文档库 最新最全的文档下载
当前位置:文档库 › 最优化方法课程设计

最优化方法课程设计

最优化方法课程设计
最优化方法课程设计

《最优化方法》

课程设计

题目:可行方向法分析与实现

院系:数学与计算科学学院

专业:统计学

姓名学号:XXXX 12007XXXXX

指导教师:李丰兵

日期:2015 年01 月22日

摘要

在各种优化算法中,可行方向法是非常重要的一种。可行方向法是通过直接处理约束问题,得到一个下降可行方向,从而产生一个收敛于线性约束优化问题的K-T点。本文主要介绍的Zoutendiji可行方向法是求解约束优化问题的一种有代表性的直接解法.在本次实验中,本人对该门课程中的线性约束非线性最优化问题进行了一定程度地了解和研究,而处理线性约束非线性最优化问题的关键是在求解过程中,不仅要使目标函数值单调下降,而且还要保证迭代点的搜索方

向为下降可行方向。所以,本人使用利用线性规划方法来确定

d的可行方向法

k

——Z outendijk可行方向法进行处理。本人通过数学软件MATLAB探讨了优化设计的实现方法及实现验证的效果,更进一步地加深了对它的理解也提高了处理该问题的水平能力。而且该方法初始参数输入简单,编程工作量小,具有明显的优越性.

关键词:Zoutendiji可行方向法,约束优化问题,下降可行方向。

Abstract

In a variety of optimization algorithms, the feasible descent method is a very important one. The feasible direction method is by directly dealing with constraints, getting a feasible direction, to produce a convergence in the k-t point of the linear constrained optimization problems. Zoutendiji feasible direction method is mainly introduced in this paper to solve the constrained optimization problem of a kind of typical and direct solution.In this experiment, We have a certain degree of understanding and researching in this course of linear constrained nonlinear optimization problem。And dealing with linear constrained nonlinear optimization problem,the key is the process of solving, we should not only make our objective function values decreased, but also to ensure that the searching directions of iteration points for the feasible direction. So, we are using the linear programming method is used to determine the feasible direction method -- Zoutendijk feasible direction method for processing.We through make use of the mathematical software MATLAB, the realization of the optimization design method is discussed ,and validate the effect of further deepening the understanding of improving the ability to deal with the problem of level. And the method is simple in initial parameters inputting, Therefore, the program storage less computational complexity.

Key words: Zoutendiji feasible direction method, Constrained optimization problems, Feasible direction.

目录

1、引言 (1)

2、可行方向法的描述 (1)

2.1 可行方向法 (1)

2.2线性不等式约束的ZOUTENDIJK METHOD (2)

2.3 算法实现 (3)

3、数值实验 (4)

3.1 代码实现 (4)

4、算法比较及缺点 (8)

4.1 随机方向搜索法 (8)

4.2 复合型法 (8)

4.3可行方向法 (9)

4.4 缺点 (9)

5、总结 (9)

5.1 总结概括 (9)

5.2 个人感言 (9)

6、参考文献: (9)

1、引言

现在,可行方向法已发展成为求解约束优化问题的一类重要方法,其基本思想是:给定

一个可行点(k)x 之后,用某种方法确定一个改进的可行方向k d ,然后沿方向k d ,求解一个

有约束的线搜索问题,得极小点k λ,按迭代公式计算:

(k+1)(k)

k k x =x +d λ,如果(k+1)x 不是最优解,则重复上述步骤。各种不同的可行方向法的主要区别在于:选择可行方向k d 的

策略不同。大体上可分为三类:(1)用求解一个线性规划方法来确定k d 。

(2)利用投影矩

阵来直接构造一个改进的可行方向

k d 。

(3)利用既约梯度,直接构造一个改进的可行方向

k d 。其中Zoutendijk Method 就是利用线性规划方法来确定k d 的。

2、可行方向法的描述

2.1 可行方向法

可行方向法是通过直接处理约束问题,得到一个下降可行方向,从而产生一个收敛于线性约束优化问题的K-T 点。一般地,求解约束优化问题要比求解无约束优化问题复杂、困难,因为在求解过程中,不仅要使目标函数值单调下降,而且还要保证迭代点满足约束条件。因此,在求解过程中,要求产生的迭代点的搜索方向为下降可行方向。由于这时的约束为线性函数,因而可通过利用线性代数的知识和无约束优化方法来设计一些有效算法。

