文档库 最新最全的文档下载
当前位置:文档库 › 热回收空调原理

热回收空调原理

热回收空调原理
热回收空调原理

热回收空调原理、特点及优势 - 暖通论文

作者:佚名文章来源:不详点击数:更新时间:2006-7-10

热回收空调原理

一、常规空调制冷系统中的能耗问题

业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。

二、热回收原理

因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下:

图3—1 热回收空调系统原理图

热回收空调原理及其节能效果

依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。

热回收空调特点及优势

简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。

一、热回收空调的特点

1、就空调系统而言,简约,可靠,无需增加其他电控系统,自动化程度高,运行稳定,无安全隐患。

2、热水系统出水温度恒定(不会有过冷、过热现象发生),能同时实现多点供水,可满足不同需要的生活热水需求。

3、安装容易简便,不受场所限制,安全,使用寿命长。

4、节能环保,运行费用省,经济效益高。

二、热回收空调的优势

1、热回收系统充分利用空调系统的废热,将空调系统中产生的低品位热量有效地利用起来,达到了节约能源的目的。

2、热加收系统减少了排到环境的废热;同时,由于取消冷却塔,减小了建筑物周围的噪音,有效地保护了建筑物周围的环境。

3、使用热回收系统,用户不再需要在家中设置热水器,这样就给用户带来方便与安全;同时,使用热回收系统,业主可以简化或者省去热水加热系统,从而也简化了系统的运行管理。使用热回收系统,是利用废热来回热生活热水,这样就降低了用户使用生活热水的费用。

4、和电驱动或燃油驱动型系统以及燃气热水器(炉)等产品相比,具有无安全隐患、运行可靠,使用寿命长,出水温度恒定(不会有过冷、过热现象发生),能同时多点供水的优越性。

5、和太阳能热水器相比,具有不受安装场所限制,安装容易、不漏水、安全、寿命长、全天候热水供应,出水温度恒定(不会有过冷、过热现象发生)的优越性。

6、和热泵热水器相比,具有一机多用的功能,除能一年四季提供生活热水外,还能一年四季为室内提供空调供应。

7、和传统中央空调相比,具有一机多用的功能,除能一年四季为房间提供中央空调冷、热空气调节外,还能一年四季为房间提供恒温的中央热水。运行调节灵活(多压机,多系统),管路系统简单,能效高、运行费用省的特点。

三、与传统中央空调和燃气锅炉的节能对比

就经济性而言,在一些需要提供室内空气调节和中央热水供应的场所(如宾馆,酒店,发廊等),如采用传统中央空调则需另外投入燃气锅炉以辅热水之用,现就其与热回收空调就投入及运行期间的经济性的优劣势宏观对比分别如下:

(1)、采用热回收型中央空调机组可省掉锅炉设备的投入,即省掉设备的投资又节省了锅炉房的建筑面积;

(2)、在夏季可节约全部的卫生热水的加热费用,即使是在冬季运行费用也只是锅炉的1/3,

每年可为用户节省非常可观的锅炉运行费用;

(3)、机组可安装在屋面、平台、地面等,不用占据建筑面积,可为用户节省可观的建筑面积,特别对于重庆市内更具有经济效益;

(4)、没有冷却水系统,省掉了冷却塔、水泵和冷却水管路系统的投资和安装工作,节约了此项的费用,在平时运行时节约了大量的冷却水耗;

(5)、自动化程度高,负荷调节范围宽广,在不同季节和负荷下更能符合调节上的要求,具有传统中央空调机组无法比拟的负荷试用性,具有非常明显的节能性。特别是在夜间、过度季节,低负荷时更明显;

(6)、单机振动和噪音小,对建筑的影响小,如设计、安装处理的好对建筑的使用不会造成任何影响;

(7)、单机运行维护费用低,经济节能。

以下就以日用水量为30吨的中型服务性场所热水供应为例就投入费用方面简单对比如下:

分析基准:热水用量30吨/天,热回收空调采用LSQ31R2/R型,锅炉采用3×104kcal/h型。

(一)、初投资费用分析:

设备名称热回收空调天燃气锅炉燃油锅炉煤气炉电锅炉设备费(元) 49800 15000 15000 15000 10000 水箱(元) 20000 6000 6000 6000 6000 总费用(元) 69800 21000 21000 21000 16000

投资对比分析:热回收空调机组比天燃气、油炉、煤气炉高出69800-21000=48800元。

热回收空调机组比电锅炉高出69800-16000=53800元。

(二)、运行费用节能性分析(设备选型时考虑一定的富裕量,实例中以20吨/天为基准):

1、夏季加热1吨水费用对比(水温25~55℃,加热量30000 Kcal):

加热方式热回收空调天燃气锅炉燃油锅炉煤气炉电锅炉燃料热值 1kw/度 9000kcal/Nm3 10300 Kcal/kg 4200 kcal/Nm3 1kw/度设备效率 262% 95% 90% 90% 100% 燃料消耗量 11.82

度 3.51Nm3 3.24 kg 7.94 Nm3 34.89 产冷量(KW) 31 0 0 0 0 燃料单价(元) 0.60 3.0 4.74 1.60 0.6 加热费用(元) 7.09 10.53 15.36 12.71 20.94 用水量20吨/天,共180天费用 25524 37908 55296 45756 75384

2、冬季加热1吨水费用对比(水温15~55℃,加热量40000 Kcal):

加热方式热回收空调天燃气锅炉燃油锅炉煤气炉电锅炉燃料热值 1kw/度 9000kcal/Nm3 10300 Kcal/kg 4200 kcal/Nm3 1kw/度设备效率 280% 95% 90% 90% 100% 燃料消耗量 17.18

