文档库 最新最全的文档下载
当前位置:文档库 › 散射相位函数及其计算公式推导

散射相位函数及其计算公式推导

散射相位函数及其计算公式推导
散射相位函数及其计算公式推导

散射相位函数及其计算公式推导

由于海水中的悬浮粒子粒子半径r,我们主要考虑基于等效球的米氏(Mie)散射。

我们把散射角的平均余弦称作非对称因子,他等于散射角的余弦乘以像函数的权重值,然后对4 空间的平均值。Debye给出了定量的表达式

其中

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数公式推导过程

三角函数公式推导过程 万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)) (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2s in^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

三角函数公式知识点及应用

三角函数公式 ? 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 基本信息 ?中文名称 三角函数 ?外文名称

相关概念

余切:cotangent(简写cot)['k?u't?nd??nt] 正割:secant(简写sec)['si:k?nt] 余割:cosecant(简写csc)['kau'si:k?nt] 正矢:versine(简写versin)['v?:sain] 余矢:versed cosine(简写vercos)['v?:s?:d][k?usain] 直角三角函数 直角三角函数(∠α是锐角) 三角关系 倒数关系:cotα*tanα=1 商的关系:sinα/cosα=tanα 平方关系:sin2α+cos2α=1 三角规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 三角函数本质: 根据三角函数定义推导公式根据下图,有sinθ=y/ r;cosθ=x/r; tanθ=y/x; cotθ=x/y 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来, 比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。

三角函数的和差公式推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数的和差公式推导过程。 三角函数的和差公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cossinb cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 三角函数的和差公式推导过程 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb 两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)] (1) 两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)] (2) cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb 两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)] (3) 两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)] (4) 用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。如:(1)式可变为: sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。 三角函数积化和差公式 sinasinb=-[cos(a+b)-cos(a-b)]/2 cosacosb=[cos(a+b)+cos(a-b)]/2

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

第一章4-卢瑟福散射公式

§3 卢瑟福散射公式 在有核模型下,卢瑟福导出一个实验上可验证的散射公式。经实验定量验证,散射公式是正确的,从而验证了散射公式所建立的基础—原子有核模型结构也是正确的。 一. 库仑散射公式(又称瞄准距公式) 2 2/2 θctg a b = b:瞄准距, θ:散射角, a=z 1z 2e 2/E α, E α=m αv 2 /2,α粒子动能。 b 与θ关系:b 越大,θ越小。 。 2.忽略核外电子影响(因为电子质量远小于α粒子质

量)。 (公式在理论力学中应学过,推导略) 瞄准距公式无法用定量实验来验证。下面来推导实验能验证的公式---卢瑟福散射公式。 二. 卢瑟福的散射公式 1.装置图 M :显微镜;S :闪烁屏;F :金箔片 2.卢瑟福的散射公式 2/42)4221(θSin d E e z z Nnt N d Ω=' 说明:

dN′: 散射到散射角为θ、立体角为dΩ的α粒子数dΩ:闪烁屏S对散射点O展开的立体角; E:α粒子动能,E=mv2/2; Z1=2, Z2=79(金的电荷数) t: 金箔厚度; n: 箔中单位体积中原子数(原子数密度); N:入射的α粒子总数 3.卢瑟福的散射公式推导, 并介绍一个重要概念:微分散射截面。 ①先说明通过右边园环的α粒子都会从左边的对应的空心园锥体内散射出来。(两个园锥体的顶点可近似重合), 一个右边小园环总是与左边一个空心园

锥体对应。 现推导小园环d σ与空心园锥体的立体角d Ω的关系: θθθππθθd Cos Sin r rSin rd r dS d 2 24222=??==Ω2162 8222 22222242322θ θθ θπθ θθππσSin d a Sin d Cos a Sin d a ctg a d b b d Ω == =?-=?= 这就是d Ω与d σ的关系式。并且由于对称性,此式对出射的任意立体角 d Ω'与对应的入射小截面d σ'的关系也成立。 ②求与一个原子核碰撞,从d Ω散射出来的α粒子数dN(假设α粒子穿过箔片时只发生

