文档库 最新最全的文档下载
当前位置:文档库 › Bioremediation on the Shore after an Oil Spill from the Nakhodka in the Sea of Japan. III. Field Tes

Bioremediation on the Shore after an Oil Spill from the Nakhodka in the Sea of Japan. III. Field Tes

Bioremediation on the Shore after an Oil Spill from the Nakhodka in the Sea of Japan. III. Field Tes
Bioremediation on the Shore after an Oil Spill from the Nakhodka in the Sea of Japan. III. Field Tes

Bioremediation on the Shore after an Oil Spill from the Nakhodka in the Sea of Japan.III.Field Tests of a Bioremediation Agent with

Microbiological Cultures for the Treatment of an Oil Spill

HIROAKI TSUTSUMI *,MASAKAZU KONO à,KOJI TAKAI§,TAKEHIKO MANABE ,MAKOTO HARAGUCHI àà,ISAMU YAMAMOTO ààand CARL OPPENHEIMER§§

Faculty of Environmental and Symbiotic Sciences,Prefectural University of Kumamoto,Tsukide,Kumamoto 862-0920,Japan

àOppenheimer Technology Japan,Tsurukabuto,Nada-ku,Kobe 657,Japan §Fuji Packing,Co.,Iwami-machi,Iwami-gun,Tottori-ken 681,Japan

Hyogo Prefectural Fisheries Research Institute,Minami Futami,Akashi 674-0093,Japan ààSumitomo Marine Research Institute,Inc.,Shinkawa,Chouou-ku,Tokyo 104,Japan §§Oppenheimer Biotechnology,P.O.Box 5919,Austin,TX 78763,USA We conducted a ?eld test to con?rm the e ectiveness of a seed culture of petroleum-degrading bacteria,Terra-Zyme TM (Oppenheimer Biotechnology)for enhancing the biodegradation of heavy oil spilled from the Nakhodka on the shore.We de?ned two designated sites:one for treatment,and a second site 40m distant as an untreated control site for the experiments.In each site,we prepared the rocks and concrete blocks polluted by the oil,by placing them in wire cages on the beach.The experiments were carried out for eight weeks.Once a week,we pho-tographed the rocks and concrete blocks,treated their surfaces with TerraZyme TM ,and determined the coverage of remaining oil on the substrates from the photographs using digital photographic image analysis.The test results clearly show that TerraZyme TM is able to signi?cantly enhance the biodegradation of oil on the shore.ó2000Elsevier Science Ltd.All rights reserved.

Keywords:Nakhodka ;oil spill;bioremediation;microbi-ological cultures;TerraZyme TM .

Introduction

In January 1997,a Russian tanker,Nakhodka ,broke up on the coast of the Sea of Japan releasing an esti-mated 19000t of heavy crude oil.The oil came onto the

sandy beach,rocky shore,port,and other areas,as platter-sized globules.The resultant oil pollution ranged over 12000km along the rocky coast,shoreline struc-tures and sandy beaches.The oil was removed from the shore by the hands of innumerable volunteers,treated with chemical agents (oil dispersants).

In a small town in Kasumi-cho,Kinosaki-gun,Hyogo prefecture,a bioremediation agent with microbiological cultures,TerraZyme TM (Oppenheimer Biotechnology)was applied by the members of a local ?shery coopera-tive association.They scattered approximately 250kg of the bioremediation agent on the oil attached to shoreline rocks and concrete in the small ?shing harbour of the town.The visual and video observations after treatment with the bioremediation agent indicated an accelerated loss of oil attached to shoreline rocks and concrete,as compared to untreated areas (Tsuneaki Terakawa,https://www.wendangku.net/doc/923177970.html,m.).However,this observation was qualitative.In fact,all previous studies of bioremediation agents with microbiological cultures for the treatment of oil spills in the ?eld have been qualitative,not quantitative (Venosa et al .,1991;New Scientist,1990;Mauro and Wynne III,1990;Nadeau et al .,1991).A more quantitative exper-iment was required to con?rm the e ectiveness of the bioremediation agent (Atlas,1995;Higashihara,1998).To quantitatively evaluate the e ectiveness of the seed cultures of petroleum degrading bacteria,we developed a technique to measure the coverage of oil on the substrate with a digital photographic image

analysis

Marine Pollution Bulletin Vol.40,No.4,pp.320±324,2000

ó2000Elsevier Science Ltd.All rights reserved

Printed in Great Britain

0025-326X/00$-see front matter

PII:S0025-326X(99)00220-9

*Corresponding author.

320

running on a personal https://www.wendangku.net/doc/923177970.html,ing this technique, we conducted?eld tests to con?rm the e ectiveness of TerraZyme TM on the enhancement of biodegradation of the heavy oil from the Nakhodka that adhered to the rocks and concrete blocks on the shore around the Kasumi-cho area.

In this paper,we will report the results of the?eld experiments and discuss the use of seed cultures of pe-troleum-degrading bacteria for the treatment of oil pollution following oil spills.

Materials and Methods

The study area was located on the Kasumi-cho shoreline(134°43H E,35°42H)(Fig.1),which was highly impacted with heavy oil spilled from the Nakhodka in January1997,in the Sea of Japan at Minagai.We de-?ned a treatment site and an untreated control site,40m distant,for the bioremediation experiments on the

Nakhodka heavy oil,where water exchange between the two sites was restricted by massive rocks between these two sites.At each site,we prepared three sets of rocks which each had at least one200cm2ˉat face coated by the heavy oil from the Nakhodka,and duplicates of concrete blocks 20?20cm ,which were painted with the heavy oil from the Nakhodka.These rocks and concrete blocks were then placed within the wire cages 62?42?32cm and anchored at the intertidal zone on the beach,where the rocks and blocks were fre-quently washed by the waves(Fig.2).The experiments were carried out for eight weeks,from9July1997to4 September1997.Once a week,the wire cages with the rocks and concrete blocks were carried to a higher point on the beach.The rocks and concrete blocks were re-moved from the wire cages,and each was photographed at a distance approximately50cm.Prior to taking pic-tures,if the surface of the rocks and concrete blocks was wet,we removed the water with a blotter or left them until they dried.Water drops on the rocks tended to reˉect light and appeared in the photographs as white dots,even if these parts were actually coated by black-coloured oil.After taking pictures of the rocks and concrete blocks,they were treated with a bioremediation agent with microbiological cultures,TerraZyme TM (Oppenheimer Biotechnology)by sprinkling the powder of TerraZyme TM over them at a density of100g/m2. After treatment,the rocks and concrete blocks were returned to the wire cages,and the cages set at the wa-ter's edge on the beach again.