度 4.67 Nm3 4.31 kg 10.58 Nm3 46.52 燃料单价(元) 0.60 3.0 4.74 1.60 0.6 加热费用(元)

10.31 14.01 20.43 16.93 27.91 用水量20吨/天,共180天费用 37116 50436 73548 60948 100476

运行费用对比分析:

通过以上分析可以看出,采用热回收型空调机组,全年费用仅为:25524+37116=62640元,在满足热水供应外,夏季还可为空调系统提供免费冷量31×20×180=111600KW(价值25557元);

全年比采用天燃气炉节约热水费用:37908+50436-62640=25704元;

全年比采用煤气炉节约热水费用:45756+60948-62640=44064元;

全年比采用燃油炉节约热水费用:55296+73548-62640=66204元;

全年比采用电炉节约热水费用:75384+100476-62640=113220元;

如把空调冷量价值加上;

全年比采用天燃气炉节约费用:37908+50436-62640+255

57=51261元;

全年比采用煤气炉节约热水费用:45756+60948-62640+25557=69621元;

全年比采用燃油炉节约热水费用:55296+73548-62640+25557=91761元;

全年比采用电炉节约热水费用:75384+100476-62640+25557=138777元;

结论:通过以上初投资和运行费用对比可得出,采用热回收空调和采用其它热水加热设备相比,不用一年的时间就可以收回在设备上的多投入部分;不用两年的时间在运行费用节省方面就可以收回全部设

备上的投入。

综上所述,由于空调热回收技术理论可靠,技术和设备也进入了成熟阶段,故该技术现已得到广泛关注。根据有关资料介绍,我国仅北纬32度以南的14个省,约有宾馆、酒店等5万家以上。由于这部分

地区空调期较长,利用时间也较长,投资效益非常明显,相比之下设备投入回收期一般在10~20个月之间。

热回收空调适用范围

热回收型空调机组同时具备房间空气调节和供给中央热水的特性本身决定了其可分别适用于空调和热水领域。在如今能源逐日紧缺的时代,其在节能方面的优越性揭示了其在空调和热水领域的发展潜力。

一般来说,像宾馆、酒店、医院、公共浴室和一些食品加工厂等用户,在供冷的同时,还要利用各种燃料或电加热锅炉、热水炉、蒸汽炉等制备热水,消耗大量的能源。若把制冷循环中制冷工质冷凝放热

过程放出的热量利用起来制备热水,在开空调的季节,或使用制冷设备的同时,可制备50~60℃的热水,

足以满足客房洗浴、厨房洗涤和工艺用热水等用途。这样既提高了能源利用率,减少了能源消耗及对环境

的污染,又节省了能源费用的开支。

因此,热回收空调的最佳适用场合是宾馆,酒店,发廊,餐厅,医院,别墅以及需要集中综合提供空调和热水的其他公共设施。

论文上传:source00

论文作者:乐照林

您是本文第 697 位读者

摘要:围绕空调节能,减少空调热能消耗及相应的温室气体排放这一专题,概要推介一种新型冷水机组热回收方式,概念及其系统形式、控制原理、性能评价系数、适用机型等。并提出了这一新型冷水机组热回收方式对恒温恒湿和同时制冷制热空调领域的适用性及所具有的节能意义,开辟空调节能新领域。

关键词:热能消耗热能转移恒温恒湿量 COP

1.引言

随着经济的日益发展和人类生活水准的不断提高,空调的应用也越来越普及。而空调在适应经济发展和满足人类需求的同时,也给人类带来了巨大的能源消耗负担和其他如温室效应等负面影响,因此,减少空调的能源消耗,寻求空调可持续发展之路,已成为空调设计所面临的一个重要和首要的问题。在论述本文的内容以前,有必要对空调的能耗进行分类,并对已有的空调节能技术也作一些分类比较。

2.空调能耗的分类

空调制冷要使用电力或蒸汽;空调水、气输送要消耗电力;冬季空调要使用电力或油、煤等自然能源,不同的季节、不同的空调系统有不同的能耗。但就分类而言,可归结分为两类:电力消耗和热能消耗。而电力消耗最总仍可归结为热能消耗(自然能发电除外),因此,从环保的角度来看,空调的所有能耗均为热能消耗,都有CO2温室气体的排放代价。

具体来看,空调系统中,所有电力驱动设备,都存在电力消耗;各种锅炉、溴化锂冷水机组等则存在热能消耗,在一般情况下,夏季空调,除溴化锂制冷机组以外,均以电力消耗为主;冬季空调,则以热能消耗为主,但同时存在电力消耗。各种气源、水源、地源空调系统仅消耗电力。

3.空调节能技术分类和比较

作为对空调节能技术不断探索的回报,在空调设计中,已有很多成熟的技术和相关的产品可运用。具体可分为三种类型:

3.1 节省型:通过追求高效率,优化系统和加强自动控制的运用,来节省空调运行能耗, 减少或避免能源浪费,从而节省能源。如:选用高效率产品,优化系统配置,采用变风量或变水量、二次回风等节能系统及其他运行控制节能技术等。

就其节省的能耗而言,既节省空调动力消耗,也节省一些空调热能消耗。

3.2 自然能利用型:通过合理使用自然能,而减少空调能源消耗,如:新风供冷,冷却水供冷,气源,水源及地源供冷供热等自然能利用技术等。

自然能利用型主要节省空调热能消耗,值得注意的是,其节省的热能是相当可观的。此外,节省了空调热能消耗,也就减少了相应的CO2排放量,因而具有良好的环保优势和可持续发展特性。

