文档库 最新最全的文档下载
当前位置:文档库 › 基于MATLAB铰链四杆机构的 运动分析 代码

基于MATLAB铰链四杆机构的 运动分析 代码

基于MATLAB铰链四杆机构的 运动分析 代码
基于MATLAB铰链四杆机构的 运动分析 代码

MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法)

%MATLAB程序:已知三个位置设计平面四杆机构求解程序(位移矩阵法) clear;clc; %凡是变量名前带v的为数值变量,不带的是符号变量 vxp1=0; vyp1=0; vsita1=0*pi/180; vxp2=-2; vyp2=6; vsita2=40*pi/180; vxp3=-10; vyp3=8; vsita3=90*pi/180; %精确位置P1,P2,P3及各角度 vsita12=vsita2-vsita1; vsita13=vsita3-vsita1; vxa=-10; vya=-2; vxd=-5; vyd=-2; %选定A,D点 %所有数值均在此确定,更改此处即可解出不同数值的四杆机构位移矩阵方程 syms xp1 yp1 xp2 yp2 xp3 yp3 sita12 sita13; syms xa ya xb1 yb1 xb2 yb2 xb3 yb3; f1='(xb2-xa)^2+(yb2-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; f2='(xb3-xa)^2+(yb3-ya)^2=(xb1-xa)^2+(yb1-ya)^2'; %前两个机构方程 f3='xb2=cos(sita12)*xb1-sin(sita12)*yb1+xp2-xp1*cos(sita12)+yp1*sin(sita12)'; f4='yb2=sin(sita12)*xb1+cos(sita12)*yb1+yp2-xp1*sin(sita12)-yp1*cos(sita12)'; %由第一个位移矩阵方程得出 f5='xb3=cos(sita13)*xb1-sin(sita13)*yb1+xp3-xp1*cos(sita13)+yp1*sin(sita13)'; f6='yb3=sin(sita13)*xb1+cos(sita13)*yb1+yp3-xp1*sin(sita13)-yp1*cos(sita13)'; %由第二个位移矩阵方程得出 f1=subs(f1,{xa,ya},{vxa,vya}); f2=subs(f2,{xa,ya},{vxa,vya}); f3=subs(f3,{xp1,xp2,yp1,sita12},{vxp1,vxp2,vyp1,vsita12}); f4=subs(f4,{xp1,yp1,yp2,sita12},{vxp1,vyp1,vyp2,vsita12}); f5=subs(f5,{xp1,xp3,yp1,sita13},{vxp1,vxp3,vyp1,vsita13}); f6=subs(f6,{xp1,yp1,yp3,sita13},{vxp1,vyp1,vyp3,vsita13}); %代入具体数值 [xb1,xb2,xb3,yb1,yb2,yb3]=solve(f1,f2,f3,f4,f5,f6); %解方程 vxb1=vpa(xb1); vyb1=vpa(yb1); vxb2=vpa(xb2); vyb2=vpa(yb2); vxb3=vpa(xb3); vyb3=vpa(yb3); (vxb1-vxa)^2+(vyb1-vya)^2; (vxb2-vxa)^2+(vyb2-vya)^2; (vxb3-vxa)^2+(vyb3-vya)^2; %去掉这三行分号可验证B点三个位置是否距离A点相等 syms xd yd xc1 yc1 xc2 yc2 xc3 yc3;

基于matlab的连杆机构设计

基于matlab的连杆机构设计

————————————————————————————————作者: ————————————————————————————————日期:

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程...................................................1 1.3.2求解方法.....................................................................2 2基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计……………………………………………………………………………………………11 3.2代码设计……………………………………………………………………………………………12

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp ' * * * * * * 平面四杆机构的运动分析* * * * * *' L1=304.8;L2=101.6;L3=254.0;L4=177.8; %给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)'); %连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)'); %连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); for m=1:length(th2)

基于matlab的连杆机构设计

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法................................................................... ..2 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

基于MATLAB的双摇杆机构运动分析与仿真模板

本科生毕业设计 基于MATLAB的双摇杆机构运动分析与仿真 Based on the MATLAB double rocker organization movement analysis and simulation