The photographs of the rocks and concrete blocks were imported to a personal computer(Power Macin-tosh7300,Apple)viaˉatbed scanner

(GT6500,

Fig.1The study area;Minagai,Kasumi-cho,Kinosaki-gun,Hyogo

prefecture,

Japan.

Fig.2The wire cages with the rocks and concrete blocks anchored at

the intertidal zone on the beach.

321 Volume40/Number4/April2000

EPSON),and then converted to monochrome digital photographic images with 256gradations of gray.The pixels in the digital images were classi?ed into three di erent groups according to the darkness of their grey colours (black pixels in Group 1,grey ones in Group 2and white ones in Group 3,respectively),using a tech-nique of digital photographic image analysis with the personal computer system and NIH Image Ver.1.60(software for image analysis)(Fig.3).The black pixels in Group 1represented the areas which were thickly coated by the oil.The white pixels in Group 3indicated the areas with the original rock and concrete block colours,and those areas which were absent of an oil coating.The grey pixels in Group 2showed the areas where the oil coating was partly lost from the substrates.With the digital image analysis system,we counted the number of these three groups of pixels in the digital images of the rocks and concrete blocks respectively,and calculated the percentage of coverage of these three groups of pixels on the images of rocks and concrete blocks in order to evaluate the amount of oil remaining on them.

Results

Fig.4shows the photographic digital images of the rocks and concrete blocks at (a)the treated and (b)untreated sites at the beginning and end of the oil treatment test with TerraZyme TM .These images were processed with the digital image analysis system,and expressed with three di erent colours of pixels (the pixels of Group 1±3)to clearly show the distribution of oil on them.

At the start of the oil treatment test,the images of the rocks and concrete blocks in both of the treated and untreated sites were made up of mostly black pixels (Group 1).At the end of the test,there were distinct di erences in the distribution of three groups of pixels in the images of the rocks and concrete blocks between the two sites.At the treated site,the majority of the images were replaced by grey pixels of Group 2or white ones of Group 3.At the untreated site,the number of white pixels of Group 3increased as well,in all of the images,but the majority of pixels in these images remained black (Group 1)pixels.

Fig.5(a)compares the percentage of coverage of black pixels (Group 1)on the images of rocks between the treated and untreated sites during the period of the oil treatment test.At the start of the oil treatment test,the percent coverage on the rocks was 91X 0?6X 6% mean ?S X D X at the treated site and 87X 0?8X 2% mean ?S X D X at the treated site,respectively.The dif-ference between them was not statistically signi?cant (ANOVA,p b 0X 5).The percent coverage at the treated site decreased faster than those at the untreated site during the period of the test.Eight weeks from the start of the test,the percentage of coverage at the treated site decreased to 13X 7?8X 2% mean ?S X D X ,which was signi?cantly lower than that at the untreated site 51X 0?16X 1%,mean ?S X D X (ANOVA,p `0X 05).

The e ectiveness of TerraZyme TM was even more evident on the treatment of oil that coated the concrete blocks.As shown in Fig.5(b),at the treated site,the percentage of coverage rapidly decreased in the ?rst three weeks and ˉuctuated within a range of approxi-mately between 2%and 11%,6±8weeks later.At the untreated site,the percentage of coverage never dropped below 50%throughout the period of the treatment test.

Discussion

The results of the present study clearly show that TerraZyme TM is able to signi?cantly enhance the biode-gradation of oil in the ?eld.Due to the e ectiveness of TerraZyme TM ,at the end of the eight-week treatment test,the initial black-coloured oil nearly disappeared from the surface of the treated rocks and concrete blocks,while more than 50%of the surface areas was still left black on the untreated ones.It was very di cult to de-termine the precise ingredients of the oil which adhered to the rocks and concrete blocks on the shore.

However,

Fig.3Processing of a picture,using a technique of digital photo-graphic image analysis with the personal computer system.All of the pixels in the digital image of the picture were classi?ed into three di erent groups according to the darkness of their grey colours.

322

Marine Pollution Bulletin

the appearance of the untreated rocks and concrete blocks coated by black-coloured oil indicated that the hardest portions of oil for biodegradation such as as-phaltum,resin etc.,remained adhered to the surface.The natural petroleum-degrading bacteria that occur at the sites of oil pollution tend to possess restricted potentials for biodegradation of oil to only the most easily de-composable portions,such as saturated hydrocarbons and small molecules of aromatics (Leahy and Colwell,1990;Atlas and Bartha,1992;Higashihara,1998).Therefore,as long as the degradation of heavy oil relies only on the natural degradation processes in the ?eld,oil pollution will have a long duration as shown by the un-treated rocks and concrete blocks in this study (Fig.5).It is worth noting that TerraZyme TM has an excellent potential to biodegrade all of the ingredients of heavy oil (Hozumi et al .,2000).The increased rate of removal of black-coloured oil from the rocks and concrete blocks treated with TerraZyme TM in this study predicts that if the oil coating on the substrates is fully treated within several months,a majority of the oil coating will be removed (Fig.5).The biodegrading rate of the Nakhodka heavy oil is almost equivalent to the results of laboratory tests with TerraZyme TM (Hozumi et al .,2000).

In previous studies on the application of the bio-remediation agents to oil pollution,adding seed-cultures of petroleum-degrading bacteria have proven less promising for the promotion of biodegradation of oil than adding fertilizers such as Inipol EAP22TM and ensuring adequate aeration (Atlas,1995),partly due to the technical di culties in evaluating their impacts.However,the results of our collaborative research pro-jects clearly show the e ectiveness of the

bioremediation

Fig.4The photographic digital images of the rocks and concrete

blocks expressed with three di erent groups of pixels according to the darkness of their grey colours at (a)the treated and (b)untreated sites at the begining and end of the oil treatment test with TerraZyme TM .