3.3热回收型:通过对热能的再回收,实现热能的二次利用,从而减少空调的能源消耗。如新排风热回收技术。根据产品的不同,又可分为:转轮式或固定板翅式全(显)热交换式热回收,盘管式热回收,热泵式热回收等方式。其他如冷水机组生活热水热回收等等。

就上述各热回收方式所节省的能耗来分析,夏季一般主要节省空调电力能耗,当采用溴化锂主机时,节省的是空调热能消耗。冬季一般主要节省空调热能消耗,当采用自然能利用型主机如气源热泵时,节省的是空调电力能耗。总之,同样具有良好的环保优势和可持续发展特性。

由于热回收型冷水机组在以前的应用中,较多采用串联型冷凝器,由于机组这样的结构设计的原因,热回收量一般最高仅为制冷负荷的30%至40%。而且,热回收量随着冷负荷的减少很快下降,不能相对稳定提供。此外,回收的热能一般均用于生活热水,由于生活热水使用上的不稳定性,热回收量也时有时无、时高时低,对机组的运行稳定造成不利影响。因此,此类热回收,虽亦为废热利用,具有一定的环保节能意义,但节省量较小,对系统稳定运行亦存在不利的影响。但是,当采用一种新的结构形式使热回收量可更高,更稳定,且回收的热能用于空调系统本身时, 热回收型冷水机组可节省的空调热能消耗是相当可观的。其节能意义可得到极大发挥。

本文以下所探究的,就是这种热回收技术及其应用新领域。

4.新的冷水机组热回收方式(以下简称新方式)

以常规的螺杆式冷水机组为例,基于压缩制冷的工作原理,冷水机组在蒸发器一侧制冷剂蒸发吸热制冷的同时,在冷凝器一侧制冷剂则在冷凝放热,而且其放热量大于蒸发器的吸热量,新的热回收方式目标就是为了回收冷凝器100%的放热量以供再利用,从而可节省相应的空调热能消耗,减少因空调而产生的对大气环境的温室气体排放。

新的冷凝机组回收方式基于对冷凝器的设计,可以命名为一体化并联式冷凝器(以下简称为新型冷凝器),常规的冷凝器为一组盘管,冷却水吸热后,由冷却塔将热量散入大气,一般冷却水为开式系统。所谓一体化并联式冷凝器,是指相对于冷媒而言是一个冷凝器,但从水侧来看,有二组并联的水盘管,其中一组盘管对应于常规机型的工作方式,为开式系统,而另一组为热回收盘管,采用闭式循环。从这样的结构形式可以看出,任一组盘管,只要配置足够的热交换面积,

都有可能吸收全部的冷凝负荷。也因此,热回收量受冷负荷变化的影响得以完全消除。举例来说,当机组运行冷负荷下降为满负荷的40%时,热回收量仍可达机组冷负荷的45%以上。

附图1 热回收机组水系统原理图

就其控制调节来说,配置新型冷凝器的热回收冷水机组(以下简称新型冷水机组),在运行时,控制原理很简单:与常规冷水机组相比,机组内部不需要增加任何控制,只需在开式冷却水系统中设置一个旁通阀及相应的控制单元,通过调节冷却水旁通水量,调接冷却塔的散热量,就可同时实现热回收水系统的出水温度控制和热回收量的需求量适应控制,同时确保机组在定流量,定冷凝压力的工况下稳定运行,一控多效,简单可靠。原理参见附图1:

5.新型冷水机组热回收方式的优越性

新方式与本文3.3节所述的热回收方式相比,具有明显的优越性。

本文3.3节所述的冷水机组热回收方式中,可采用的冷凝器形式可有两种,分别为分体并联式冷凝器和分体串联式冷凝器,它们的共性在于都有两个冷媒冷凝器,区别在于一种为并联方式,一种为串联方式。

采用分体并联式冷凝器的热回收冷水机组,优点在于理论上热回收量可达冷凝负荷的100%,似乎热回收量可根据需要设计控制,而缺点在于,实际上两个并联冷凝器之间的冷媒流量需按热回收量的变化而调节, 在运行时为使机组能相对稳定运行,并实现相关运行要求所需的控制相对复杂,而且实际也较难于控制。事实上,真正以这种方式用于热回收的并不多。

采用分体串联式冷凝器的热回收冷水机组:一般前置冷凝器用于吸收压缩机系统高温排气的散热,以提供较高的水温,为热回收冷凝器,而后置冷凝器用于吸收制冷剂冷凝放热,优点在于没有附加的复杂控制要求,但其最大的缺点本文前已述及,其结构方式决定了热回收量有限,而且,随着冷负荷的降低,热回收量也迅速降低,因此热回收量并不能按需提供。由此,在实际的运行中,虽有应用,但一般仅用于提供生活热水。

相比较而言,采用新型冷凝器的冷水机组,热回收冷凝器与常规冷凝器合二为一,通过简单的温度控制,既控制了热回收水的出水温度,又控制了冷水机组的冷凝压力,同时也适应了热回收负荷与冷却散热负荷的调节需求。最关键的在于:只要需要,热回收量可达100%。

6.新型冷水机组的综合性能系数COP

新型冷水机组在制冷的同时,由于冷凝负荷被部分或全部回收利用,为热用户提供了热能,节省了相应的用户热能消耗,因此,新型冷水机组提供的效能包括两部分:是制冷量与制热量之和。因此,其综合性能系数COP

当100%热回收时

COP = ( Q L + Q LN ) / W

式中,Q L为制冷量, Q LN为热回收量,即100%冷凝负荷,W为机组耗电量。

当以某一百分比C%热回收时:

COP = ( Q L + C% x Q LN ) / W

由此可见,新型冷水机组的综合性能系数COP最高可以是冷水机组的制冷性能系数与热泵的制热性能系数之和,其综合性能系数COP之高,反映出其显著的节能意义。即使是部分热回收,节能效果仍然十分可观。