2.1.1非线性约束 Basic concept

min ()f x

..s t x F ∈

Descent direction d: ()0.T f x d ?<

Feasible direction d: ,[0,],0.

x F x d F ααδδ∈+∈?∈>

定义:非零向量d 称为在点x F ∈的一个可行方向,若0[0,]δαδ?>?∈,, 都有:

,x F x d F α∈+∈。

d ≠0称为在点x F ∈的一个改进的可行方向,若0[0,]δαδ?>?∈,, 都有:

()()f x d f x α+<,x d F α+∈

2.2 线性不等式约束的Zoutendijk Method

(P) min ()f x s.t. b Ax ≥ Ex e =

:k x

Denote 1122b A b A A b ????

==

? ?????

, Such that: 12

12,k k A x b A x b =>

Obviously:

Descent d : ()0.k T f x d ?< Feasible d : 10,0.Ad Ed ≥=

Solving :

01

for ()0.k T f x d ?< solve(P) to obtain descent direction d.

Since ()0.k T f x d ?<

then ()()k k f x d f x α+<,0,[0,].δαδ?>?∈ so d is the descent direction.

2 for 10,0.Ad Ed ≥= solve(P) to obtain feasible direction d.

since 1

1,k A x b =10,0Ad

Ed ≥=,Ex e = so 1111(),k

A x d b Ad b αα+=+≥()e,0.k

k

E x d Ex Ed ααα+=+=?>

since 22k A x b >,

having 2222(),0,[0,].k k A x d A x A d b ααδαδ+=+≥?>?∈ so d is the feasible direction.

03 set feasible direction d 0≠,solving 10,0.Ad Ed ≥=

since 111111()=k k

A x d A x Ad b Ad b ααα+=++≥,[0,]

0αδδ∈>, so 10Ad ≥.

since ()e e,k k

E x d Ex Ed Ed ααα+=+=+=[0,]0αδδ∈>,

so 0Ed =.

2.2.1 Subproblem(子问题): (LP ) min ()k T f x d ?

s.t. 10Ad ≥

0.Ed = 11,1.

i d i n -≤≤= Conclusions:

1、For (LP) with optima k d , ()0k T k f x d ?≤。

2、()0,k T k f x d ?= if k x is a KKT point of (P)。

3、If

()0,k T k

f x d ?< then k d is a feasible descent direction at k x 。 2.3 算法实现:

step0:

0,0,0x F k ε∈>=

step1: For

,k x ()solve LP to obtain k

d .

step2: If (),k T k f x d then ε?≥- k

x is the K-T point, stop!

step3: Find

k α

min ()k k

f x d α+ max s.t. 0<<αα

step4: set

1,1k k k

k x x d k k α+=+=+ go to step1.

Note: How to get

max α ?

ensure ,k k x d F α+∈

i.e.

()k k A x d b α+≥

()k k E x d e α+= Due to

(),00

k k k

k

Ex e E x d e Ed αα?=??+=?>?=??

111

11(),00k

k k k

A x b A x d b A d

αα?=??+≥?>?>?? Hope: 22

22(),k k k A x d b A x b α+≥>已知

If 20,k A d then ≥ 22(),0k k A x d b d α+≥?>

1220,1,0.k

i

l s s A d i l s s ??

?

?

Then 112222,k

l l t b t b A x

b t b ???? ? ? ? ?= ? ? ? ?????

..,,1-i i i i i i

i e t s b i l

b t s αα+≥=~=

Set

max -min 0i i

i i b t s s αα?

?==

?