323

Volume 40/Number 4/April 2000

agent with microbiological cultures,TerraZyme TM ,on the enhancement of biodegradation of oil in both of in vitro (Hozumi et al .,2000)and the ?eld (the present study).In the latest `National Contingency Plan Product Schedule (NCP)'published by the US Environmental Protection Agency (EPA)in February 1999,nine mi-crobiological cultures for bioremediation of oil includ-ing TerraZyme TM (as the Oppenheimer Formula TM )are noted in the products list for the treatment of oil spills (US EPA,1999).They are multiple seed-cultures of natural petroleum-degrading bacteria.

At present,we need to revise their e ectiveness as the bioremediation agents and to clarify the characteristics of their activities on the biodegradation of petroleum.We also need to study the combined use of both the

fertilizers and seed cultures in treating oil in the ?eld,since petroleum-degrading bacteria require speci?c ad-ditional nutrients for their growth (Lee and Levy,1989,1991).Actually,a seed-culture product,Alpha BioSea TM (Alpha Environmental),which was used to treat the oil spills of the Mega Borg in the Gulf of Mexico in 1990(New Scientist,1990;Mauro and Wynne III,1990),and the Apex barge at Marrow Marsh along the Texas shoreline (Nadeau et al .,1991),is a bacterial mixture and inorganic phosphorus and nitrogen nutrients (Swannell et al .,1996).We need further studies in order to develop more e ective bioremediation agents for the degradation of petroleum and to ?nd their most e cient use in future large-scale oil spills around the world.

The ?eld test was done with assistance of Hideki Kobayashi.We would like to thank Tsuneaki Terakawa,Toyoharu Hozumi,Yasushi Hirota,and Akikazu Hirashima for advice and suggestions.We would also like to thank Richard Gilbert for his critical reading of the manuscript.This study was ?nancially supported through a special research budget for the Nakhodka oil spill,from Hyogo prefecture,Japan,and Suido Kiko Kaisha,Ltd.

Atlas,R.M.(1995)Petroleum biodegradation and oil spill bioreme-diation.Marine Pollution Bulletin 31,178±182.

Atlas,R.M.and Bartha,R.(1992)Hydrocarbon biodegradation and oil spill bioremediation.Advances in Microbiological Ecology 12,287±338.

Higashihara,T.(1998)Marine oil degradation microbes and bioreme-diation (Kaiyou sekiyu bunkai biseibutsu to baioremedieshon).Kaiyo Monthly 30,613±621.

Hozumi,T.,Tsutsumi,H.and Kono,M.(2000)Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan.I.Chemistry and characteristics of the heavy oil loaded on the Nakhodka and biodegradation tests on the oil by a bioremediation agent with microbiological cultures in the laboratory.Marine Pollution Bulletin 40,308±314.

Leahy,J.G.and Colwell,R.R.(1990)Microbial degradation of hydrocarbons in the environment.Microbiological Review 54,305±315.

Lee,K.and Levy, E.M.(1989)Enhancement of the natural biodegradation of condensate and crude oil on beaches of Atlantic Canada.In Proceedings of the 1989Oil Spill Conference ,pp.479±486.American Petroleum Institute,Washington,DC.Lee,K.and Levy,E.M.(1991)Bioremediation waxy crude oils stranded on low-energy shorelines.In Proceedings of the 1991Oil Spill Conference ,pp.541±547.American Petroleum Institute,Washington,DC.

Mauro,G.and Wynne III,B.J.(1990)Mega Borg Oil Spill:An Open Water Bioremediation Test .Texas General Land O ce,Austin,TX.13pp.

Nadeau,R.J.,Ryabik,J.and Lin,Y.(1991)Report on bioremediation e cacy in Marrow Marsh following the Apex oil spill,Galveston Bay,https://www.wendangku.net/doc/923177970.html, Environmental Protection Agency,Edison,NJ.New Scientist (1990)Bacteria make a meal of oil slicks.New Scientist 22,16.

Swannell,R.P.J.,Lee,K.and McDonagh,M.(1996)Field evaluations of marine oil spill bioremediation.Microbiological Review 60,342±365.

US EPA (1999)Environmental Protection Agency National Contin-gency Plan Product https://www.wendangku.net/doc/923177970.html, Environmental Protection Agency,Feb.1999,8pp.

Venosa,A.D.,Haines,J.R.,Nisamaneepong,W.,Govind,R.,Pradhan,S.and Siddique,B.(1991)Protocol for testing bioreme-diation products against weathered Alaskan crude oil.In Proceed-ings of the 1991Oil Spill Conference pp.563±570.American Petroleum Institute,Washington,

DC.

Fig.5The percentage of coverage of black pixels of Group 1on the

images of (a)rocks and (b)concrete blocks at the treated and untreated sites.

324

Marine Pollution Bulletin

pt100对照表

PT100铂电阻分度表 温度 ℃ 0 1 2 3 4 5 6 7 8 9 电阻值(Ω) -200 18.52 -190 -180 -170 -160 -150 22.83 27.10 31.34 35.54 39.72 22.40 26.67 30.91 35.12 39.31 21.97 26.24 30.49 34.70 38.89 21.54 25.82 30.07 34.28 38.47 21.11 25.39 29.64 33.86 38.05 20.68 24.97 29.22 33.44 37.64 20.25 24.54 28.80 33.02 37.22 19.82 24.11 28.37 32.60 36.80 19.38 23.68 27.95 32.18 36.38 18.95 23.25 27.52 31.76 35.96 -140 -130 -120 -110 -100 43.88 48.00 52.11 56.19 60.26 43.46 47.59 51.70 55.79 59.85 43.05 47.18 51.29 55.38 59.44 42.63 46.77 50.88 54.97 59.04 42.22 46.36 50.47 54.56 58.63 41.80 45.94 50.06 54.15 58.23 41.39 45.53 49.65 53.75 57.82 40.97 45.12 49.24 53.34 57.41 40.56 44.70 48.83 52.93 57.01 40.14 44.29 48.42 52.52 56.60 -90 -80 -70 -60 -50 64.30 68.33 72.33 76.33 80.31 63.90 67.92 71.93 75.93 79.91 63.49 67.52 71.53 75.53 79.51 63.09 67.12 71.13 75.13 79.11 62.68 66.72 70.73 74.73 78.72 62.28 66.31 70.33 74.33 78.32 61.88 65.91 69.93 73.93 77.92 61.47 65.51 69.53 73.53 77.52 61.07 65.11 69.13 73.13 77.12 60.66 64.70 68.73 72.73 76.73 -40 -30 -20 -10 0 84.27 88.22 92.16 96.09 100.00 83.87 87.83 91.77 95.69 99.61 83.48 87.43 91.37 95.30 99.22 83.08 87.04 90.98 94.91 98.83 82.69 86.64 90.59 94.52 98.44 82.29 86.25 90.19 94.12 98.04 81.89 85.85 89.80 93.73 97.65 81.50 85.46 89.40 93.34 97.26 81.10 85.06 89.01 92.95 96.87 80.70 84.67 88.62 92.55 96.48 0 10 20 30 40 100.00 103.90 107.79 111.67 115.54 100.39 104.29 108.18 112.06 115.93 100.78 104.68 108.57 112.45 116.31 101.17 105.07 108.96 112.83 116.70 101.56 105.46 109.35 113.22 117.08 101.95 105.85 109.73 113.61 117.47 102.34 106.24 110.12 114.00 117.86 102.73 106.63 110.51 114.38 118.24 103.12 107.02 110.90 114.77 118.63 103.51 107.40 111.29 115.15 119.01 50 60 70 80 90 119.40 123.24 127.08 130.90 134.71 119.78 123.63 127.46 131.28 135.09 120.17 124.01 127.84 131.66 135.47 120.55 124.39 128.22 132.04 135.85 120.94 124.78 128.61 132.42 136.23 121.32 125.16 128.99 132.80 136.61 121.71 125.54 129.37 133.18 136.99 122.09 125.93 129.75 133.57 137.37 122.47 126.31 130.13 133.95 137.75 122.86 126.69 130.52 134.33 138.13