需要注意的是,热回收水温的高低对于新型冷水机组的综合性能系数有一定影响。当所要求的热回收水温高与常规制冷系统冷却水温时,每高出一度,制冷性能系数约下降2.1%,此时,约需1.7%的热回收量以确保新型冷水机组的综合性能系数不低于常规冷水机组的制冷系数。以热回收水温45℃为例,制冷性能系数约下降17%,此时要求约14%的热回收量来弥补,否则,新型冷水机组的综合性能系数将低于常规冷水机组。所以,热回收水温越低,热回收比例越高,新型冷水机组的综合性能系数COP越高,节能效果越明显。从本文下述实际可应用场合对热回收水温的要求来看,是与此要求完全吻合的。

7.适用机型

工程用空调冷水机组型式主要有活塞式、螺杆式、离心式和溴化锂吸收式四种。是否适用或哪一种最适合作为新型冷水机组应用于空调领域,主要取决于各

种机型在可能的冷凝温度提高时的运行适应能力;和各种机型对冷凝器结构改造的适应性及投资大小;以及各种机型的容量特性对工程的适应性。

相比较而言,离心机由于喘震问题的存在,对提高冷凝温度的适应能力很差,活塞机具有较好的适应性,螺杆式则借助于二次蒸发吸气和喷液技术的日益发展和完善而胜任有余,溴化锂机组也不例外;但对冷凝器结构改造的适应方面, 溴化锂机组因冷凝器在机组内部而略显不利,非标设计程度和投资会较大,其余三中机型则不分伯仲,均较简单;而在装机容量特性方面,一般活塞式适应于较小的工程,螺杆式可适应于中型和较大型工程的需求。离心机则较适合较大工程,溴化锂机组由于技术的日益成熟,限制较小。

由此可见,相对而言,螺杆式机组应用于新型热回收冷水机组,适应性较强,投资少,工程的适用面较广,性能最优。其它机型,或多或少有所限制。

8.应用领域与节能意义

探究新型冷水机组的意义,目的在于它具有节能意义和较广泛的可应用性,这正是本文所要开辟的空调节能新领域。

8.1恒温恒湿空调领域: 在恒温恒湿空调系统的夏季运行工况中,冷却降温和除湿空气处理过程同时能满足室内温湿度要求的机会微乎其微,当除湿的要求大于降温的要求时,再热也就不可避免,冷热抵消也就不期而至,而此时,所需的再热量,完全可由新型冷水机组提供。而且,用于再热的热回收水温,只需常规工况的冷却水温就能满足要求,具有很高的综合性能系数。

对应于水冷恒温恒湿机组,类似应用颇具优势,只需在机组内,增设一个带旁通控制的盘管,串接于冷却水系统中,用于再热,就无需设置再热电加热器,节省相应的耗电量。

8.2 分区再热空调领域: 可采用合并系统而要求分区控制的场合,也存在对再热量的需求。这与恒温恒湿再热的应用特性完全相同。

8.3制冷和制热需求并存的空调领域: 在同时有制冷和制热要求的场所,典型代表就是采用四管制水系统的空调领域,当不使用新型热回收冷水机组时,制冷系统的冷凝负荷排入大气,而制热的热量则来自于某种热源,表面上不存在冷热抵消,而事实上,用于加热的能源消耗却是一种无谓的消耗,在这种情况下,采用新型冷水机组也就获得了免费的热源。因为此时,新型冷水机组所做的只是热量转移。冷热需求越平衡,节能效果越好。此外, 在这种应用中,对热回收水温的要求,也是可以适当降低的。同样可具有较高的综合性能系数。

在空调的应用领域,需要恒温恒湿的场所很多,电子、医药、纺织、印刷行业等等;有同时制冷制热需求的场所也举不胜举,仅此两项可见,新型冷水机组的应用领域相当广泛。

对于新型冷水机组的应用,与原来未使用这一热回收的系统相比,所增加的投资是非常有限的,但可节省的能源是极其可观的。与其它热回收方式如:转轮热回收,全热交换器的高投资相比,新型冷水机组的产出与投入之比,无疑是相当优秀的。同时,从环保角度,无论是用于再加热还是用于需要同时制冷制热的场所,新型冷水机组实现的都是热量转移,都是把热量从不需要的地方转移到需要的地方,并籍此减少了热能消耗和相应的温室气体排放,而且总量可观,无疑,这对于环境的保护和空调的可持续发展是极其有利的。

三级自动复叠制冷系统的试验研究

作者:荆磊张华卢峰… 文章来源:互联网点击数:更新时间:2006-3-10 12:3

8:55

【字体:小大】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】搭建了一种三级自动复叠的制冷系统的研究装置,采用R134a/R23/R14混合制冷

剂,两级分凝的制冷系统。对试验装置和混合制冷剂组分进行了优化试验。试验装置达到-100℃,制冷量达到38W。

关键词:混合工质自动复叠循环

0 引言

自动复叠循环制冷机结构紧凑,可靠性高,操作简便,在能源、军工、空间、生物、医疗和生命科学等高科技领域内有着广泛的应用。国内外学者纷纷对自动复叠制冷技术展开了新的研究。目前,自动复叠制冷循环呈现出新的发展特点[2-3],对其研究主要集中在两个方面:一方面是对原有的制冷循环流程的改进,包括采用新型换热器和高效气液分离器;另一方面则是采用新型的制冷工质,包括二元工质和多元工质,以满足环保和制取低温的要求。