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

卢瑟福散射实验报告

陈杨PB05210097 物理二班 实验题目:卢瑟福散射实验 实验目的: 1.通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论; 2.并学习应用散射实验研究物质结构的方法。 实验原理: 现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。 1.α粒子散射理论 (1)库仑散射偏转角公式 设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为2e的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图所示。图中ν是α粒子原来的速度,b是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。 图α粒子在原子核的库仑场中路径的偏转 当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。设α粒子最初的的动能和角动量分别为E和L,由能量和动量守恒定

律可知: ???? ??++?=??222202241 ?πεr r m r Ze E (1) L b m mr ==? ? ν?2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系: 20 2242 Ze Eb ctg πεθ = (3) 设 E Ze a 02 42πε= ,则 a b ctg 22 = θ (4) 这就是库仑散射偏转角公式。 (2)卢瑟福散射公式 在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。 事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图所示。那些瞄准距离在b 到db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。因此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。

三角函数公式推导过程

三角函数公式推导过程 万能公式推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得 sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a- b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2

最最完整版--三角函数公式大全

三角函数与反三角函数 第一部分三角函数公式 ·两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) ·辅助角公式: Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A) Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B) ·万能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) ·降幂公式 sin^2α=(1-cos(2α))/2=versin(2α)/2 cos^2α=(1+cos(2α))/2=covers(2α)/2 tan^2α=(1-cos(2α))/(1+cos(2α)) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ -tanγ·tanα) ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB

卢瑟福散射公式的实验验证

§2.4 类氢离子光谱 类氢离子:类似氢原子那样的离子 氢原子的结构:原子核带一个单位的正电荷,核外有一个电子绕核运动。 类氢离子:原子核带Z个单位的正电荷,核外有一个电子绕核运动。 相同处:核外有一个电子 不同处:Z不同,核质量不同 氦离子He+、锂离子Li++、铍离子Be+++……,目前利用加速器技术已能产生O7+、Cl16+、Ar17+那样的高Z的类氢离子。 类氢离子与氢原子的区别在于核电荷数和质量数不同,类氢离子核电荷数为Ze(Z=2,3,4等)。 一.氦离子(He+)光谱 1897年,天文学家毕克林(Pickering)在星光谱中发现有一系列谱线非常类似氢光谱中的巴耳未线系的线系,称为毕克林线系,图2.4.1为两线系的比较图,图中较长的线代表巴耳末系的谱线,较短线代表毕克林线系的谱线。 图2.10 毕克林线系和巴耳末线系的比较图 从图中我们可见,毕克林系可以分为两组: 一组几乎与巴耳末线系的谱线相重合,但显然波长稍有差别(短)。 一组大约分布在两条相邻的巴耳末线系的谱线之间。 毕克林认为:毕克林线系也是氢光谱,是星体上一种特殊的氢所发的谱线。

里德伯根据毕克林系谱线,得到如下公式: )121(~2 2n R -=ν ( 27,4,25,3,25=n ) 此式与巴耳末公式相似,仅量子数n 中含有半整数。 当 5,4,3=n 等整数时,得到与巴耳末线系重合的那组谱线; 当 5.4,5.3,5.2=n 等半整数时,得到夹在中间的那组谱线。 里德伯认为这些谱线都属于氢的,但在实验室中总是观察不到这类谱线,而只存在于宇宙星体光谱中,因此他认为这是星体特殊条件下存在的一种不同于地球上的氢,把它叫做宇宙氢。 但如果真的有宇宙氢存在,把毕克林线系当作氢的一个线系的话,玻尔理论是无法解释的。 二.玻尔理论对He +光谱的解释 玻尔认为:毕克林线系属于氦离子He +。 氦离子He +与氢原子十分相似,不同之处仅仅是核的质量较大(4M H ),核电荷比氢大一倍。若在玻尔有关氢原子的公式中,以Z=2代入,则玻尔理论完全适用于氦离子He +: 2442 12122220n a Z n a Z n me h r n ???=?=ππε 2222222042/4)4(2n Rhc n Z Rhc n Z h me E n -??-=?-=πεπ 2222232042/4)4(2n R n Z R n Z c h me T n -??=?=πεπ )11(4)11(~22222n m R n m RZ hc E E He m n -?-=-=ν