钢材硬度对照表文库

其中常用于钢材硬度试验的标尺一般为A、B、C,即HRA、HRB、HRC。 硬度值用下式计算:当用A和C标尺试验时,HR=100-e 当用B标尺试验时, HR=130-e 式中e--残余压痕深度增量,其什系以规定单位0.002mm表示, 即当压头轴向位移一个单位(0.002mm)时,即相当于洛氏硬度变化一个数。 e值愈大,金属的硬度愈低,反之则硬度愈高。上述三个标尺适用范围如下: HRA(金刚石圆锥压头)20-88 HRC(金刚石圆锥压头)20-70 HRB(直径1.588mm钢球压头)20-100 洛氏硬度试验是目前应用很广的方法, 其中HRC在钢管标准中使用仅次于布氏硬度HB。洛氏硬度可适用于测定由极软到极硬的金属材料, 它弥补了布氏法的不是,较布氏法简便,可直接从硬度机的表盘读出硬度值。 但是,由于其压痕小,故硬度值不如布氏法准确。 C、维氏硬度(HV) 维氏硬度试验也是一种压痕试验方法, 是将一个相对面夹角为1360的正四棱锥体金刚石压头以选定的试验力(F)压入试验表面, 经规定保持时间后卸除试验力,测量压痕两对角线长度。 维氏硬度值是试验力除以压痕表面积所得之商,其计算公式为: 式中:HV--维氏硬度符号,N/mm2(MPa); F--试验力,N; d--压痕两对角线的算术平均值,mm。 维氏硬度采用的试验力F为5(49.03)、10(98.07)、20(196.1)、30(294.2)、 50(490.3)、100(980.7)Kgf(N)等六级,可测硬度值范围为5~1000HV。 表示方法举例:640HV30/20表示用30Hgf(294.2N)试验力保持20S(秒) 测定的维氏硬度值为640N/mm2(MPa)。维氏硬度法可用于测定很薄的金属材料和表面层硬度。 它具有布氏、洛氏法的主要优点,而克服了它们的基本缺点,但不如洛氏法简便。 维氏法在钢管标准中很少用。 HB是用一定的力将一定直径(2.5、5、10)的钢球压向被测材料的表面, 然后测量被测材料表面钢球压痕的直径以判断材料的硬度。 材料的原始状态和钢材的退火、正火或调质常用HB。 HR有A、B 、C3三种。

铂热电阻Pt100、Pt10以及BA1、BA2 分度表

铂热电阻Pt100、Pt10以及BA1、BA2分度表 (CMZ 根据百度文库及其他资料整理 20120603) BA1、BA2指的是什么?百度知道满意回答: BA1、BA2是已经淘汰的老铂热电阻的分度号,新的分度号为Pt100和Pt10。 一 Pt100、BA1、BA2工业铂热电阻温度与电阻值对照表 Pt100BA1BA2 温度(℃)阻值(Ω)温度(℃)阻值(Ω)温度(℃)阻值(Ω) -200 18.49 -2007.95-20017.28 -190 22.80 -1909.96-19021.65 -180 27.08 -18011.95-18025.98 -170 31.32 -17013.93-17030.29 -160 35.53 -16015.90-16034.56 -150 39.71 -15017.85-15038.80 -140 43.87 -14019.79-14043.02 -130 48.00 -13021.72-13047.21 -120 52.11 -12023.63-12051.38 -110 56.19 -11025.54-11055.52 -100 60.25 -10027.44-10059.65 -90 64.30 -9029.33-9063.75 -80 68.33 -8031.21-8067.84 -70 72.33 -7033.08-7071.91 -60 76.33 -6034.94-6075.96 -50 80.31 -5036.80-5080.00 -40 84.27 -4038.65-4084.03 -30 88.22 -3040.50-3088.03 -20 92.16 -2042.34-2092.04 -10 96.09 -1044.17-1096.03 0 100.00 046.000100.00 10 103.90 1047.8210103.96 20 107.79 2049.6420107.91 30 111.67 3051.4530111.85 40 115.54 4053.2640115.78 50 119.40 5055.0650119.70 60 123.24 6056.8660123.60 70 127.07 7058.6570127.49 80 130.89 8060.4380131.37 90 134.70 9062.2190135.24 100 138.50 10063.99100139.10 110 142.29 11065.76110142.10 120 146.06 12067.52120146.78

硬度对照表

硬度对照表 硬度对照表又叫金属硬度换算表、硬度转换表、金属硬度表、硬度换算表、国家标准硬度转换表、常用维氏、布氏、洛氏硬度的换算表、里氏硬度转换表、洛氏硬度转换表、布氏硬度转换表