1 三级自动复叠制冷系统

针对本课题-100℃的制冷温度,选择单级压缩、两级分凝的制冷循环作为本课题的方案,原理性方案如1所示。

图1 三级自动复叠制冷循环实际系统示意图

A- 压缩机; B-冷凝器; C-干燥过滤器; D-高温级气液分离器; E-高温级节流阀; F-

分凝换热器; G-高温级蒸发冷凝器;

H-中温级气液分离器; I-中温级节流阀; J-分凝换热器; K-低温级蒸发冷凝器; L-低温级节流阀; M-蒸发器; N-膨胀容器; P-汇合点; Q-汇合点; 1~30-测点

膨胀容器的作用在于降低机组停机后的平衡压力。低温、中温工质(如R14/R23)在常温下已经超过其临界温度,全部以气态形式存在,这会导致

管道内平衡压力非常高,平衡压力过高带来如下后果:制冷管路破裂的可能性增大。压缩机启动时“油击”的几率增大。启动压力过高。分凝换热器的主要作用两个:一是进一步提纯低温组分的纯度,另一个是实现润滑油的分离。混合工质饱和气体的组分和温度的高低密切相关,温度越低其低温工质组分含量越高。

2 制冷剂的选择

用于自动复叠循环的非共沸混合工质在循环过程中有其独特性的一面:自动实现各组分的分凝、分离和混合的过程,这决定了其循环过程完全不同于用于节能和环保目的的一般混合工质。

复叠式制冷循环的高温部分使用的制冷剂,一般为R134a、R22、R502,也可使用R1270(丙烯)或R290(丙烷)。低温部分使用的制冷剂有:R23、R14、R1150(乙烯)和R 170(乙烷)。对于复叠式制冷循环,R23适用的蒸发温度范围是-70~-110℃,R14适用的蒸发温度范围是-110~-140℃。综合考虑结合本文课题-100℃的制冷温度,选择了三种工质:R134a、R23、R14,其主要热物性质如表1所示[4]。这三种工质中均不含对臭氧层有破坏作用的Cl原子,R134a和R23的标准沸点相差55.9℃,R23和R14的标准沸点相差45.8℃。

3 实验台的搭建

主要部件的设计选型,选用了Danfoss 114H5534冷凝机组,在常规冷柜箱体的基础上,重新设计制作了内胆用于保温改造,制作了符合实验条件的低温箱体。节流设备的选择与匹配和混合工质的换热计算是本章的两大难点,在理论计算指导与前期两级系统的经验相结合的基础上完成了毛细管和套管式换热器的选型。制冷循环运转期间需要实时记录30路温度数据和2路压力数据,整个测量系统的设计以实现这32个参数的自动记录、数据图像显示和数据库保存为目标(图2)。数据采集系统包含电量参数测量部分。AN7931A本身内置微控制器,可以实现与上位PC的基于RS-232协议的串行通讯。AN7931A仪表通过一根RS-232通讯电缆与主计算机的串行口连接。同样的,基于Visual Basic6.0语言我们设计了相应的软件程序。

图2 温度压力采集系统硬件图

4 实验与实验结果分析

循环系统启动后,R134a流、R23流、R14流的节流温度变化如图3所示和柜内温度如图4所示。

图3 R134a流、R23流、R14流的节流温度变化

图4 低温箱体的降温曲线

实验台的性能测试在30℃环境温度下进行,系统启动4.5h后,柜温降至-100℃,制冷量为38W,运行COP=0.056。

循环系统中有两个汇合点P和Q,R134a流和低温混合流在P点汇合成高温混合流,R23流和R14流在Q点汇合成低温混合流,其运行状态如图5所示。两股流体汇合时,如果不发生化学反应,得到的汇合流的温度介于两股支流的温度之间。但是从图5可以看到,开机运行约90min内,高温混合流的温度t24始终低于其两个支流的温度t22和t23,90min以后,才介于两者之间。汇合之后混合物流体的温度决定于两个因素:焓值和成分,相同条件下,焓值越高,温度越高;混合物中低温组分含量越多,温度越低。通过图9来说明这个问题,低温混合流(t22)汇入R134a流(t23)后,对其温度的影响有两个方面:一方面由于增大了其焓值,导致温度有升高的趋势,另一方面由于增大了其中低温组分(R23/R14)的含量,导致温度有降低的趋势;而当后者的影响大于前者的影响时,综合作用结果是降低其温度。表现在图上就是高温混合流的温度(t24)始终低于R134a流的温度(t23),并且在前90min内,低于其两个支流的温度t22、t23。

图5 汇合点P的运行温度变化图

R14流汇入R23流后对其温度的影响经历了不同的过程,在启动后约150min时间内,综合作用效果表现为温度升高(t17>t16);之后的运行过程中,综合作用效果表现为温度降低(t17

图6 汇合点Q的运行温度变化图

5 结论与讨论

自动复叠循环能够实现低温制冷,并不是单纯地依靠降低蒸发压力,而是利用了非共沸混合工质在各组分沸点相差很大的条件下所表现出来的特性,采用相分离器来实现混合工质的分流,通过特殊布置的流程来实现复叠循环。常规压缩机完全胜任驱动自动复叠循环,其运行时的启动工况、排气压力、排气温度均在常规压缩机的允许范围之内,运行相当可靠,这对自动复叠制冷机的商业化生产具有十分重要的意义。

自动复叠循环本身可以实现压缩机的高效回油。合理布置的中间换热器流程可以保证润滑油的分离效果,混合工质的多次分流可以保证分离出来的润滑油随高温级组分回到压缩机,避免了可能的在低温下脱蜡、凝固堵塞系统的问题。