3、数值实验

3.1 代码实现

Zoutendijk 法使用举例:

22121122113142min ()(-1)(-2)1..()-210()--20()0()0

f x x x s t

g x x x g x x x g x x g x x =++=++≥=+≥=≥=≥

matlab 程序: 定义所求函数并赋值 function h= fun1(x)

syms a b ; x1=[a b]; f=a^2+4*b^2; h=subs(f,x1,x);

end

求导函数dfx:

function dfx=dfxfun(x)

syms a b;

x1=[a b];

f=a^2+4*b^2;

grad=jacobian(f,x1);

dfx=subs(grad,x1,x);

end

根据

得到新的可行方向

max

function h=fun(lamda,d,x)

syms a b;

x1=[a b];

f=a^2+4*b^2;

xx=x+lamda*d;

h=subs(f,x1,xx);

end

主函数

function Zoutendijk(x0,A,b)

c=0;

kk=0;

options=optimset('Display','off');

while c<5

c=c+1;

k=0;j=0;

kk=kk+1;

A1=[];b1=[];

A2=[];b2=[];

[m,n]=size(A);

for i=1:m

C=A(i,:)*x0;

if C>=b(i)-1e-4 %不起作用约束A1,b1 k=k+1;

A1(k,:)=A(i,:);

b1(k,1)=b(i);

if C

j=j+1;

A2(j,:)=A(i,:);

b2(j,1)=b(i);

end

end

%A1,b1

%A2,b2

if isempty(A2) %A2为0向量矩阵

f1=dfxfun(x0);

if (abs(f1)<=1e-4)

break

else d=-f1;

end

else

lb=[-1 -1];

ub=[1 1];

b0=zeros(size(b1));

f1=dfxfun(x0);

[d,fval1]=linprog(f1,A1,b0,[],[],lb,ub); %求解最小化问题,得到可行方向d和最值

if fval1==0

break

end

end

%pause

dd=A2*d;

bb=b2-A2*x0;

lamdmax=max(bb./dd);

lamda=fminbnd(@(lamda)fun(lamda,d,x0),0,lamdmax,options); %求函数的局部极小值

if (isempty(lamda(:)))%〖f(x)〗^T d^k=0迭代结束

end

x0=x0+lamda*d;%获得新点

end

fprintf('可行方向法\n:迭代次数:kk=%d\n',kk);

fprintf('最优解:\n');

x0

fval3=fun1(x0);

fprintf('函数最值:\n');

fval3

%用非线性约束函数方法,检验所得到的结果是否正确

x0=[0;0];

[x,fval]=fmincon(@fun1,x0,A,b,[],[],[],[],[],options);%求解非线性问题

fprintf('用非线性约束规划检验:最优解为:\n');

x

fprintf('约束条件下函数最值:\n');

fval

end

command中输入:

x0=[0;0];

A=[2.0 -1.0;1.0 1.0;-1.0 0.0;0.0 -1.0];

b=[1.0;2.0;0.0;0.0];

>> zoutendijk(x0,A,b)

Optimization terminated.

Optimization terminated.

Optimization terminated.

Optimization terminated.

Optimization terminated.

可行方向法:

迭代次数:kk=5

最优解:

x0 =

0.5000

1.5000

函数最值:

fval3 =

1.5001

Warning: Trust-region-reflective algorithm does not solve this type of problem, using active-set

algorithm. You could also try the interior-point or sqp algorithms: set the Algorithm option to

>> In fmincon at 472

>> In zoutendijk at 61

用非线性约束规划检验:最优解为:

x =

0.5000

1.5000

约束条件下函数最值:

fval =

1.5000

所得到结果为:

根据数学解法,代入验证结果符合要求,表明可行方向法编程正确!

4、算法比较及缺点

4.1随机方向搜索法

特点:简单、方便,对目标函数性态无特殊要求,收敛较快,但计算精度不高,对严重非线性问题一般只能提供较近似的最优解。

使用原则:适用于中小型无约束或有约束优化问题。

4.2复合型法

特点:具有单纯型法的特点,适合于求解n<20的规划问题,但不能求解有等式约束的问题。对目标函数和约束函数无特殊要求,不必计算目标函数的梯度和二阶导数矩阵,方法简单、实用可靠、应用较广,有一定的收敛精度,但收敛速度一般。

使用条件:不适于变量较多(n>15)和有等式约束的优化,是求解非线性优化的有效方法之一,在优化设计中得到广泛应用。

4.3可行方向法

特点:1)可行方向法是用梯度去求解约束优化设计问题的一种有代表性的直接搜索方法。2)收敛速度快,效果较好,但程序比较复杂。

使用条件:适用于大中型约束优化设计问题的求解。

4.4缺点:

由于Zoutendijk可行方向法是基于无约束优化中的最速下降法,所以此算法具有最速下降法的一些缺点。以非典型的缺点就是“锯齿现象”,从而,当迭代逼近非有效约束边界时可能会发生一些突然的变化,使得收敛速度很慢,甚至不收敛于K-T点

5、总结

5.1总结概括

求解最优问题是一个艰难而具有挑战性的过程,最优化方法是近几十年形成的一门运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据的学科,它涵盖了无约束最优化问题、凸集与凸函数、等式约束最优化问题和不等式约束最优化问题等知识点。本次课程设计,我对该门课程中的线性约束非线性最优化问题进行了一定程度地了解和研究,而处理线性约束非线性最优化问题的关键是在求解过程中,不仅要使目标函数值单调下降,而且还要保证迭代点的搜索方向为下降可行方向。所以,我使用利用线性规划方法来确d的可行方向法——Zoutendijk可行方向法进行处理。我从理论的来源、推导过程以及定k

算法出发进行深入举例求解,之后,我通过数学软件MATLAB实现验证的效果,更进一步地加深了对它的理解也提高了处理该问题的水平能力。

5.2个人感言

通过本次课设,我学会了应该怎么从一个问题出发,对该问题进行研究:首先要对问题有一个大概的了解,通过查阅资料,对问题有了深入了解,然后确定问题的研究方向,以及要研究方向所需要进行的工作,然后一步步去完成。

6、参考文献:

[1] 唐焕文,秦学志.实用最优化方法[M].大连:理工大学出版社,2004.

[2] 万仲平,费普生.优化理论与方法[M].武汉:武汉大学教育出版社,2004.

[3] 袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1993.

[4] 陈宝林.最优化理论与算法[J].北京:清华大学出版社,1989.

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

好手段促高效

好手段促高效 银川灵武市第五小学许怀德 课堂教学是个有机的整体,他是以教材为中介,师生双边活动的过程。优化课堂教学的关键在于正确处理教与学的关系,发挥师生双方的积极性,在教师启发引导下,学生主动探索,以最科学、最准确、最经济的途径获得新知,形成能力,取得较好的效果。然而由于数学知识的抽象性,与学生的认识正处于以直观形象思维为主要形式,逐步到抽象的逻辑思维过渡阶段,形成了学科性质与学生认识特点之间的矛盾。解决这一矛盾的外部条件,除了教师精心组织教材,优化教学目标,优化课堂结构,优化教学方法等等之外,还必须重视教学手段的优化,使教学手段能较好的发挥教学的辅助作用,帮助学生较快的理解和掌握数学知识,实现教学目标,提高课堂教学效率。 一、优化操作、演示过程,提高教学效率 儿童思维发展的过程是一个从具体形象到抽象思维的发展过程,布鲁纳提出概念的发展要经过三种模式,即动作性模式,影响性模式,符号性模式。他认为教学必须按照儿童智力发展的层次来进行。皮亚杰也提出:“要知道一个客体就必须动之以手。”这说明操作、演示在儿童获取知识中的重要作用。因此在教学中要重视从直观入手,充分运用操作、演示的教学手段,使学生动手、动口、动脑,调动多种感官,使其获得丰富的感性认识,借助形象思维来发展抽象的逻辑思维。 运用操作、演示的教学手段,首先教师要明确操作的要求,然

后根据教学内容和写生的认识特点,精心设计操作严实的程序、操作演示的方式方法和操作的指导语。考虑怎样操作,怎样演示才能展现知识的形成过程;什么时候操作,什么时候演示才能恰到好处地突出重点,突破难点。也就是要注意把握好用的恰当时机,掌握好火候,在教学的关键处揭示事物的数量关系和变化过程算理、解法和盘托出。如教学两位数加一位数:27+5,重点是使学生掌握口算方法,理解进位加法的算理。我们可以围绕教学重点分层次一步一步地操作演示。首先让学生摆小棒,在左边摆27根右边摆5根,启发学生想:先算什么?7根加5根是多少根?再算什么?学生根据老师的启示边操作边思考。接着叫一名学生在幻灯机上再次操作,要求学生边操作边口述操作过程,使学生悟出7根小棒加5根小棒是12根小棒,然后把10根小棒捆成1捆,再与原来的2捆加在一起。最后教师又在黑板上画图演示。使学生进一步理解进位加法的口算方法,掌握口算步骤。 二、优化插图的使用,提高教学效率 课本的插图能帮助学生理解教材内容,但是课本的插图是静止的,只能反映事物的结果,不能反映事物发展变化的过程。为了使插图真正祈祷直观形象地帮助学生理解抽象的数学知识的作用,可以分步插图,使画面由静变动,展示事物发展变化的过程,有效地帮助学生不但知道“结论”,还能知道获得“结论”的过程,从而真正地理解概念,掌握法则。如教学:同学们浇树,每人浇4棵,3个人共浇多少棵?此题书上配有插图,这幅图有三种出图的方法。