基于MATLAB/SIMULINK的双摇杆机构运动学分析与仿 真 邹凯旋 云南农业大学工程技术学院,昆明黑龙潭650201 摘要 平面连杆机构的应用十分广泛,它的分析及设计一直是机构学研究的一个重要课题。MATLAB的Simulink是一个对动态系统建模和仿真分析的软件包,为信号与系统仿真实验提供了很好的平台。借助其强大的模拟仿真分析功能可以方便的实现机构性能分析和动态仿真,降低分析的难度,有效提高设计工作效率、产品开发质量、降低开发成本。本设计课题以MATLAB的simulink\simMechanics 动态模拟仿真工具为平台,对双摇杆机构进行运动分析。结果表明该仿真方法能方便、准确的得到机构的运动、动力数据,能为机构的选择、优化设计提供参考依据。应用此工具可很好地对机械系统的各种运动进行分析,构造出平面连杆机构的数学模型。通过对此数学模型分析,分离出可独立求解的机构模型,并用相应的机构分析方法对它进行求解,建立了平面连杆机构运动学分析专家系统。系统可完成部分平面连杆机构的运动学分析及动画仿真,从而为机械系统的建模仿真提供一个强大而方便的工具。 关键词:连杆机构;动态仿真;SimMechanics;数学模型

Based on the MATLAB double rocker organization movement analysis and simulation Zou kaixuan Faculty of Engineering and Technology Yunan Agricultural University,Heilongtan Kunming 650201 ABSTRACT Planar linkage mechanism used widely, its analysis and design of the study of institutions has been an important subject. MATLAB Simulink is a dynamic system modeling and simulation software package, for signal and system simulation results provide a good platform. With its powerful simulation analysis function is realized the performance analysis and the dynamic simulation institutions, reduce the difficulties of analysis, effectively improve the design work efficiency and product development quality, reduce development costs. This design task to MATLAB simulink \ simMechanics dynamic simulation tools as the platform, on the double rocker organization motion analysis. The results show that the simulation method can conveniently, accurately to get the kinematic and dynamic data organization, for the choice of institutions, optimum design to provide the reference. This tool can application is mechanical system analysis of all kinds of sports, constructed the mathematical model of the planar linkage mechanism. Through mathematical model to analysis, separating out can be independent of solving mechanism model, and the corresponding institutions analysis method to solve it, a planar linkage mechanism kinematic analysis of the expert system. System can finish part of planar linkage mechanism kinematic analysis and animated simulation, thus for mechanical system modeling simulation provide a strong and convenient tool. Key words: linkage;Dynamic Simulation;SimMechanics;mathematical model

基于matlab的平面四连杆机构设计以及该机构的运动分析

基于matlab 的平面四连杆机构设计以及该机构的运动仿真分析 摘要 四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意 义。传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。随着计算机辅助数值解法的发展,特别是MATLAB 软件的引入,解析法已经得到了广泛的应用。对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe 软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。 在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB 中编程可以求得其他杆件的长度。 针对范例中所求得的各连杆的长度,我们在proe 软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出B,C的角加速度的变化,从而得到B,C两接触处所受到的力是成周期性变化的,可以看出B,C两点处极易疲劳断裂,针对B,C两点处的疲劳断裂,我们提出了在设计四连杆中的一些建议。 关键字:解析法MATLAB软件proe软件运动仿真

建立用解析法设计平面四杆机构模型 对于问题中所给出的连架杆AB的三个位置与连架杆CD的三个位置相对应,即三组对应位置为: f 1」2卜2,「3卜3,其中他们对应的值分别为:135 ,112 ,90 ,82 ,45 ,52,为了便于写代数式,可作出AB与CD对应的关系,其图如下: 图一2 AB与CD三个位置对应的关系 通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下: 图一3平面机构直角坐标系 通过建立直角坐标系OXY,如上图所示,其中:0与°为AB杆与

用matlab分析四杆机构

首先创建函数FoutBarPosition,函数fsolve通过他确定。 function t=fourbarposition(th,th2,L2,L3,L4,L1) t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;… L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))]; 主程序如下: disp '* ** *** 平面四杆机构的运动分析*** ***' L1=304.8;L2=101.6;L3=254.0;L4=177.8;%给定已知量,各杆长L1,L2,L3,L4 th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6 th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3 for m=1:length(th2) %建立for循环,求解θ_3,θ_4 th34(m,:)=fsolve('fourbarposition',[1 1],…%调用fsove函数求解关于θ_3,θ_4 options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中 end y=L2*sin(th2)+L3*sin(th34(:,1)');%连杆3的D端点Y坐标值 x=L2*cos(th2)+L3*cos(th34(:,1)');%连杆3的D端点X坐标值 xx=[L2*cos(th2)]; %连杆3的C端点X坐标值 yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值 figure(1) plot([x;xx],[y;yy],'k',[0 L1],[0 0],…%绘制连杆3的几个位置点 'k--^',x,y,'ko',xx,yy,'ks') title('连杆3的几个位置点') xlabel('水平方向') ylabel('垂直方向') axis equal %XY坐标均衡 th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度 th34=zeros(length(th2),2); options=optimset('display','off'); form=1:length(th2)