非共沸混合工质在自动复叠循环中的应用中有其独特性的一面:根据沸点的高低不同而自动实现各组分的分流,这种特性就决定了不同的成分组成和配比组成会表现出不同的循环特性。非共沸混合工质的节流温度不仅与组成成分、蒸发温度有关,而且与过冷度有关:相同条件下,节流前冷凝液的过冷度越大,节流后混合物的蒸发温度越低。

常规压缩机完全胜任驱动自动复叠循环,其运行时的启动工况、排气压力、排气温度均在常规压缩机的允许范围之内,运行相当可靠,这对自动复叠制冷机的商业化生产具有十分重要的意义。

参考文献

1. K1eemenko A P.One flow cascade cycle. The proceeding of the intern ational conference of refrigeration, 1959,1-a-6:34—39

2. Misssimer D J. Refrigerant conversion Auto-Refrigeration Cascade(A RC) system. Int J Refri,1997,20(3):201-207

3. Shankar Vaidyaraman, Costas D.Maranas. Synthesis of Mixed Refriger ant Cascade Cycles. Chem. https://www.wendangku.net/doc/993484615.html,m,2002(189):1057-1078

4. 吴业正,韩宝琦.制冷原理及设备.陕西:西安交通大学出版社,1997.

风冷热泵空调热回收技术简介

风冷热泵空调热回收技术简介 环境污染和能源危机已成为当今社会的两大难题,如何在享受舒适的室内空气环境的同时付出最少的代价逐渐成为人类的共识,在这种背景下以环保和健康为主要特征的绿色建筑应运而生。尽可能少地消耗能源为建筑物创造舒适环境已经成为空调的发展方向,开发利用天然的冷/热源能够为空调带来节能和环保双重效益,因而越来越受到人们的重视。 我们身边的大气环境就是一个巨大的天然资源,可以随意获取和使用、对设备无害,是一种理想的天然冷热源。 空调在制冷的同时,根据能量守恒原理要将与制冷量相当的热量通过冷却塔或冷却风扇向大气中排放掉,此举除造成大气废热污染外,还会产生温室效应。而人们又要另外消耗高品位的电力、天燃气、燃油等能源来加热仅45℃的热水,表面上似乎没有热能的损失,实际上伴随着热能形式转换过程中的熵损失,已经是一种能源的浪费。能不能呢充分发挥高品位能量工作效率和利用低品位能量呢? 答案是肯定的,这就是利用热回收技术则巧妙的在空调制冷的同时将被浪费的热能集中回收来制取卫生热水(或提供冬季采暖用热)。其方法就是在空调制冷压缩机出口侧高温高压制冷剂蒸汽与冷凝器进行热交换的部件前串联或并联一个换热设备(制冷剂在空调制冷循环中的物化状态及性质在此不再累叙),在废热没有被冷却塔或冷却风机排放到大气环境中去之前就将这部分热量回收提走,这样既保证了热量的

有效回收再利用,又保护了大气环境免受热污染,而这部分回收的废热则可以用来加热卫生用热水,直接产生二次经济效益,一举数得。在风冷热泵空调机上应用热回收技术时,夏天相当于增加了一个水冷却装置。水冷却效率比风冷却效率高,空调制冷机因此可节能10~15%,而且由于冷凝温度降低还可延长压缩机使用寿命。 冬天热泵则转换为制热模式,为房间提供采暖用热媒水。在满足采暖需求的前提下还可以生产部分卫生用热水。 在春秋季过渡季节,建筑物既无制冷要求、又无供热需要,则可以充分利用热泵设备的高效热转换效率来生产卫生热水。 在满足热水加热要求的前提下,其余时间还可以对蓄热水箱进行循环保温加热,大大降低的运行费用。 热回收技术还使一机三用成为可能。利用热泵技术冬季向建筑物供暖、夏季向建筑物供冷、并可同时提供卫生热水,配以四管制系统还可以实现夏季无需投入锅炉的前提下同时制冷、供暖,大大提高了设备的综合利用率,性价比极高,其能源利用率为传统方式的2~3倍,投入1kW的电能可得到3~4kW以上的制冷或供热的能量(额定工况下) 对于我国这样一个人口众多、能源日益紧张,资金有限的实际状况,在室外气候条件合适的地区大力推广热泵制冷采暖和制卫生热水,是符合国家可持续发展战略的,也是充分保障使用方的社会效益及经济效益的。

空调热回收系统的影响因素及节能分析

空调热回收系统的影响因素及节能分析 摘要】文章首先论述了四种常见的空调系统利用排 风对新风进行预处理的热回收装置,对其节能方式加以分析,并介绍了水环热泵热回收装置、冷凝热回收装置的工作原理及其特点,最后阐述了影响空调热回收系统的几种常见因素,仅供大家参考。 关键词】空调热回收系统、影响因素、节能分析 、八 .前言 现阶段,在我国经济高速发展的背景下,空调普及率也 得到不断提高,其总能耗越来越高,余热大量浪费作为空调 系统能耗的特点之一,受到越来越多的重视,所以,降低空 调系统能耗其中条很重要的措施就是保证预热与废热回 收潜力得以充分挖掘与利用。 二.空调热回收系统节能分析 1、较为常见的四种排风热回收设备 1)转轮式全热交换器 转轮式热交换器主要有转轮、驱动马达、机壳和控制部 分组成。新风和排风分别在两个半部对向通过回转着的转轮转芯部分,转芯是用石棉纸、铝或其他材料制作的,呈蜂窝 状(其中波纹板的峰高大致在 1.66mm?2.66mm),它蓄存着 从排风中获得的能量,当转向另一侧时,这些能量为新风所带走。如果转轮用吸湿材料制作,回收显热的同时还可以回收潜热,即为

