学 实验指导书 学号:1441901105 姓名:谢卉

实验一:图形的几何变换 实验学时:4学时 实验类型:验证 实验要求:必修 一、实验目的 二维图形的平移、缩放、旋转和投影变换(投影变换可在实验三中实现)等是最基本的图形变换,被广泛用于计算机图形学的各种应用程序中,本实验通过算法分析以及程序设计实验二维的图形变换,以了解变换实现的方法。如可能也可进行裁剪设计。 二、实验内容 掌握平移、缩放、旋转变换的基本原理,理解线段裁剪的算法原理,并通过程序设计实现上述变换。建议采用VC++实现OpenGL程序设计。 三、实验原理、方法和手段 1.图形的平移 在屏幕上显示一个人或其它物体(如图1所示),用交互操作方式使其在屏幕上沿水平和垂直方向移动Tx和Ty,则有 x’=x+Tx y’=y+Ty 其中:x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。其交互方式可先定义键值,然后操作功能键使其移动。 2.图形的缩放 在屏幕上显示一个帆船(使它生成在右下方),使其相对于屏幕坐标原点缩小s倍(即x方向和y方向均缩小s倍)。则有: x’=x*s y’=y*s 注意:有时图形缩放并不一定相对于原点,而是事先确定一个参考位置。一般情况下,参考点在图形的左下角或中心。设参考点坐标为xf、yf则有变换公式x’=x*Sx+xf*(1-Sx)=xf+(x-xf)*Sx y’=y*Sy+yf*(1-Sy)=yf+(y-yf)*Sy 式中的x与y为变换前图形中某一点的坐标,x’和y’为变换后图形中该点的坐标。当Sx>1和Sy>1时为放大倍数,Sx<1和Sy<1时为缩小倍数(但Sx和Sy

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

图形学实验报告

山东建筑大学测绘地理信息学院 实验报告 (2016—2017学年第一学期) 课程:计算机图形学 专业:地理信息科学 班级:地信141 学生姓名:王俊凝 学号:20140113010 指

实验一直线生成算法设计 一、实验目的 掌握基本图形元素直线的生成算法,利用编程语言C分别实现直线和圆的绘制算法。 二、实验任务 在TurboC环境下开发出绘制直线和圆的程序。 三、实验仪器设备 计算机。 四、实验方法与步骤 1 运行TurboC编程环境。 2 编写Bresenham直线绘制算法的函数并进行测试。 3 编写中点圆绘制算法的函数并进行测试。 4 增加函数参数,实现直线颜色的设置。 提示: 1. 编程时可分别针对直线和圆的绘制算法,设计相应的函数,例如void drawline(…)和void drawcircle(…),直线的两个端点可作为drawline的参数,圆的圆心和半径可作为drawcircle的参数。 2. 使用C语言编写一个结构体类型用来表示一个点,结构体由两个成员构成,x和y。这样,在向函数传入参数时,可使用两个点类型来传参。定义方法为:

typedef struct{ int x; int y; }pt2; 此处,pt2就是定义的一个新的结构体数据类型,之后就可用pt2来定义其他变量,具体用法见程序模板。 3. 在main函数中,分别调用以上函数,并传入不同的参数,实现对直线的绘制。 4. 线的颜色也可作为参数传入,参数可采用TurboC语言中的预设颜色值,具体参见TurboC图形函数。 五、注意事项 1 代码要求正确运行,直线和圆的位置应当为参数,实现可配置。 2 程序提交.c源文件,函数前和关键代码中增加注释。 程序模板 #include #include typedef struct{ int x; int y; }pt2; /*declare your drawing functions.*/ void drawline(pt2 startpt,pt2 endpt,int color); void drawcircle(pt2 centerpt,int radius,int color); void circlePlotPoints(pt2 centerpt,int x,int y,int color); int main() { int color,radius;

计算机图形学实验报告

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include

#include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glV ertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre; y+=yIncre; } } void Display(void) { glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush(); }

计算机图形学报告讲述

计算机图形学课程实 验 报 告 实验题目 班 级 姓 名 学 号 指导教师 日 期 信息与计算科学专业基础课 Computer Graphics Report Of course experiment