感谢以下网站对本资料的大力支持: 测厚仪https://www.wendangku.net/doc/923177970.html, 超声波测厚仪https://www.wendangku.net/doc/923177970.html, 钢板测厚仪https://www.wendangku.net/doc/923177970.html, 金属测厚仪https://www.wendangku.net/doc/923177970.html, 管道测厚仪https://www.wendangku.net/doc/923177970.html, 钢管测厚仪https://www.wendangku.net/doc/923177970.html, 厚度测量仪https://www.wendangku.net/doc/923177970.html, 超声测厚仪https://www.wendangku.net/doc/923177970.html, 高温测厚仪https://www.wendangku.net/doc/923177970.html, 壁厚测量仪https://www.wendangku.net/doc/923177970.html, 覆层测厚仪https://www.wendangku.net/doc/923177970.html, 膜厚仪https://www.wendangku.net/doc/923177970.html, 涂层测厚仪https://www.wendangku.net/doc/923177970.html, 镀层测厚仪https://www.wendangku.net/doc/923177970.html, 油漆测厚仪https://www.wendangku.net/doc/923177970.html, 漆膜测厚仪https://www.wendangku.net/doc/923177970.html, 锌层测厚仪https://www.wendangku.net/doc/923177970.html, 防腐层测厚仪https://www.wendangku.net/doc/923177970.html, 麦考特测厚仪https://www.wendangku.net/doc/923177970.html, 尼克斯测厚仪https://www.wendangku.net/doc/923177970.html, 磁感应测厚仪https://www.wendangku.net/doc/923177970.html, 涡流测厚仪https://www.wendangku.net/doc/923177970.html, 膜厚测试仪https://www.wendangku.net/doc/923177970.html, 覆层测厚仪 https://www.wendangku.net/doc/923177970.html, 电镀层测厚仪https://www.wendangku.net/doc/923177970.html, 涂镀层测厚仪https://www.wendangku.net/doc/923177970.html, 镀锌层测厚仪https://www.wendangku.net/doc/923177970.html, 电解测厚仪https://www.wendangku.net/doc/923177970.html, 氧化膜测厚仪https://www.wendangku.net/doc/923177970.html, 磁性测厚仪https://www.wendangku.net/doc/923177970.html, 干膜测厚仪https://www.wendangku.net/doc/923177970.html, 湿膜测厚仪https://www.wendangku.net/doc/923177970.html, 镀铬测厚仪https://www.wendangku.net/doc/923177970.html, 超声波探伤仪https://www.wendangku.net/doc/923177970.html, 超声波探伤仪https://www.wendangku.net/doc/923177970.html, 超声探伤仪https://www.wendangku.net/doc/923177970.html, 数字超声波探伤仪https://www.wendangku.net/doc/923177970.html, 电火花检测仪https://www.wendangku.net/doc/923177970.html, 焊缝探伤仪https://www.wendangku.net/doc/923177970.html, 超声波探伤仪https://www.wendangku.net/doc/923177970.html, 金属探伤仪https://www.wendangku.net/doc/923177970.html, 便携式探伤仪https://www.wendangku.net/doc/923177970.html, 钢结构探伤仪https://www.wendangku.net/doc/923177970.html, 磁粉探伤仪https://www.wendangku.net/doc/923177970.html, 邵氏硬度计https://www.wendangku.net/doc/923177970.html, 橡胶硬度计https://www.wendangku.net/doc/923177970.html, 便携式硬度计https://www.wendangku.net/doc/923177970.html, 便携式硬度计https://www.wendangku.net/doc/923177970.html, 尼克斯测厚仪https://www.wendangku.net/doc/923177970.html, 里氏硬度计https://www.wendangku.net/doc/923177970.html, 轧辊硬度计https://www.wendangku.net/doc/923177970.html, 巴氏硬度计https://www.wendangku.net/doc/923177970.html, 韦氏硬度计https://www.wendangku.net/doc/923177970.html, w-20韦氏硬度计https://www.wendangku.net/doc/923177970.html, 模具硬度计https://www.wendangku.net/doc/923177970.html, 超声波硬度计https://www.wendangku.net/doc/923177970.html, 洛氏硬度计https://www.wendangku.net/doc/923177970.html, 金属硬度计https://www.wendangku.net/doc/923177970.html, 硬度测试仪https://www.wendangku.net/doc/923177970.html, 布氏硬度计https://www.wendangku.net/doc/923177970.html, 肖氏硬度计 https://www.wendangku.net/doc/923177970.html, 铸件硬度计https://www.wendangku.net/doc/923177970.html, 轧辊硬度计https://www.wendangku.net/doc/923177970.html, 硬度仪https://www.wendangku.net/doc/923177970.html, 钢板硬度计https://www.wendangku.net/doc/923177970.html, 铝合金硬度计https://www.wendangku.net/doc/923177970.html, 电火花检测仪https://www.wendangku.net/doc/923177970.html, 电火花检漏仪https://www.wendangku.net/doc/923177970.html, 电火花检测仪https://www.wendangku.net/doc/923177970.html, 漆膜划格器https://www.wendangku.net/doc/923177970.html, 表面粗糙度仪https://www.wendangku.net/doc/923177970.html, 粗糙度测量仪https://www.wendangku.net/doc/923177970.html, 粗糙度测试仪https://www.wendangku.net/doc/923177970.html, 喷砂粗糙度仪https://www.wendangku.net/doc/923177970.html, 光洁度仪https://www.wendangku.net/doc/923177970.html, 便携式粗糙度仪https://www.wendangku.net/doc/923177970.html, 粗糙度仪https://www.wendangku.net/doc/923177970.html, 附着力测试仪https://www.wendangku.net/doc/923177970.html, 百格刀测试https://www.wendangku.net/doc/923177970.html, 百格刀 https://www.wendangku.net/doc/923177970.html, LED观片灯https://www.wendangku.net/doc/923177970.html, 黑白密度计https://www.wendangku.net/doc/923177970.html, 光泽度仪https://www.wendangku.net/doc/923177970.html, 特价机票https://www.wendangku.net/doc/923177970.html, 无损检测资源网https://www.wendangku.net/doc/923177970.html, 无损检测仪器https://www.wendangku.net/doc/923177970.html, 无损123 https://www.wendangku.net/doc/923177970.html, 网站目录https://www.wendangku.net/doc/923177970.html, 标线测厚仪https://www.wendangku.net/doc/923177970.html, 硬度计https://www.wendangku.net/doc/923177970.html, 超声波测厚仪https://www.wendangku.net/doc/923177970.html, 涂层测厚仪https://www.wendangku.net/doc/923177970.html, 硬度计http://www.yingduji.top 无损检测http://www.wusunjiance.top 探伤仪http://www.tanshangyi.top 硬度计https://www.wendangku.net/doc/923177970.html, 测厚仪http://www.cehouyi.top 布氏硬度计https://www.wendangku.net/doc/923177970.html, 洛氏硬度计https://www.wendangku.net/doc/923177970.html, 便携硬度计https://www.wendangku.net/doc/923177970.html, 钢管硬度计https://www.wendangku.net/doc/923177970.html, 磷化膜测厚仪https://www.wendangku.net/doc/923177970.html, 934-1巴氏硬度计https://www.wendangku.net/doc/923177970.html, 钢轨探伤仪https://www.wendangku.net/doc/923177970.html, lx-a邵氏硬度计https://www.wendangku.net/doc/923177970.html, 邵氏橡胶硬度计https://www.wendangku.net/doc/923177970.html, 涂层测厚仪https://www.wendangku.net/doc/923177970.html, 防腐层检测仪https://www.wendangku.net/doc/923177970.html, 橡胶硬度计https://www.wendangku.net/doc/923177970.html, 工业观片灯https://www.wendangku.net/doc/923177970.html, 油漆测厚仪https://www.wendangku.net/doc/923177970.html, 粗糙度检测仪https://www.wendangku.net/doc/923177970.html,