基于matlab GUI的平面四杆机构的运动分析

基于matlab GUI的平面四杆机构的运动分析 一、目的 通过matlab对平面四杆机构进行运动仿真,并以GUI界面方式实现输入输出的参数化,对平面四杆机构进行位置分析、速度分析、加速度分析和静力学分析。此外,通过动画演示,更加形象直观地观察机构的运动过程。最后,将程序编译成.exe独立可执行文件,可以在其它没有安装matlab的机器上运行。 二、设计思路 通过matlab的GUI功能模块,创建一个图形用户界面,在自动生成的代码框架中对初始化函数和回调函数等进行编辑,建立与控件相关联的程序:控件属性、位置分析、速度分析、加速度分析、静力学分析、动画演示等。 图1是平面四杆机构的示意图,输入角q的运动规律为q=pi/50*t^2+q0,r1、r2是从动角。对t时刻沿着杆长距离原点A的任意一点进行分析。 注意:输入输出角的单位为度,时间t的取值范围为0:0.05:10,任意点lx的取值范围为0~a1+a2+a3,估算的从动角r1、r2的迭代初始值不能偏离平衡位置太大。 图1、平面四杆机构示意图 三、设计流程 1、通过GUI模块创建图形用户界面

命令方式:在Matlab命令窗口键入>>guide;菜单方式:在Matlab的主窗口中,选择File>New>GUI命令,就会显示GUI的设计模板。如图1所示。 图2、创建图形界面 2、设计图形界面 在创建之后的图形界面中插入坐标轴axes,静态文本框static text,编辑文本框edit text,按钮push button等等。如图所示。 图3、图形界面设计

3、编辑回调函数 1)位置分析:输入角的函数为:q=pi/50*t^2+q0。在时间t=0~10s内,每一个时间点估算两个初始从动角,根据牛顿-拉普森迭代得到准确的机构位置。10s刚好主动角经历了360度,记录每一时刻的位置,便可以动画演示。 2)速度分析:输入角速度为:dq=pi/25*t。选择杆件上的任意一点(坐标表示为质点沿着杆件到原点A的距离)做分析,正确表达出角速度系数和速度系数,便可以求出质点的速度。 3)加速度分析:输入角加速度为:ddq=pi/25。正确表达出向心系数和角加速度系数,便可以求出质点的加速度。 4)静力学分析:由虚功原理可知,当广义力Q(V,H)=0(或近似为零)时机构达到平衡,记录该平衡条件下的位置数据。 四、结果演示 1、机构杆长条件判断 1)不符合杆长条件。如图4所示。 图4、不符合杆长条件