初中三角函数公式大全

^ 三角函数公式大全锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinACosA ] Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 】 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A [ Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α $ 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a

卢瑟福散射实验报告

实验报告 陈杨PB05210097 物理二班 实验题目:卢瑟福散射实验 实验目的: 1.通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论; 2.并学习应用散射实验研究物质结构的方法。 实验原理: 现从卢瑟福核式模型出发,先求α粒子散射中的偏转角公式,再求α粒子散射公式。 1.α粒子散射理论 (1)库仑散射偏转角公式 设原子核的质量为M,具有正电荷+Ze,并处于点O,而质量为m,能量为E,电荷为2e的α粒子以速度ν入射,在原子核的质量比α粒子的质量大得多的情况下,可以认为前者不会被推动,α粒子则受库仑力的作用而改变了运动的方向,偏转θ角,如图3.3-1所示。图中ν是α粒子原来的速度,b是原子核离α粒子原运动径的延长线的垂直距离,即入射粒子与原子核无作用时的最小直线距离,称为瞄准距离。 图3.3-1 α粒子在原子核的库仑场中路径的偏转

当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知: ???? ??++?=??222202241 ?πεr r m r Ze E (1) L b m mr ==? ? ν?2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系: 20 2242 Ze Eb ctg πεθ = (3) 设 E Ze a 02 42πε= ,则 a b ctg 22 = θ (4) 这就是库仑散射偏转角公式。 (2)卢瑟福散射公式 在上述库仑散射偏转公式中有一个实验中无法测量的参数b ,因此必须设法寻找一个可测量的量代替参数b 的测量。 事实上,某个α粒子与原子散射的瞄准距离可大,可小,但是大量α粒子散射都具有一定的统计规律。由散射公式(4)可见,θ与b 有对应关系,b 大,θ就小,如图3.3-2所示。那些瞄准距离在b 到 db b +之间的α粒子,经散射后必定向θ到θθd -之间的角度散出。因 此,凡通过图中所示以b 为内半径,以db b +为外半径的那个环形ds 的α粒子,必定散射到角θ到θθd -之间的一个空间圆锥体内。

三角函数公式总结与推导--很全很实用

三角函数公式总结与推导 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: { } Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180 | ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. y r =αcsc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

第一章4-卢瑟福散射公式

§3 卢瑟福散射公式 在有核模型下,卢瑟福导出一个实验上可验证的散射公式。经实验定量验证,散射公式是正确的,从而验证了散射公式所建立的基础—原子有核模型结构也是正确的。 一. 库仑散射公式(又称瞄准距公式) 2 2/2 θctg a b = b:瞄准距, θ:散射角, a=z 1z 2e 2/E α, E α=m αv 2 /2,α粒子动能。 b 与θ关系:b 越大,θ越小。 。

2.忽略核外电子影响(因为电子质量远小于α粒子质量)。 (公式在理论力学中应学过,推导略) 瞄准距公式无法用定量实验来验证。下面来推导实验能验证的公式---卢瑟福散射公式。 二.卢瑟福的散射公式 1.装置图 M:显微镜;S:闪烁屏;F:金箔片 2.卢瑟福的散射公式