材料硬度对照表

本文由hwb2008joy贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 硬度对照表 根据德国标准DIN50150,以下是常用范围的钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。如果您要查的抗拉强度>1000N/mm2,或者维氏硬度>310HV,或者布氏硬度>300HB,或者洛氏硬度>32HRC,请查本表第二页抗拉强度维氏硬度布氏硬度洛氏硬度Rm HV HB HRC N/mm2 250 80 76.0 270 85 80.7 285 90 85.2 305 95 90.2 320 100 95.0 335 105 99.8 350 110 105 370 115 109 380 120 114 400 125 119 415 130 124 430 135 128 450 140 133 465 145 138 480 150 143 490 155 147 510 160 152 530 165 156 545 170 162 560 175 166 575 180 171 595 185 176 610 190 181 625 195 185 640 200 190 660 205 195 675 210 199 690 215 204 705 220 209 file:///D|/材料强度硬度对照表/Rm2HRC.htm(第 1/2 页)2007-11-26 10:53:14 硬度对照表 720 225 214 740 230 219 755 235 223 770 240 228 20.3 785 245 233 21.3 800 250 238 22.2 820 255 242 23.1 835 260 247 24.0 850 265 252 24.8 865 270 257 25.6 880 275 261 26.4 900 280 266 27.1 915 285 271 27.8 930 290 276 28.5 950 295 280 29.2 965 300 285 29.8 995 310 295 31.0 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。下面是本站根据由实验得到的经验公式制作的快速计算器,有一定的实用价值,但在要求数据比较精确时,仍需要通过试验测得。 file:///D|/材料强度硬度对照表/Rm2HRC.htm(第 2/2 页)2007-11-26 10:53:14 硬度对照表 如果您要查的抗拉强度<=1000N/mm2,或者维氏硬度<=310HV,或者布氏硬度<=300HB,或者洛氏硬度<=32HRC,请查本表第一页抗拉强度维氏硬度布氏硬度洛氏硬度 Rm HV HB HRC N/mm2 1030 320 304 32.2 1060 330 314 33.3 1095 340 323 34.4 1125 350 333 35.5 1115 360 342 36.6 1190 370 352 37.7 1220 380 361 38.8 1255 390 371 39.8 1290 400 380 40.8 1320 410 390 41.8 1350 420 399 42.7 1385 430 409 43.6 1420 440 418 44.5 1455 450 428 45.3 1485 460 437 46.1 1520 470 447 46.9 1555 480 (456) 47.7 1595 490 (466) 48.4 1630 500 (475) 49.1 1665 510 (485) 49.8 1700 520 (494) 50.5 1740 530 (504) 51.1 1775 540 (513) 51.7 1810 550 (523) 52.3 1845 560 (532) 53.0 1880 570 (542) 53.6 1920 580 (551) 54.1 1955 590 (561) 54.7 1995 600 (570) 55.2 2030 610 (580) 55.7 file:///D|/材料强度硬度对照表/Rm2HRC-2.htm(第 1/2 页)2007-11-26 10:53:33 硬度对照表 2070 620 (589) 56.3 2105 630 (599) 56.8 2145 640 (608) 57.3 2180 650 (618) 57.8 660 58.3 670 58.8 680 59.2 690 59.7 700 60.1 720 61.0 740 61.8 760 62.5 780 63.3 800 64.0 820 64.7 840 65.3 860 65.9 880 66.4 900 67.0 920 67.5 940 68.0 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。下面是本站根据由实验得到的经验公式制作的快速计算器,有一定的实用价值,但在

pt100热电阻温度对照表

PT100铂热敏电阻是一种铂电阻,其电阻值会随温度的变化而变化。Pt之后的100表示其电阻在0℃为100 ohm,在100℃为138.5 ohm。在编辑医疗,电气,工业,温度计算,卫星,天气,电阻计算等高精度温度设备中,应用范围非常广泛。 PT100铂热敏电阻在工业上是常用的。从电阻随温度的变化来看,大多数金属导体都具有这种特性,但并不是所有的金属导体都可以用作热阻。金属材料对热阻的一般要求如下:尽可能大且稳定的温度系数,大电阻率(在相同灵敏度下减小传感器的尺寸)和使用温度范围具有稳定的化学和物理性能,良好材料的可复制性,以及电阻和温度之间的函数关系。 PT100铂电阻温度对照表

第一类:50°119.40Ω; 100°138.51Ω; 150°157.33Ω; 200°175.86Ω。 这是比例为0.003851的PT100。它也是最常见的PT100指数。第二种:50°119.70Ω; 100°139.10Ω; 150°158.21Ω; 200°177.03Ω; 250°195.56Ω; 300°213.79Ω; 350°231.73Ω; 这是比例为0.003910的PT100,称为Ba2刻度。 通常,未指定的PT100是指比例为0.003851的PT100。 两线制系统测得的电阻为引线电阻。用三根线和四根线测量的电阻是电阻的电阻值,并且已经减去了引线的电阻值。通常,高精度PT100不会使用两线制系统。 对于所有PT100电阻器,正常情况下,您测量的电阻值是不同的。只要测量的电阻值的偏差在精度水平的公差范围内,就可以满足要求。如果是PT100,则其0度电阻范围在99.941?100.059欧姆范围内是合格的。 铂热电阻温度与电阻值对照表