理学院应用数学系 实验说明 试验目的: 掌握TurboC 语言图形函数的使用和学会绘制一般图形。 试验地点: 教九楼401 数学系机房 实验要求(Direction ):1. 每个学生单独完成;2.开发语言为TurboC 或C++,也可使用其它 语言;3.请在自己的实验报告上写明姓名、学号、班级;4.每次交的实验报告内容包括:题目、试验目的和意义、程序制作步骤、主程序、运行结果图以及参考文件;5. 自己保留一份可执行程序,考试前统一检查和上交。 实验内容 实验题一 1.1实验题目 用如下图1所示,图中最大正n 边形的外接圆半径为R ,旋转该正n 边形,每次旋转θ角度,旋转后的的n 边形顶点落在前一个正六边形的边上,共旋转N 次,请上机编程绘制N+1个外接圆半径逐渐缩小且旋转的正n 边形。要求:(1) n 、R 、N 、θ要求可以人为自由控制输入;(2)N+1个正六边形的中心(即外接圆的圆心)在显示屏幕中心。 1.2实验目的和意义 1. 了解如何利用C 语言和图形函数进行绘图,同时熟练掌握C++图形绘制环境; C B A R1 R2 10 图1 利用C 语言图形函数绘图 实验 1 如左图(一)所示:n=6 θ=100、N =1、R=R1、旋转一次。依次类推,共旋转N 次。

2. 掌握C语言的图形模式控制函数,图形屏幕操作函数,以及基本图形函数; 3. 通过对Turbo C进行图形程序设计的基本方法的学习,能绘制出简单的图形; 4. 通过绘制N+1个正n边形,了解图形系统初始化、图形系统关闭和图形模式的控制, 并熟练运用图形坐标的设置,包括定点、读取光标、读取x和y轴的最大值以及图形颜色的设置。 1.3程序制作步骤(包括算法思想、算法流程图等) 算法思想: 1.自动搜索显示器类型和显示模式,初始化图形系统,通过printf、scanf语句控制半径r、边数n、多边形的个数k、边的每次旋转角度d,的自由输入; 2.给定一内接圆半径r,由圆内接多边形的算法公式: x[i]=r*cos((i+1) *2.0*pi/n)+320.0 y[i]=240.0-r*sin(2.0*pi/n *(i+1)) 确定出多边形N的各个顶点坐标,然后利用划线函数line(),连接相邻两点,即形成一个正多边形。 3.根据边与角的关系,以及线段定比分点公式,可知旋转后的多边形的各个顶点的坐标。公式如下: x[i]=(x[i]+x[i+1]/(k+1)) y [i]=(y[i]+y[i+1]/(k+1)) k=360/(n*d) (n为多边形的边数,d为多边形旋转的度数)然后与第二步相同,利用划线函数line(),连接形成又一个旋转过的正多边形,这样就形成了所要绘制的图形; 4.关闭图形系统。 1.4主程序 程序代码: /*----- 多边形的逐次旋转------*/ #include "stdio.h" #include "conio.h" #include "math.h" #include "graphics.h" #include "stdlib.h" #include "time.h" void main() { int graphdriver=DETECT,graphmode; /*自动搜索显示器类型和显示模式*/

计算机图形学实验报告

《计算机图形学》 实验报告 学号:0908610211 姓名:宋雪英 班级:计算机0961 项目: 1.利用其它两种画直线方法实现放大10陪显示方法,交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。 2.利用方形、线性两种画刷来绘制圆和椭圆。 3.实现交互式二维图形的放缩,旋转和对称变换 2012年12月25日

基本图形的生成技术 一、实验目的 在一个图形系统中,基本图形(也称为图元、图素等)的生成技术是最基本的,任何复杂的图形都是由基本图形组成的,基本图形生成的质量直接影响该图形系统绘图的质量。所以,需要设计出精确的基本图形生成算法,以确保图形系统绘图的精确性。本次实验的目的就是利用Bresenham 算法和中心画线法两种画直线方法实现放大10陪显示方法,交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。利用方形、线性两种画刷来绘制圆和椭圆。实现交互式二维图形的放缩,旋转和对称变换。 二、实验任务 1.利用其它两种画直线方法实现放大10陪显示方法,交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。 2.利用方形、线性两种画刷来绘制圆和椭圆。 3.实现交互式二维图形的放缩,旋转和对称变换。 三、画直线的实验内容 任务一:利用其它两种画直线方法实现放大10陪显示方法交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。 1、设计思路 第一步:建立DDAMouseLine工程文件; 第二步:向视图类中添加自定义的成员变量 用鼠标右键单击视图类,选择“Add Member Variable…”,添加下面三个成员变量。 proctected : CPoint m_p1; //起点 CPoint m_p2; //起点 CPoint m_p; //点击鼠标时点的取值 第三步:向视图类中添加自定义的成员函数原型:

《计算机图形学实验报告》

一、实验目的 1、掌握中点Bresenham直线扫描转换算法的思想。 2掌握边标志算法或有效边表算法进行多边形填充的基本设计思想。 3掌握透视投影变换的数学原理和三维坐标系中几何图形到二维图形的观察流程。 4掌握三维形体在计算机中的构造及表示方法 二、实验环境 Windows系统, VC6.0。 三、实验步骤 1、给定两个点的坐标P0(x0,y0),P1(x1,y1),使用中点Bresenham直线扫描转换算法画出连接两点的直线。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、使用中点Bresenham直线扫描转换算法实现自己的画线函数,函数原型可表示如下: void DrawLine(CDC *pDC, int p0x, int p0y, int p1x, int p1y); 在函数中,可通过调用CDC成员函数SetPixel来画出扫描转换过程中的每个点。 COLORREF SetPixel(int x, int y, COLORREF crColor ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用DrawLine 函数画出不同斜率情况的直线,如下图:

最后、调试程序直至正确画出直线。 2、给定多边形的顶点的坐标P0(x0,y0),P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)…使用边标志算法或有效边表算法进行多边形填充。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、实现边标志算法或有效边表算法函数,如下: void FillPolygon(CDC *pDC, int px[], int py[], int ptnumb); px:该数组用来表示每个顶点的x坐标 py :该数组用来表示每个顶点的y坐标 ptnumb:表示顶点个数 注意实现函数FillPolygon可以直接通过窗口的DC(设备描述符)来进行多边形填充,不需要使用帧缓冲存储。(边标志算法)首先用画线函数勾画出多边形,再针对每条扫描线,从左至右依次判断当前像素的颜色是否勾画的边界色,是就开始填充后面的像素直至再碰到边界像素。注意对顶点要做特殊处理。 通过调用GDI画点函数SetPixel来画出填充过程中的每个点。需要画线可以使用CDC的画线函数MoveTo和LineTo进行绘制,也可以使用实验一实现的画直线函数。 CPoint MoveTo(int x, int y ); BOOL LineTo(int x, int y ); 实现边标志算法算法需要获取某个点的当前颜色值,可以使用CDC的成员函数 COLORREF GetPixel(int x, int y ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用FillPolygon 函数画出填充的多边形,如下: void CTestView::OnDraw(CDC* pDC) { CTestcoodtransDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc);

计算机图形学实验报告

计算机图形学 实验报告 姓名:谢云飞 学号:20112497 班级:计算机科学与技术11-2班实验地点:逸夫楼507 实验时间:2014.03

实验1直线的生成 1实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析 实验数据的能力; 编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的 直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记 录两种算法的绘制时间;利用excel等数据分析软件,将试验结果编 制成表格,并绘制折线图比较两种算法的性能。 2实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One(自制平台)。 本实验提供名为 Experiment_Frame_One的平台,该平台提供基本 绘制、设置、输入功能,学生在此基础上实现DDA算法和Mid_Bresenham 算法,并进行分析。 ?平台界面:如错误!未找到引用源。所示 ?设置:通过view->setting菜单进入,如错误!未找到引 用源。所示 ?输入:通过view->input…菜单进入.如错误!未找到引用 源。所示 ?实现算法: ◆DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) Mid_Bresenham法:void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)

3实验结果 3.1程序流程图 1)DDA算法流程图:开始 定义两点坐标差dx,dy,以及epsl,计数k=0,描绘点坐标x,y,x增 量xIncre,y增量yIncre ↓ 输入两点坐标x1,y1,x0,y0 ↓ dx=x1-x0,dy=y1-y0; _________↓_________ ↓↓ 若|dx|>|dy| 反之 epsl=|dx| epsl=|dy| ↓________...________↓ ↓ xIncre=dx/epsl; yIncre=dy/epsl ↓ 填充(强制整形)(x+0.5,y+0.5); ↓←←←← 横坐标x+xIncre; 纵坐标y+yIncre; ↓↑ 若k<=epsl →→→k++ ↓ 结束 2)Mid_Bresenham算法流程图开始 ↓ 定义整形dx,dy,判断值d,以及UpIncre,DownIncre,填充点x,y ↓ 输入x0,y0,x1,y1 ______↓______ ↓↓ 若x0>x1 反之 x=x1;x1=x0;x0=x; x=x0;