机械原理-MATLAB基于四杆机构运动分析的运用

MATLAB软件由美国MathWorks公司于1982年推出,经过十几年的发展和竞争,现已成为国际公认的最优秀的科技应用软件之一。 MATLAB提供了强大的矩阵处理和绘图功能。它主要包括两部分内容:核心函数和工具箱。Matlab编程代码接近数学推导公式,简洁直观,与科技人员的思维方式和书写习惯相适应,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果,拓展思路。 编制相应的M函数文件。Pos.m用于求解位置、角度和角加速度。th1为初始角度,w1为杆1角速度,其余为杆长。将课本P35(i)、(ii)、(iii)式用MATLAB语言表述,即可编制为四杆机构求解函数文件pos.m。 function f=pos(th1,w1,l1,l2,l3,l4) syms x21 x31 x22 x32 x1=th1*pi/180;x11=cos(x1);x12=sin(x1); eq1=l1*x11+l2*x21-l3*x31-l4; eq2=l1*x12+l2*x22-l3*x32; eq3=x21^2+x22^2-1;eq4=x31^2+x32^2-1; s=solve(eq1,eq2,eq3,eq4,x21,x22,x31,x32); s1=double(s.x21); s2=double(s.x22); s3=double(s.x31); s4=double(s.x32); x2=(acos(s1(1,1)))/pi*180; x3=(acos(s3(1,1)))/pi*180; A=[l2*s2(1,1),-l3*s4(1,1);l2*s1(1,1),-l3*s3(1,1)]; B=[-l1*x12;-l1*x11]; w=A\(w1*B);w2=w(1,1);w3=w(2,1); C=[-l2*w(1,1)*s1(1,1),l3*w(2,1)*s3(1,1);l2*w(1,1)*s2(1,1),-l3*w(2,1)*s4(1,1)]; D=[w(1,1);w(2,1)];E=[-l1*w1*x11;l1*w1*x12]; F=[l2*s2(1,1),-l3*s4(1,1);l2*s1(1,1),-l3*s3(1,1)]; t=F\(C*D+w1*E);a2=t(1,1);a3=t(2,1); l1=cat(1,th1,w1,0);l2=cat(1,x2,w2,a2); l3=cat(1,x3,w3,a3);f=(cat(2,l1,l2,l3))'; subplot(2,2,1);plot(th1,w2,'r-');hold on;title('连杆2角速度分析'); subplot(2,2,2);plot(th1,a2,'b-');hold on;title('连杆2角加速度分析'); subplot(2,2,3);plot(th1,w3,'r-');hold on;title('连杆3角速度分析'); subplot(2,2,4);plot(th1,a3,'b-');hold on;title('连杆3角加速度分析'); return 在MA TLAB命令窗口输入命令: >> th1=60;w1=pi/3;l1=20;l2=30;l3=40;l4=45; >> function f=pos(th1,w1,l1,l2,l3,l4) 60°,ω=pi/3时的值 即可得到 theta= 采用实时动画的方法编写draw.m文件: function dw = draw(l1,l2,l3,l4,x1,x2,x3) figure(2); th1=x1*pi/180;th2=x2*pi/180;th3=x3*pi/180; x=0:0.001:l4;plot(x,0,'r-');axis([-25,70,-25,60]);hold on for i=0:0.1:l1; s=i*cos(th1); c=i*sin(th1); plot(s,c,'b-');hold on; end; for x=0:0.1:l3; s2=x*cos(th3)+l4;c2=x*sin(th3); plot(s2,c2);hold on; end for x=0:0.1:l2; s3=l1*cos(th1)+x*cos(th2); c3=l1*sin(th1)+x*sin(th2); plot(s3,c3);hold on; end return 代入pos.m中所得的结果,输入命令: >>draw(l1,l2,l3,l4,y(1,1),y(2,1),y(3,1)) 即可得到当前位置下的四杆图形。 实例计算 假设已知各杆的尺寸和杆1的初始角度th1及角速度w1,其分别为th1=60,w1=pi/3,l1=25,l2=40,l3=50,l4=60。 现求在图1所示位置时的杆2和3的角位移,角速度和角加速度及当前位置下的四杆机构图形。仅需输入: >> th1=60;w1=pi/3;l1=25;l2=40;l3=50;l4=60; >> pos(th1,w1,l1,l2,l3,l4) >>draw(l1,l2,l3,l4,y(1,1),y(2,1),y(3,1)) 若要得到四杆机构的运动图形,则输入: >>for m=0:1:360;%步距为1°,可更改; y=pos(m,w1,l1,l2,l3,l4);