硬度对照表(详细)

硬度换算表 (以HRC硬度为基准) 1—前桥教育 Brinell (布氏)Rockwell Hardness (洛氏硬度) Rockwell Superficial Hardness (罗克韦尔表面硬度) Rockwell C (洛氏C)3000 kgf Rockwell A (洛氏A) Rockwell B (洛氏B) Rockwell D (洛氏D) Approximate 近似 Rockwell C (洛氏C) 150 kgf Vickers10 mm 60 kgf100 kgf100 kgf15 kgf30 kgf45 kgf Tensile (拉伸) 150 kgf Diamond (钻石)Hardness (硬度) Ball (球) Diamond (钻石) 1//16" ball (1//16球) Diamond (钻石) 1/16" ball (1/16球) 1/16" ball (1/16球) 1/16" ball (1/16球) Strength (强度) Diamond (钻石) HRC HV HB HRA HRB HRD HR15N HR30N HR45N ksi (MPa)HRC 68 940 --- 85.6 --- 76.9 93.2 84.4 75.4 --- 68 67 900 --- 85.0 --- 76.1 92.9 83.6 74.2 --- 67 66 865 --- 84.5 --- 75.4 92.5 82.8 73.3 --- 66 65 832 739 83.9 --- 74.5 92.2 81.9 72.0 --- 65 64 800 722 83.4 --- 73.8 91.8 81.1 71.0 --- 64 63 772 705 82.8 --- 73.0 91.4 80.1 69.9 --- 63 62 746 688 82.3 --- 72.2 91.1 79.3 68.8 --- 62 61 720 670 81.8 --- 71.5 90.7 78.4 67.7 --- 61 60 697 654 81.2 --- 70.7 90.2 77.5 66.6 --- 60 59 674 634 80.7 --- 69.9 89.8 76.6 65.5 --- 59 58 653 615 80.1 --- 69.2 89.3 75.7 64.3 --- 58 57 633 595 79.6 --- 68.5 88.9 74.8 63.2 --- 57 56 613 577 79.0 --- 67.7 88.3 73.9 62.0 --- 56 55 595 560 78.5 --- 66.9 87.9 73.0 60.9 2075 55 54 577 543 78.0 --- 66.1 87.4 72.0 59.8 2015 54 53 560 525 77.4 --- 65.4 86.9 71.2 58.6 1950 53 52 544 512 76.8 --- 64.6 86.4 70.2 57.4 1880 52 51 528 496 76.3 --- 63.8 85.9 69.4 56.1 1820 51 50 513 481 75.9 --- 63.1 85.5 68.5 55.0 1760 50 49 498 469 75.2 --- 62.1 85.0 67.6 53.8 1695 49

pt100电阻与温度对应表.

pt100电阻与温度对应表设计原理: pt100是铂热电阻,它的阻值会随着温度的变化而改变。 PT 后的 100即表示它在 0℃时阻值为 100欧姆 ,在 100℃时它的阻值约为 138.5欧姆。它的工业原理 :当PT100在 0摄氏度的时候他的阻值为 100欧姆,它的的阻值会随着温度上升它的阻值是成匀速增涨的。 应用范围: 医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。 PT100分度表 -50度 80.31欧姆 -40度 84.27欧姆 -30度 88.22欧姆 -20度 92.16欧姆 -10度 96.09欧姆 0度 100.00欧姆 10度 103.90欧姆 20度 107.79欧姆 30度 111.67欧姆 40度 115.54欧姆 50度 119.40欧姆

60度 123.24欧姆 70度 127.08欧姆 80度 130.90欧姆 90度 134.71欧姆 100度 138.51欧姆 110度 142.29欧姆 120度 146.07欧姆 130度 149.83欧姆 140度 153.58欧姆 150度 157.33欧姆 160度 161.05欧姆 170度 164.77欧姆 180度 168.48欧姆 190度 172.17欧姆 200度 175.86欧姆 组成的部分 常见的 pt1oo 感温元件有陶瓷元件,玻璃元件,云母元件,它们是由铂丝分别绕在陶瓷骨架, 玻璃骨架,云母骨架上再经过复杂的工艺加工而成 薄膜铂电阻

薄膜铂电阻:用真空沉积的薄膜技术把铂溅射在陶瓷基片上, 膜厚在 2微米以内 , 用玻璃烧结料把 Ni (或 Pd 引线固定,经激光调阻制成薄膜元件。

pt100热电阻温度对照表

pt100热电阻温度对照表 PT100温度对照表如下图: 主要用于工业过程温度参数的测量和控制。带传感器的变送器通常由两部分组成:传感器和信号转换器。传感器主要是热电偶或热电阻;信号转换器主要由测量单元、信号处理和转换单元组成(由于工业用热电阻和热电偶分度表是标准化的。 因此信号转换器作为独立产品时也称为变送器),有些变送器增加了显示单元,有些还具有现场总线功能。

扩展资料 它的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成近似匀速的增长。但他们之间的关系并不是简单的正比的关系,而更应该趋近于一条抛物线。 铂电阻的阻值随温度的变化而变化的计算公式: -200

DIN IEC751系数:A=3.9083E-3、B=-5.775E-7、C=-4.183E-12 根据韦达公式求得阻值大于等于100欧姆的Rt -〉t的换算公式: 0≤t<850℃t=(sqrt((A*R0)^2-4*B*R0*(R0-Rt))-A*R0)/2/B/R0 第一种:50度119.40欧;100度138.51欧;150度157.33欧;200度175.86欧。 这种是比值为i0.003851的PT100。也是最常见的PT100分度号。 第二种:50度119.70欧;100度139.10欧;150度158.21欧;200度177.03欧;250度195.56欧;300度213.79欧;350度231.73欧; 这种是比值为0.003910的PT100,也就是BA2分度号。 一般没有指明的PT100就是指比值为0.003851的PT100。 二线制测量出的阻值是带有引线电阻的。三线,四线测量出的阻值是电阻的阻值,引线阻值已经扣除掉的了。一般高精度的PT100是不会采用二线制的。 所有的PT100电阻你测量出来的电阻值不同是正常的,只要测量出来的电阻值的偏差在精度等级允差范围内就是符合要求的。如A级PT100,它的0度阻值范围在99.941~100.059欧姆的范围内都是合格的。