计算机图形学实验报告,DOC

欢迎共阅

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握 3. 1.利用 2.加强对 四 { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } voidDDALine(intx0,inty0,intx1,inty1) { glColor3f(1.0,0.0,0.0); intdx,dy,epsl,k; floatx,y,xIncre,yIncre; dx=x1-x0;dy=y1-y0;

x=x0;y=y0; if(abs(dx)>abs(dy))epsl=abs(dx); elseepsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glEnd(); } } { } { } { glutInitWindowSize(400,300); glutInitWindowPosition(100,120); glutCreateWindow("line"); Initial(); glutDisplayFunc(Display); glutReshapeFunc(winReshapeFcn); glutMainLoop(); return0; }

计算机图形学报告

中南大学 计算机图形学 实验报告 学生姓名谭淼 学号23 专业班级应数1102班 指导老师刘圣军 数学与统计学院 2013年12月 实验目的:设计并实现一个简单动画(二维或三维)。熟悉并应用画线的基本算法—Bresenham算法。 实验过程: 1、实验步骤: (1)打开Visual Studio 2010,新建一个MFC项目,取名为tuxingxue,设置为单文档。 (2)打开类视图,添加一个名为Cline2D的类,在该类中添加BresenhamLine(CDC* pDC, int xa,float ya,int xb,float yb) DrawPixel(CDC* pDC, int x, float y, unsigned int color, int size); BresenhamLine1(CDC* pDC, int xa,float ya,int xb,float yb);

BresenhamLine2(CDC* pDC, int xa,float ya,int xb,float yb); BresenhamLine3(CDC* pDC, int xa,float ya,int xb,float yb); BresenhamLine4(CDC* pDC, int xa,float ya,int xb,float yb); 以上函数的返回值类型均为void型。在中,分别在其中添加代码实现画线的功能,具体代码见附录中的源代码。 (3)画出基本图形。在中定义CLine2D 的一个对象为line1,以便调用CLine2D中的函数,此时在调用的函数中赋初始值即可画出最基本的图形,即为一颗大五角星以及三颗小的五角星。 (4)让画出的五角星动起来。从类视图中CtuxingxueView下添加名为OnTimer的消息处理函数,在中添加bool型变量m_flag,在OnTimer函数下添加代码,具体代码见附录。在添加变量int m_x1、int m_y1、int m_x2、int m_y2、int m_x3、int m_y3、int m_x4、int m_y4、int m_x5、int m_y5、int m_x6、int m_y6、int m_x7、int m_y7、int m_x8、int m_y8、int m_x9、int m_y9、int m_x10、int m_y10、 int m_x11、int m_y11、int m_x12、int m_y12。在中为这些变量赋初始值,将第三步中函数赋的初值用这些变量代替,这样变量的值可以改变,在资源视图中menu下IDR_MAINFRAME中添加名为绘图的菜单项,在绘图下添加名为运行的选项,其ID号为ID_run,添加事件处理程序,函数处理程序名称为Onrun,将其类选为C tuxingxueView,此时,在Onrun中添加代码,再运行就可以让图形动起来了。 2、实验中遇到的问题及处理方法

计算机图形学实验报告

计算机图形学 实验报告 学号:20072115 姓名: 班级:计算机 2班 指导老师:何太军 2010.6.19

实验一、Windows 图形程序设计基础 1、实验目的 1)学习理解Win32 应用程序设计的基本知识(SDK 编程); 2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。 4)学习MFC 类库的概念与结构; 5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框); 6)学习使用MFC 的图形编程。 2、实验内容 1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。(可选任务) 2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,This is my first SDI Application"。(必选任务) 3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。 3、实验过程

1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档; 2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,This is my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制; 3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。 4、实验结果 正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。成功地完成了实验。 结果截图: 5、实验体会 通过实验一,了解了如用使用基本的SDI编程函数绘制简单的图

计算机图形学实验报告

.