2/42)4221(θSin d E e z z Nnt N d Ω=' 说明: dN ′: 散射到散射角为θ、立体角为d Ω的α粒子数 d Ω:闪烁屏S 对散射点O 展开的立体角; E :α粒子动能,E=mv 2/2; Z 1=2, Z 2=79(金的电荷数) t: 金箔厚度; n: 箔中单位体积中原子数(原子数密度); N :入射的α粒子总数 3.卢瑟福的散射公式推导, 并介绍一个重要概念:微分散射截面。

①先说明通过右边园环的α粒子都会从左边的对应的空心园锥体内散射出来。(两个园锥体的顶点可近似重合), 一个右边小园环总是与左边一个空心园锥体对应。 现推导小园环d σ与空心园锥体的立体角d Ω的关系: θθθππθθd Cos Sin r rSin rd r dS d 2 24222=??==Ω2162 8222 22222242322θ θθ θπθ θθππσSin d a Sin d Cos a Sin d a ctg a d b b d Ω == =?-=?= 这就是d Ω与d σ的关系式。并且由于对称

三角函数公式总结与推导(全)

三角函数公式总结与推导(全) 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: { } Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211 ||22 s lr r α= =?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; r x = α cos ; x y =αtan ; y x =αcot ; x r =αsec ;. y r =αcsc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域

卢瑟福散射实验(277)

卢瑟福散射实验 4 PB04210277 刘善峰 实验目的:通过卢瑟福核式模型,说明α粒子散射实验,验证卢瑟福散射理论; 并学习应用散射实验研究物质结构的方法。 实验原理: α粒子散射理论 (1)库仑散射偏转角公式 设原子核的质量为M ,具有正电荷+Ze ,并处于点O ,而质量为m ,能量为E ,电荷为2e 的α粒子以速度ν入射, 当α粒子进入原子核库仑场时,一部分动能将改变为库仑势能。设α粒子最初的的动能和角动量分别为E 和L ,由能量和动量守恒定律可知: ??? ? ??++?=??222202241 ?πεr r m r Ze E (1) L b m mr ==? ? ν?2 (2) 由(1)式和(2)式可以证明α粒子的路线是双曲线,偏转角θ与瞄准距离b 有如下关系: 2 2242 Ze Eb ctg πεθ = (3) 设E Ze a 02 42πε=,则a b ctg 22=θ (4) 设靶是一个很薄的箔,厚度为t ,面积为s ,则图3.3-1中的db ds π2=,一个α粒子被一个靶原子散射到θ方向、θθd -范围内的几率,也就是α粒子打在

环ds 上的概率,即 θ θ θ ππd s a s db b s ds 2 sin 82cos 223 2== (5) 若用立体角Ωd 表示, 由于 θ θ θ πθ θ πd d d 2 cos 2 sin 42 sin 2==Ω 则 有θθ d s d a s ds 2 sin 1642Ω= (6) 为求得实际的散射的α粒子数,以便与实验进行比较,还必须考虑靶上的原子数和入射的α粒子数。 由于薄箔有许多原子核,每一个原子核对应一个这样的环,若各个原子核互不遮挡,设单位体积内原子数为0N ,则体积st 内原子数为st N 0,α粒子打在这些环上的散射角均为θ,因此一个α粒子打在薄箔上,散射到θ方向且在Ωd 内的概率为 s t N s ds ?0。 若单位时间有n 个α粒子垂直入射到薄箔上,则单位时间内θ方向且在Ωd 立体角内测得的α粒子为: 2 sin 424142 20200θπεΩ???? ????? ? ??=?=d E Ze t nN s t N s ds n dn (7) 经常使用的是微分散射截面公式,微分散射截面 Ω ?=Ωtd N n dn d d 01 )(θσ

三角函数公式大全及推导过程

三角函数公式大全及推导过程 一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos (2 π-α)= sinα sin (2π+α)= cosα cos (2 π+α)= -sinα sin (23π-α)= -cosα cos (2 3π-α)= -sinα sin (23π+α)= -cosα cos (2 3π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=-

相关文档