转轮式全热换热器。 2)板翅式显热换热器 板翅式热交换器是应用板式换热原理工作的换热器。 新风与室内空调排风分别呈正交叉方式流经板翅式显 热换热器,进行传热显热交换过程。在夏季新风从排风获得冷量从而降温降湿;在冬季新风从排风中获得热量从而增温增湿。通过板翅式显热交换器回收能量,降低了系统的新风负荷。板翅式显热交换器的优点是结构简单;新、排风互不接触,可防止空气污染;可改变风量来调节热回收效率;无传动部件,运行可靠使用寿命长。其缺点是通过气流受到露点温度的限制,凝结水,结冰现象使其寿命下降。 3)热管式热交换器 热管式热交换器主要由一定数量的热管组成。热交换器 有两个部分,分别通过热气流和冷气流。由内部充注一定量冷媒的密闭真空金属管构成热管,一旦热管一端(冷凝端)受热,吸收外界热量后,管中液体迅速气化,在微小压差下流向热管的另一端,向外界放出热量后冷凝成为液体,液体通过贴壁金属网的毛细抽吸力返回到加热段,并再次受热气化,不断循环,热量就从管的一端向另一端传递。采用相变

板式热回收原理及应用

板式热回收原理及应用 https://www.wendangku.net/doc/993484615.html,/EEB/heat_recovery.html 工作原理 板式能量回收换热器有两种型式,即显热回收和全热回收。 两股由导热导湿材料隔绝而又逆向流动的气流,当存在温度或湿度差时,就会发生热或湿的传递,从而实现能量回收,其工作原理如图。 显热回收是通过传热铝箔进行热量的交换,而全热回收则是通过全热交换纸进行热和湿的交换,这种全热交换纸纤维间隙很小,只有水蒸气分子能够通过,而直径较大的有害气体或异味气体分子无法通过,同时能进行热的传递。 结构特点 显热回收换热器采用耐海水腐蚀的优质亲水涂层铝箔做传热导体,采用特殊工艺加工而成,具有换热效率高,易于维护,寿命长等特点,该种换热器特别适用于室内外温差大,湿度小的地区。 全热回收换热器采用进口优质全热交换纸做传热传湿导体,具有透湿率高,气密性好,抗撕裂,耐老化和传热效率高等特点。该种换热器主要适合于室内外温差小,湿度大的地区。 没有运动部件,设备维护费用较少。 结构紧凑,体积小,适合各种场合。

热回收效率 寿命周期成本 工作原理 板式能量回收换热器有两种型式,即显热回收和全热回收。 两股由导热导湿材料隔绝而又逆向流动的气流,当存在温度或湿度差时,就会发生热或湿的传递,从而实现能量回收,其工作原理如图。

显热回收是通过传热铝箔进行热量的交换,而全热回收则是通过全热交换纸进行热和湿的交换,这种全热交换纸纤维间隙很小,只有水蒸气分子能够通过,而直径较大的有害气体或异味气体分子无法通过,同时能进行热的传递。 结构特点 显热回收换热器采用耐海水腐蚀的优质亲水涂层铝箔做传热导体,采用特殊工艺加工而成,具有换热效率高,易于维护,寿命长等特点,该种换热器特别适用于室内外温差大,湿度小的地区。 全热回收换热器采用进口优质全热交换纸做传热传湿导体,具有透湿率高,气密性好,抗撕裂,耐老化和传热效率高等特点。该种换热器主要适合于室内外温差小,湿度大的地区。 没有运动部件,设备维护费用较少。 结构紧凑,体积小,适合各种场合。 热回收效率

热回收技术应用原理

热回收技术应用原理 一、热回收原理 制冷机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 制冷压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物质),再经过冷凝器和膨胀阀,在蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,返回压缩机。图中热回收器便是热量回收的载体,起着热量回收和转移的作用。根据热力学第一定律可以得到如下关系式φ?k′+φ?R=φ0′+P?in′式中,P?in′—压缩机吸收并压缩制冷剂消耗的功率; φ0′—制冷剂在蒸发器吸收的热量,即制冷量; φ?R—制冷剂在热回收器中放出的热量,即热回收量; φ?k′—制冷剂在冷凝器中冷凝(或过冷)放出的热量。 雷诺威机房空调,雷诺威精密空调 二、热回收类别 针对热回收器回收热量的多少,热回收又可以分为部分热回收和全热回收。其中,部分热回收只能回收冷水机组排放的部分热量,全热回收基本回收了系统排入环境中的全部热量。 三、热回收器形式 根据使用场所的不同和用户终端的具体需求,热回收器可以采用多种不同的形式,如管壳式、板式、翅片管式、套管式等。 四、热回收技术在冷水机组上的一般应用 根据冷水机组通常的使用场所,一般以水作为热量回收的媒介,在此以制取免费卫生热水为例展开讨论。 五、热回收技术原理 热回收器里通过的是高温高压的气态制冷剂(温度约70℃—85℃),在高温高压制冷剂通过热回收器的同时,利用循环水泵将常温的水送入热回收器,在热回收器里水与高温制冷剂蒸气进行热交换,制冷剂被冷凝的同时将水温升高,然后返回热水储存箱,水泵再次从储存箱中将水送入热回收器进行循环加热,使热水温度进一步升高。储存箱中的水经热回收器多次热交换,最终达到客户要求的水温(55℃-60℃左右)。当热水温度达到设定值时,循环水泵停止工作。 通过热水阀自储存箱中提取卫生热水,一旦水箱中水位降低,补水装置自动补水,此时水温开始下降,当水温降到低于设定值时,热水循环泵自行启动运转,再次通过热回收器对储存箱的水进行循环加热(前提是冷水机组在运行中),这样就确保储存箱中的热水温度维持在相对恒定的范围内。