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include

#include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glV ertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre; y+=yIncre; } } void Display(void) { glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush(); }

计算机图形学实验报告

计算机图形学(computer graphics)的基本含义是使用计算机通过算法和程序在显示设备上构造图形。图形是人们通过计算机设计和构造出来的,不是通过摄像机、扫描仪等设备输入的图像。这里的图形可以是现实中存在的图形,也可以是完全虚拟构造的图形。以矢量图的形式呈现,更强调场景的几何表示,记录图形的形状参数与属性参数。例如,工程图纸(drawing),其最基本的图形单元是点、线、圆/弧等,其信息包含图元的几何信息与属性信息(颜色、线型、线宽等显式属性和层次等隐式属性)。 图像处理(image processing)则是研究图像的分析处理过程,图像处理研究的是图像增加、模式识别、景物分析等,研究对象一般为二维图像。图像以点阵图形式呈现,并记录每个点的灰度或色彩。例如,照片、扫描图片和由计算机产生的真实感和非真实感图·形等,最基本的图像单元(pels,picture elements)是点—像素(pixel),其信息实际上是点与它的属性信息(颜色、灰度、亮度等)。 计算机视觉(computer vision)包括获取、处理、分析和理解图像或者更一般意义的真实世界的高维数据方法,它的目的是产生决策形式的数字或者符号信息。

计算机图形学和计算机视觉是同一过程的两个方向。计算机图形学将抽象的语义信息转化成图形,计算机视觉则从图形中提取抽象的语义信息,图像处理研究的则是一个图像或一组图像之间的相互转化和关系,与语义信息无关。下表从输入和输出的角度对三者的区别进行辨析: 表2 图像处理&计算机视觉&计算机图形学对比 计算机图形学,输入的是对虚拟场景的描述,通常为多边形数组,而每个多边形由三个顶点组成,每个顶点包括三维坐标、贴图坐标、RGB 颜色等。输出的是图像,即二维像素数组。 计算机视觉,输入的是图像或图像序列,通常来自相机、摄像头或视频文件。输出的是对于图像序列对应的真实世界的理解,比如检测人脸、识别车牌。图像处理,输入的是图像,输出的也是图像。

南邮计算机图形学实验报告(完整版)剖析

实验报告 实验名称指导教师 实验类型综合实验学时 2 实验时间 一、实验目的和要求 能够灵活的运用OpenGL图形API函数,基于C++程序语言,自行设计出各种各样的计算机图形方案并调整不同的透视模型。学会配置OpenGL 图形函数API,设计(1)在屏幕上显示基本3D图形;(2)设置图形的表面光照模型及投影变换模型。 1.所有图形(例如球体,正方体)有清晰的轮廓。 2.学会设置图形表面的光照色彩以及投影变换模型。 3.尽可能采用高效的算法,以降低时间复杂性和空间复杂性。

二、实验环境(实验设备) 硬件:微机 软件:vs2012

实验报告三、实验过程描述与结果分析 实验代码: #include // 绘制立方体 // 将立方体的八个顶点保存到一个数组里面static const float vertex_list[][3] = { -0.5f, -0.5f, -0.5f, 0.5f, -0.5f, -0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f, -0.5f, -0.5f, -0.5f, 0.5f, 0.5f, -0.5f, 0.5f, -0.5f, 0.5f, 0.5f, 0.5f, 0.5f, 0.5f, }; // 将要使用的顶点的序号保存到一个数组里面static const GLint index_list[][2] = { {0, 1}, {2, 3},

{4, 5}, {6, 7}, {0, 2}, {1, 3}, {4, 6}, {5, 7}, {0, 4}, {1, 5}, {7, 3}, {2, 6} }; //光照模型 void init(void) { GLfloat ambient[] = { 0.0, 0.0, 0.0, 1.0 }; GLfloat diffuse[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat position[] = { 0.0, 3.0, 2.0, 0.0 }; GLfloat lmodel_ambient[] = { 0.4, 0.4, 0.4, 1.0 }; GLfloat local_view[] = { 0.0 }; glClearColor(0.0, 0.1, 0.1, 0.0); glEnable(GL_DEPTH_TEST);

计算机图形学实验报告

实验一 3D模型的加载、渲染与三维操作 学院: 专业班级: 指导老师: 学号: 姓名: 完成日期:

目录 一、实验目的 (3) 二、使用的工具软件及环境 (3) 三、实验内容 (3) 四、实验步骤 (3) 五、思考 (12)