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

机器学习中常见的几种优化方法

机器学习中常见的几种优化方法 阅读目录 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 5. 解决约束优化问题——拉格朗日乘数法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯

度法等等。 回到顶部 1. 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下 降法越接近目标值,步长越小,前进越慢。梯度下降法的搜索迭代示意图如下图所示: 牛顿法的缺点: (1)靠近极小值时收敛速度减慢,如下图所示; (2)直线搜索时可能会产生一些问题; (3)可能会“之字形”地下降。 从上图可以看出,梯度下降法在接近最优解的区域收敛速度明显变慢,利用梯度下降法求解需要很多次的迭代。 在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化方法课程设计-斐波那契法分析与实现-完整版(新)

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 最优化方法 题目:斐波那契法分析与实现 院系:信息与计算科学学院 专业:统计学 姓名学号:小熊熊 11071050137 指导教师:大胖胖 日期: 2014 年 01 月 10 日

摘要 科学的数学化是当代科学发展的一个主要趋势,最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案. 一维搜索是指寻求一元函数在某个区间上的最优点的方法.这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化.本文就斐波那契法的一维搜索进行了详细的分析,并且成功的用 MATLAB 实现了斐波那契法求解单峰函数的极小值问题. 斐波那契法的一维搜索过程是建立在一个被称为斐波那契数列的基础上进行的,斐波那契法成功地实现了单峰函数极值范围的缩减.从理论上来说,斐波那契法的精度比黄金分割法要高.但由于斐波那契法要事先知道计算函数值的次数,故相比之下,黄金分割法更为简单一点,它不需要事先知道计算次数,并且当n 7 时,黄金分割法的收敛速率与斐波那契法越来越接近.因此,在实际应用中,常常采用黄金分割法. 斐波那契法也是一种区间收缩算法,和黄金分割法不同的是:黄金分割法每次收缩只改变搜索区间的一个端点,即它是单向收缩法. 而斐波那契法同时改变搜索区间的两个端点,是一种双向收缩法. 关键字:一维搜索斐波那契法单峰函数黄金分割法MATLAB

Abstract Mathematical sciences is a major trend in contemporary scientific development, optimization theory and algorithms is an important branch of mathematics, the problems it was discussed in numerous research programs in the best of what programs and how to find the optimal solution . One-dimensional search is the best method of seeking functions of one variable on the merits of a certain interval. Such methods not only have practical value, but also a large number of multi-dimensional optimization methods rely on a series of one-dimensional optimization article on Fibonacci the one-dimensional search method carried out a detailed analysis, and successful in MATLAB Fibonacci method for solving unimodal function minimization problem. Fibonacci method of one-dimensional search process is based on the Fibonacci sequence is called a Fibonacci conducted on, Fibonacci method successfully achieved a unimodal function extreme range reduction. Theory , Fibonacci method accuracy is higher than the golden section method, but the number of times due to the Fibonacci method to calculate function values to know in advance, so the contrast, the golden section method is more simply, it does not need to know in advance the number of calculations and at that time, the rate of convergence of golden section and the Fibonacci method getting closer, so in practical applications, often using the golden section method. Fibonacci method is also a range contraction algorithm, and the golden section method the difference is: golden section each contraction only one endpoint to change the search range that it is unidirectional shrinkage law Fibonacci search method while changing the two endpoints of the range, is a two-way contraction method. Key words: one-dimensional search Fibonacci method unimodal function Golden Section function MATLAB