硬度值对照表

金属硬度 硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。而里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同, ●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。 ●HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ●HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 ●HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ V A(冲击速度)。 便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度; 布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。 布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示:HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。另外: 1.HRC含意是洛式硬度C标尺, 2.HRC和HB在生产中的应用都很广泛 3.HRC适用范围HRC 20--67,相当于HB225--650 若硬度高于此范围则用洛式硬度A标尺HRA。

金属材料硬度对照表

一、硬度简介: 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: ?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 ?HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 ?HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除 以载荷值,即为维氏硬度HV值(kgf/mm2)。 ############################################################################################# 注: 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。 洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf),最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf);标尺B使用的是直径为1.588mm(1/16英寸)的钢球作为压头,然后加压至980.7N(合100kgf);而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf)。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。但各种材料的换算关系并不一致。本站《硬度对照表》一文对钢的不同硬度值的换算给出了表格,请查阅。 ##############################################################################################

PT100温度-阻值对照表

00.10.20.30.40.50.60.70.80.9 0100.000 100.039 100.078 100.117 100.156 100.195 100.234 100.274 100.313 100.352 1100.391 100.430 100.469 100.508 100.547 100.586 100.625 100.664 100.703 100.742 2100.781 100.820 100.859 100.899 100.938 100.977 101.016 101.055 101.094 101.133 3101.172 101.211 101.250 101.289 101.328 101.367 101.406 101.445 101.484 101.523 4101.562 101.601 101.640 101.679 101.718 101.757 101.796 101.835 101.875 101.914 5101.953 101.992 102.031 102.070 102.109 102.148 102.187 102.226 102.265 102.304 6102.343 102.382 102.421 102.460 102.499 102.538 102.577 102.616 102.655 102.694 7102.733 102.772 102.811 102.850 102.889 102.928 102.967 103.006 103.045 103.084 8103.123 103.162 103.201 103.240 103.279 103.318 103.357 103.396 103.435 103.474 9103.513 103.551 103.590 103.629 103.668 103.707 103.746 103.785 103.824 103.863 10103.902 103.941 103.980 104.019 104.058 104.097 104.136 104.175 104.214 104.253 11104.292 104.331 104.370 104.409 104.448 104.487 104.525 104.564 104.603 104.642 12104.681 104.720 104.759 104.798 104.837 104.876 104.915 104.954 104.993 105.032 13105.071 105.110 105.148 105.187 105.226 105.265 105.304 105.343 105.382 105.421 14105.460 105.499 105.538 105.577 105.616 105.654 105.693 105.732 105.771 105.810 15105.849 105.888 105.927 105.966 106.005 106.043 106.082 106.121 106.160 106.199 16106.238 106.277 106.316 106.355 106.394 106.432 106.471 106.510 106.549 106.588 17106.627 106.666 106.705 106.744 106.782 106.821 106.860 106.899 106.938 106.977 18107.016 107.055 107.093 107.132 107.171 107.210 107.249 107.288 107.327 107.365 19107.404 107.443 107.482 107.521 107.560 107.599 107.637 107.676 107.715 107.754 20107.793 107.832 107.871 107.909 107.948 107.987 108.026 108.065 108.104 108.142 21108.181 108.220 108.259 108.298 108.337 108.375 108.414 108.453 108.492 108.531 22108.570 108.608 108.647 108.686 108.725 108.764 108.802 108.841 108.880 108.919 23108.958 108.997 109.035 109.074 109.113 109.152 109.191 109.229 109.268 109.307 24109.346 109.385 109.423 109.462 109.501 109.540 109.579 109.617 109.656 109.695 25109.734 109.773 109.811 109.850 109.889 109.928 109.967 110.005 110.044 110.083 26110.122 110.160 110.199 110.238 110.277 110.316 110.354 110.393 110.432 110.471 27110.509 110.548 110.587 110.626 110.664 110.703 110.742 110.781 110.819 110.858 28110.897 110.936 110.974 111.013 111.052 111.091 111.129 111.168 111.207 111.246 29111.284 111.323 111.362 111.401 111.439 111.478 111.517 111.556 111.594 111.633 30111.672 111.711 111.749 111.788 111.827 111.865 111.904 111.943 111.982 112.020 31112.059 112.098 112.137 112.175 112.214 112.253 112.291 112.330 112.369 112.408 32112.446 112.485 112.524 112.562 112.601 112.640 112.678 112.717 112.756 112.795 33112.833 112.872 112.911 112.949 112.988 113.027 113.065 113.104 113.143 113.182 34113.220 113.259 113.298 113.336 113.375 113.414 113.452 113.491 113.530 113.568 35113.607 113.646 113.684 113.723 113.762 113.800 113.839 113.878 113.916 113.955 36113.994 114.032 114.071 114.110 114.148 114.187 114.226 114.264 114.303 114.342 37114.380 114.419 114.458 114.496 114.535 114.573 114.612 114.651 114.689 114.728 38114.767 114.805 114.844 114.883 114.921 114.960 114.999 115.037 115.076 115.114 39115.153 115.192 115.230 115.269 115.308 115.346 115.385 115.423 115.462 115.501 40115.539 115.578 115.616 115.655 115.694 115.732 115.771 115.810 115.848 115.887 41115.925 115.964 116.003 116.041 116.080 116.118 116.157 116.196 116.234 116.273 42116.311 116.350 116.389 116.427 116.466 116.504 116.543 116.581 116.620 116.659 43116.697 116.736 116.774 116.813 116.852 116.890 116.929 116.967 117.006 117.044 44117.083 117.122 117.160 117.199 117.237 117.276 117.314 117.353 117.391 117.430 45117.469 117.507 117.546 117.584 117.623 117.661 117.700 117.738 117.777 117.816 46117.854 117.893 117.931 117.970 118.008 118.047 118.085 118.124 118.162 118.201 47118.240 118.278 118.317 118.355 118.394 118.432 118.471 118.509 118.548 118.586 48118.625 118.663 118.702 118.740 118.779 118.817 118.856 118.894 118.933 118.971 49119.010 119.049 119.087 119.126 119.164 119.203 119.241 119.280 119.318 119.357

相关文档