一、实验目的 1、掌握在Microsoft Visual Studio环境中使用OpenGL、GLUT和GLUI; 2、了解计算机图形学固定流水线; 3、了解OpenGL编程基础; 4、掌握三维观察的数学表达和程序实现; 5、掌握多边形网格的绘制; 二、使用的工具软件及环境 Microsoft Visual Studio 2010、OpenGL、Glut、Glui 三、实验内容 1、在VS 2010中配置OpenGL环境; 2、编译简单的GLUT程序; 3、编译GLUI源代码,并在调试模式下执行6个示例程序; 4、在给定的工程中添加绘制简单几何体的代码; 5、在给定的工程中添加读取、绘制三维模型的代码; 6、在给定的工程中添加旋转、平移和缩放的控制代码; 四、实验步骤 1、安装Microsoft Visual Studio软件 版本选择:Microsoft Visual Studio 2010以上版本 2、VS2010中配置GLUT 1)下载GLUT。Windows环境下的GLUT下载地址: https://www.wendangku.net/doc/932897246.html,/resources/libraries/glut/glutdlls37beta.zip 2)将下载的压缩包解开,将得到5个文件:glut.h、glut.lib、glut32.lib、 glut.dll、glut32.dll。3)将glut.h放到"%WinDir%\Program Files(x86)\Microsoft SDKs\Windows\v7.0A\Include\gl\"文件夹中。 4)将glut.lib和glut32.lib放到"%WinDir%\Program Files(x86)\Microsoft Visual Studio 10.0\VC\lib\"文件夹中。 5)将glut.dll和glut32.dll放到"%WinDir%\system32"文件夹(32位操作 系统)或者"%WinDir%\SysWOW64"文件夹(64位操作系统)。 3、测试GLUT配置环境

计算机图形学 课程设计作品

《计算机图形学Visual c++版》考试作业报告 题目:计算机图形学图形画板 专业:推荐IT学长淘宝日用品店530213 班级:推荐IT学长淘宝日用品店530213 学号:推荐IT学长淘宝日用品店530213 姓名:推荐IT学长淘宝日用品店530213 指导教师:推荐IT学长淘宝日用品店530213 完成日期: 2015年12月2日

一、课程设计目的 本课程设计的目标就是要达到理论与实际应用相结合,提高学生设计图形及编写大型程序的能力,并培养基本的、良好的计算机图形学的技能。 设计中要求综合运用所学知识,上机解决一些与实际应用结合紧密的、规模较大的问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握计算机图形学基本知识和算法设计的基本技能术,掌握分析、解决实际问题的能力。 通过这次设计,要求在加深对课程基本内容的理解。同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。 二、设计内容推荐IT学长淘宝日用品店530213 设计一个图形画板,在这个图形画板中要实现: 1,画线功能,而且画的线要具备反走样功能。 2, 利用上面的画线功能实现画矩形,椭圆,多边形,并且可以对这些图形进行填充。 3,可以对选中区域的图形放大,缩小,平移,旋转等功能。 三、设计过程 程序预处理:包括头文件的加载,常量的定义以及全局变量的定义 #include "stdafx.h" #include "GraDesign.h" #include "GraDesignDoc.h" #include "GraDesignView.h" #include "math.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif //******自定义全局变量 int type = -1; CPoint point1; CPoint point2; CPoint temp[2];

研究生计算机图形学课程室内场景OpenGL--实验报告

《高级计算机图形学》实验报告 姓名:学号:班级: 【实验报告要求】 实验名称:高级计算机图形学室内场景 实验目的:掌握使用OpenGL生成真实感复杂对象的方法,进一步熟练掌握构造实体几何表示法、扫描表示法、八叉树法、BSP树法等建模方法。 实验要求:要求利用OpenGL生成一个真实感的复杂对象及其周围场景,并显示观测点变化时的几何变换,要具备在一个纹理复杂的场景中漫游功能。要求使用到光线跟踪算法、 纹理映射技术以及实时绘制技术。 一、实验效果图 图1:正面效果图

图2:背面效果图 图4:背面效果图

图4:室内场景细节效果图 图5:场景角度转换效果图

二、源文件数据代码: 共6个文件,其实现代码如下: 1、DlgAbout.cpp #include "StdAfx.h" #include "DlgAbout.h" CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialog::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) END_MESSAGE_MAP() 2、FormCommandView.cpp #include "stdafx.h" #include "Tool.h" #include "MainFrm.h" #include "FormCommandView.h" #include "ToolDoc.h" #include "RenderView.h" // Download by https://www.wendangku.net/doc/932897246.html, #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CFormCommandView IMPLEMENT_DYNCREA TE(CFormCommandView, CFormView) CFormCommandView::CFormCommandView() : CFormView(CFormCommandView::IDD) { //{{AFX_DATA_INIT(CFormCommandView)

相关文档