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

北京理工大学级数学专业最优化方法期末试卷试题A卷MT.doc

课 程 编 号 : 0 7 0 0 0 2 0 3 北 京 理 工 大 学 2 0 0 7 - 2 0 0 8 学 年 第 二 学 期 2005 级数学专业最优化方法终考试卷( A 卷) 1. (20 分 )某化工厂有三种资源 A 、 B 、 C ,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为 x 1,x 2,x 3 ,其数学模型为: max z 3 x 1 2 x 2 5 x 3 1 2 x 2 3 430 ( A 资源限制 ) x x 3 x 1 2 x 3 460 ( B 资源限制 ) s.t 4 x 2 420 (C 资源限制 ) x x 1 , x 2 , x 3 0 请回答如下问题: ( 1)给出最优生产方案; ( 2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显着提高产品质量,该添加剂的资源限制约束为: x 1 2 x 2 3x 3 800 问最优解有何变化? 2. (12 分 )用 Newton 法求解 min f ( x ) 4 x 12 x 22 2 x 12 x 2 ,初始点取为 x 0 (1, 1)T ,迭代一步。 3.(10 分 )用 FR 共轭梯度法求解三个变量的函数 f ( x ) 的极小值,第一次迭代的搜索方向为 p 0 (1, 1,2)T ,沿 p 0 做精确线搜 索,得 x 1 ( x 11 , x 21 , x 31 )T , 设 f ( x 1 ) 2, f ( x 1 ) 2 ,求从 x 1 出发的搜索方向 p 1 。 x 11 x 21 4. (15 分 ) 给定下面的 BFGS 拟 Newton 矩阵修正公式: H k 1 ( I s k y k T )H k ( I s k y k T )T s k s k T , y k T s k y k T s k y k T s k 其中 s k x k 1 x k , y k g k 1 g k 用对应的拟 Newton 法求解: min f ( x ) x 1 2 2x 1 x 2 2 x 22 4 x 1 ,初始点取为 x 0 (0,0) T , H 0 I 。 5. (15 分 )写出问题 取得最优解的 Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。 6(12 分 ).求约束问题 在 x (0,0) T 及 x 2 (1,0) T 处的下降方向集合、可行方向集合以及可行下降方向集合,并画图表示出来 1 7( 8 分)考察优化问题 min f ( x ) s.t. x , D 设 D 为凸集, f ( x ) 为 D 上凸函数,证明: f ( x) 在 D 上取得极小值的那些点构成的集合是凸集。 8( 8 分)设 min f ( x ) 1 x T Ax b T x c ,其中 A 为对称正定矩阵, x * 为 f ( x ) 的极小值点,又设 x 0 ( x*) 可表示为 2 x 0 x * p ,其中 R 1, p 是 A 对应于特征值 的特征向量,证明:若从 x 0 出发,沿最速下降方向做精确一维搜索, 则一步达到极小值点。 课程编号 :07000203 北京理工大学 2008-2009 学年第一学期 2006 级数学专业最优化方法终考试卷( A 卷) 1. (15 分 ) 用单纯形法求解线性规划问题 2. (10 分 )写出线性规划问题 的对偶问题并证明该对偶问题没有可行解。 3. (15 分 )考虑用最速下降法迭代一步 min f ( x) x 12 2x 22 , 初始点取为 x 0 ( 1, 1)T 。( 1)采用精确一维搜索;( 2) 采用 Wolfe 条件进行不精确一维搜索,其中 0.1, 0.9 。 4. (15 分 )用 DFP 拟牛顿法求解 min f ( x) x 12 2x 22 初始点取为 x 0 1 ,初始矩阵 H 0 2 1 。 1 1 1 5. (15 分 )证明集合 S { x | x 1 2x 2 4, 2x 1 x 2 6} 是凸集,并计算原点 (0,0) 到集合 S 的最短距离。 6. (15 分 ?) 考虑问题 (1)用数学表达式写出在点 ( 1 , 5)T 处的下降可行方向集。 3 3 ( 2)假设当前点在 (0,0) T 处,求出用投影梯度法进行迭代时当前的下降可行方向(搜索方向)。 7( 7 分)证明:在精确一维搜索条件下,共轭梯度法得到的搜索方向是下降方向。