平面六杆机构的运动分析Matlab代码

平面六杆机构的运动分析M代码 %参数赋值 clc,clear l0=22; l1=40; l2=55; l3=55; l4=44; l5=35; M=-1; Omiga1=10; Theta1=0:0.01:360; Theta1=Theta1*pi/180; %求解各个构件位移、速度、加速度 A=2*l1*l2*sin(Theta1); B=2*l2*(l1*cos(Theta1)-l0); C=l1^2+l2^2+l0^2-l3^2-2*l1*l0*cos(Theta1); E=2*l1*l3*sin(Theta1); F=2*l3*(l1*cos(Theta1)-l0); G=l2^2-l1^2-l3^2-l0^2+2*l1*l0*cos(Theta1); Theta3=2*atan((E+M*sqrt(E.^2+ F.^2- G.^2))./(F-G)); Theta31= Theta3-30; S=l5.*cos(Theta31)-sqrt(-l5^2.* sin(Theta31).^2+l4^2); Theta2=2*atan((A+M*sqrt(A.^2+B.^2-C.^2))./(B-C)); Theta4=atan(l5.*sin(Theta31)./(l5.*cos(Theta31)-S)); Omiga2=Omiga1*l1*sin(Theta1-Theta3)./(l2*sin(Theta3-Theta2)); Omiga3=Omiga1*l1*sin(Theta1-Theta2)./(l3*sin(Theta3-Theta2)); Omiga4=((-l5).*Omiga3.*cos(Theta31))./(l4.*cos(Theta4)); Vf=-l5.*Omiga3.*sin(Theta31)+l4.*Omiga4.*sin(Theta4); Alfa3=(Omiga1^2*l1*cos(Theta1-Theta2)+Omiga2.^2*l2-Omiga3.^2*l3.*cos(Theta3-Theta2))./ (l3*sin(Theta3-Theta2)); Alfa2=(-Omiga1^2*l1*cos(Theta1-Theta3)+Omiga3.^2*l3-Omiga2.^2*l2.*cos(Theta2-Theta3))./ (l2*sin(Theta2-Theta3)); Alfa4=(l5.*Alfa3.*cos(Theta31)+l4.*Omiga4.^2.*sin(Theta4)-l5.*Omiga3.^2.*sin(Theta31))./(l4. *cos(Theta4)); Af=(-l5).*Omiga3.^2.*cos(Theta31)+l4.*(Omiga4.^2.*cos(Theta4)+Alfa4.*sin(Theta4))-l5.*Alfa 3.*sin(Theta31); %绘图 Theta1=Theta1*180/pi;

基于matlab中SimMechanics的四杆机构仿真

引言作用在机械上的力, 不仅是影响机械的运动和动力性能的重要参数, 而且也是决定构件尺寸和结构形状的重要依据,所以不论是设计新机械,还是合理使用现有机械,都必须对机械的受力情况进行分析 在对现有机械进行力分析时, 对于低速机.械,因惯性力小, 只需静力分析,而对于高速及重型机械,必须分析其惯性力,要对其作动力分析. Mat2lab中的simmechanics是一个对动态系统进行建模、仿真和分析的软件包, 可对机构进行动力学仿真和分析, 可在形成实际机构之前进行适当的修正,缩短产品开发周期.有关动力学仿真的文献中, 工作阻力(或工作阻力矩)均为常量, 不随时间变化, 文中以simmechan ics为研究平台, 以压床中的六杆机构为研究对象,对机构进行动力学仿真,研究机构在变工作阻力作用下的受力情况. 1.SimMechanics简介 SimMechanics 立足于Simulink 之上,是进行控制器和对象系统跨领域/学科的研究分析环境。SimMechanics 为多体动力机械系统及其控制系统提供了直观有效的建模分析手段,一切工作均在Simulink 环境中完成。它提供了大量对应实际系统的元件,如:刚体、铰链、约束、坐标系统、作动器和传感器等。使用这些模块可以方便的建立复杂机械系统的图示化模型,进行机械系统的单独分析或与任何Simulink设计的控制器及其它动态系统相连进行综合仿真。 SimMechanics 为机械系统提供了如下仿真/ 分析方式: 正向动力学分析—求机械系统在给定激励下的响应; 逆向动力学分析—求机械系统按给定运动结果时所需的力和力矩; 运动学分析—在约束条件下系统中的位移、速度和加速度,并做一致性检查; 线性化分析—可求得系统在指定小扰动或初始状态下的线性化模型,以分析系统响应性能; 平衡点分析—可以确定稳态平衡点,供系统分析和线性化使用。2.连杆机构设计的基本问题 连杆机构设计的基本问题是根据给定的运动要求选定的形式,并确定其各构件的尺寸参数。为了使机构设计合理,可靠,通常还需要满足结构条件(如要求存在曲柄,杆长比较恰当),动力条件和运动连续条件等。 根据机械的用途和性能要求等的不同,对连杆机构设计的要求是多种多样的,但这些设计要求一般可归纳为以下三类问题:

运用MATLAB解决四杆机构问题

MATLAB 解题 1.设有如图所示四杆机构,其中→ R 4为机架(常矢),→ R 1 为主动杆,→ R 3 为 从动杆,→ R 2为连杆。设在某一工作位置时各杆的角速度和角加速度分别取如下值: ω1=20 rad/s, ε1= 0;ω2=8.5 rad/s, ε2=-10 rad /s 2 ;ω3=13 rad/s, ε3=-160 rad /s 2. 试根据上述要求确定该机构尺寸比。 根据图(2),回路闭合方程可写为:→R 1 +→R 2 +→R 3=-→ R 4 回路闭合方程对时间求导一次,利用(6)式,可得: 图2 ω 1 → R 1 +ω 2 → R 2 +ω3→ R 3 = 0 回路闭合方程对时间求导两次,利用(7)式,可得 c 1→ R 1 + c 2 → R 2 + c 3→ R 3 = 0 其中 c 1=ε1+j ω12 , c 2=ε2+j ω 2 2 , c 3 =ε3+j ω32 解关于→ R 1 ,→ R 2 和→ R 3的线性方程组: ?? ?? ? ?????-=?????? ? ?????????????????→→→00111 1321321 32 1R R R c c c ωωω→ R 4 (13) 可得 → R 1= D Dx →R 4, → R 2= D Dy →R 4 , → R 3= D Dz → R 4 注意到上述解中含有相同的分母D,它是一个复数,不妨记为D =k

基于MATLAB的平面四连杆机构运动学分析

一、课程设计内容及要求: 1.对连杆机构运动工作原理及运动参数有一定理解 2.掌握MATLAB基本命令 3.了解MATLAB编程的基本知识,并能编写简单M文件 4.了解MATLAB图形界面设计的基本知识 5.课程设计说明书:应阐述整个课程设计内容,要突出重点和特色,图文并茂,文字通畅。应有目录、摘要及关键词、正文、参考文献等内容,字数一般不少于6000字。 二、主要参考资料 有关复杂刀具参数计算及结构设计、机械制造工艺与设备的手册与图册。 三、课程设计进度安排 指导教师(签名):时间: 教研室主任(签名):时间: 院长(签名):时间:

目录 1平面连杆机构的运动分析 (1) 1.1 机构运动分析的任务、目的和方法 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程.................................................................... . (1) 1.3.2求解方法.................................................................... . (2) 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12) 4 小结 (17) 参考文献 (18)

1平面连杆机构的运动分析 1.1机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆 为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立

matlab四连杆带代码

用Matlab对四连杆运动模拟 引言 四连杆机构因其结构灵活、能够传递动力并有效地实现预定动作,在很多领域得到了广泛应用。进行连杆机构运动分析,传统方法主要是图解法或分析法,无论设计精度还是设计效率都相对低下,无法满足现代机械高速高精度的要求。随着计算机技术的飞速发展,特别是以MATLAB为代表的数值计算软件的出现,为进行机构分析提供了有力的工具。 1、四连杆介绍 1.1、四连杆介绍与分类 所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之后,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。铰链四杆机构中,按照连架杆是否可以做整圆周转动,可以将其分为三种基本形式,即曲柄摇杆机构,双曲柄机构和双摇杆机构。

曲柄摇杆机构,两连架杆中一个为曲柄一个为摇杆的铰链四杆机构。 双曲柄机构,具有两个曲柄的铰链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。 双摇杆机构。双摇杆机构是两连架杆均为摇杆的铰链四杆机构。 1.2、格拉霍夫定理 杆长之和条件:平面四杆机构的最短杆和最长杆的长度之和小于或者等于其余两杆长度之和。 在铰链四杆机构中,如果某个转动副能够成为整转副,则它所连接的两个构件中,必有一个为最短杆,并且四个构件的长度关系满足杆长之和条件。在有整装副存在的铰链四杆机构中,最短杆两端的转动副均为整转副。此时,如果取最短杆为机架,则得到双曲柄机构;若取最短杆的任何一个相连构件为机架,则得到曲柄摇杆机构;如果取最短杆对面构件为机架,则得到双摇杆机构。如果四杆机构不满足杆长之和条件,则不论选取哪个构件为机架,所得到机构均为双摇杆机构。上述系列结论称为格拉霍夫定理。 运用条件分析: 1.Lmax+Lmin>其余两杆之和,------此铰链四杆机构为双摇杆机构;

基于matlab的四杆机构运动分析

1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

1.3 机构的数学模型的建立 1.3.1建立机构的闭环矢量位置方程 在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为L1 、L2 、L3 、L4 ,其方位角为、、、。以各杆矢量组成一个封闭矢量多边形,即ABCDA。其个矢量之和必等于零。即: 式1 式1为图1所示四杆机构的封闭矢量位置方程式。对于一个特定的四杆机构,其各构件的长度和原动件2的运动规律,即为已知,而=0,故由此矢量方程可求得未知方位角、。 角位移方程的分量形式为:

相关文档
相关文档 最新文档