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

13-14(1)最优化方法期末试卷

2013-2014学年第一学期 数学计算经数专业《最优化方法》(课程)期末试卷 试卷来源:自拟 送卷人:赵俊英 打印:赵俊英 乔凤云 校对:赵俊英 一.填空题(20分) 1.最优化问题的数学模型一般为:____________________________, 可行域D 可以表 为_____________________________, 若____________________,称* x 为问题的全局最优解. 2.()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则=?)(x f , =?)(2 x f . 3.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向. 4. 无约束最优化问题:min (),n f x x R ∈,若k x 是不满足最优性条件的第k 步迭代点,用共轭梯度法求解时,搜索方向k d =______________ 5. 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式为 . 6 .举出一个具有二次终止性的无约束二次规划算法: . 7.函数222 21 12313()226f x x x x x x x x =+++- (填是或不是) 严格凸函数. 二.(18分)简答题: 1. 设计求解无约束优化问题的一个下降算法,并叙述其优缺点. 2. 叙述单折线法的算法思想. 3. 写出以下线性规化问题的对偶: 1234123412341234134min ()2536..873411,762323,324712,0,0,0.f x x x x x s t x x x x x x x x x x x x x x x =-+-??-+++=?? +++≥??+++≤? ≤≥≥??

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SEO搜索引擎优化常用方法

SEO搜索引擎优化常用方法 作者:葬爱来源:https://www.wendangku.net/doc/952911790.html, 时间:2012-8-12 最近听很多人说,seo也就是那么一会儿事,每天发发外链,写写文章也就够了。但是今天我想说的是,seo技术并不是简单。大局观的优化方略才是最重要的。 网站结构、关键词布局、代码精简、日志分析等等,当然外链和原创内容页绝对必不可少的。 下面具体分享一下一些做优化的一些常见的二部曲。 一、分析竞争对手 1.分析你的竞争对手为什么排在你前面或者后面。如果在你前面,分析他比你多做了哪些东西,如果你没有就赶紧补上。同时分析竞争对手网站的缺憾,你同时进行弥补。这是常见的做法。 2.采用有特色的推广方法。比如适当的做一做jingjia也是有利于优化的。同时一些心思维,如利用起网站用户对网站的推广。这样才是最有效的。用户上去了,优化液自然会上去。 二、弥补自身的优化不足 自己的网站必须要最好,才是根本,如果竞争对手的网站排在你后面,那更要注意了。一旦放松,就是别人的机会。下面笔者分享一下自身优化的一些东西。 1.分析关键词。我相信,很多人都是先选关键词,再做站。整个站都围绕这个关键词,那么排名自然会好一点。同时关键词

应该与网站的内容相关,不要选择不相关的。关键词使用的时候也要注意英文逗号或者下划线的隔开。 2.生成静态。学了一段四件后,看到很多人说生成静态和动态都差不多。理由是搜索引擎不断进步,已经可以抓取动态内容。同时不论是对于百度还是对于google来说,我相信不会弱智到是动态的就不收录。很多厉害的网站都是动态的,但也很不错。但是百度给出的优化指南明确说明了最好网站静态化,可见百度其实也希望站长们将自己的网站静态化。或许百度这个问题没有彻底解决。同时,一个纯HTML页面绝对比动态页面打开速度快。用户体验上来说,也是好的。 3.div+css。同样,table书写的网站百度收录照样也快。但我个人趋向于div,为什么?因为这样更快,理由就同二了。但是div不要太多层的嵌套,目前百度的技术还不足以抓取嵌套次数太多的内容。 4.注意Meat标签。这个几乎是我现在看一个网站优化最先看的东西,虽说搜索引擎已经开始降低meta标签的影响,但是我觉得还是很重要。 5.打造好你的友链。这个主要就靠一些站长群了。你如果没有这些群,最起码要有一群拥有比较高权重的站长朋友。老站带新站,新站成长速度会快很多。建议大家要建立一些网站群,利用互相带动的方法,去推动你的网站发展。友链的重要性,不言而喻。同时友链也要注意甑别对自己网站的好坏。

相关文档
相关文档 最新文档