空调系统热回收技术简介

空调系统热回收技术简介 陈振乾施明恒 (东南大学能源与环境学院南京210096) 摘要:中央空调系统的热回收技术在建筑节能中具有重大的意义。本文分析了中央空调热回收技术原理和建筑中央空调排风及空气处理中的能量回收系统。 Brief Introduction to Heat Recovery in Air Conditioning System Chen Zhenqian and Shi Mingheng (School of Energy and Environment, Southeast University, Nanjing 210096) Abstract: Heat recovery technology in central air conditioning system is very important in building energy saving. The principle of heat recovery technology in central air conditioning system is analyzed. The energy recovery in exhaust air and air handling of building is introduced. 一、前言 随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,根据发改委能源组提供的材料,从1980年到1985年我们国家GDP的年增长率是10.7%,能源消费的增长率是10.9%,1986—1990年GDP年增长是7.9%,能源消费的增长率9.2%。1991—1995年GDP的年增长率是12%,能源消费的增长率是5.9%。1995—2000 年,GDP开始时8.3%,后来调整为8.6%,能源消费增长率是0.6%。2001—2005年GDP年增长率是9.47%,能源的消费增长是9.93%。其中2003年GDP的增长率是10%,能源是15.3%,2004年GDP是10.1%,能源增长率是16.1%。从这个数字可以看出,我们国家从1980—2005年GDP的增长一直在7.8—12%之前,基本上是这个范围内波动,而能源消耗的波动很大,特别是2003、2004年,能源的消费增长远远高于GDP的增长。和发展国家相比我国每平方米的能耗是他们的3倍,这说明在能源的高消费上必须要引起全社会的重视。目前中国每年竣工建筑面积约为20亿m2,其中公共建筑约有4亿m2。在公共建筑(特别是大型商场、高档旅馆酒店、高档办公楼等)的全年能耗中,大约50%~60%消耗于空调制冷与采暖系统,20%~30%用于照明。而在空调采暖这部分能耗中,大约20%~50%由外围护结构传热所消耗(夏热冬暖地区大约20%,夏热冬冷地区大约35%,寒冷地区大约40%,严寒地区大约50%)。从目前情况分析,这些建筑在围护结构、采暖空调系统,以及照明方面,共有节约能源50%的潜力。采暖空调节能潜力最大,在暖通空调设计方面加以控制就能够有效的节能能源。而新风带来的潜热负荷可以占到空调总负荷的20%-40%,开发节能的新风系统是建筑节能领域的一项重大课题。因此降低空调系统的能耗对降低建筑物耗能、节约能源有重要意义。本文主要对空调系统的热回收技术原理进行分析介绍。 二、空调冷水机组余热回收 中央空调的冷水机组在夏天制冷时,一般机组的排热是通过冷却塔将热量排出。在夏天,利用热回收技术,将该排出的低品位热量有效地利用起来,结合蓄能技术,为用户提供生活热水,达到节约能源的目的。目前,酒店、医院、办公大楼的主要能耗是中央空调系统的耗电及热水锅炉的耗油消耗。利用中央空调的余热回收装置全部或部分取代锅炉供应热水,将会使中央空调系统能源得到全面的综合利用,从而使用户的能耗大幅下降。通常,该热回收一般有部分热回收和全部热回收。 1、部分热回收 部分热回收将中央空调在冷凝(水冷或风冷)时排放到大气中的热量,采用一套高效的热交换装置对热量进行回收,制成热水供需要使用热水的地方使用,如图1所示。由于回收的热量较大,它可以完全替

中央空调热回收节能方案的分析

中央空调热回收节能方案的分析 发表时间:2019-04-25T10:41:30.173Z 来源:《基层建设》2019年第4期作者:张敏 [导读] 摘要:随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。 深圳市华阳国际工程设计股份有限公司广东深圳 518000 摘要:随着我国空调普及率的逐年提高,其能耗不断增加,建筑能耗在总能耗中所占比重越来越大。在一些欧美国家,建筑能耗中的采暖、通风和空调的耗能占全国总能耗的30%;在我国也达到20%左右,而且在迅速增加。高级民用建筑的中央空调耗能占建筑总耗能的30%~60%。能源的高消耗对我国发展造成了很大的压力,空调制冷冷水机组在制冷的时候,压缩机排出的高温、高压制冷剂气体在冷凝器中冷凝放热,在常规冷水机组中这部分冷凝热量全部需要通过冷却水系统排至大气中。若能采用热回收机组回收此部分热量用于生活热水的加热,既可节约生活热水的能耗,又可减少因空调而产生热排放,减少对环境造成的热污染。本文对某酒店设计是否采用热回收冷水 机组进行经济分析比较。 关键词:生活热水;热回收冷凝器;热回收 一、项目基本情况: 1、背景 某酒店总建筑面积64246m2,空调总冷负荷6964KW,常规设计二台制冷量为2813KW(800USRT)的离心式冷水机组,一台制冷量为1336KW(380USRT)的螺杆式冷水机组。热水由浮动盘管立式容积式换热器换热后提供,换热方式为汽水换热,蒸汽由燃油燃气两用锅炉供应。 2、现状 本酒店热水由浮动盘管立式容积式换热器换热后提供,换热方式为汽水换热,蒸汽由燃油燃气两用锅炉供应。 3、存在的问题 燃油燃气两用锅炉热效率、运行费用高、需要配备专业的锅炉工、安全隐患多。 二、技术原理及适用范围: 1、冷却水热回收 方式一,冷却水热回收方式,其原理方式如图1。这种热回收方式是在空调冷却水的出水管路中增加一个热回收换热器,从冷却水中回收一部分热量用于生活热水的加热,这种方式的缺点是生活热水的出水温度较低,回收的余热量也较少,生活热水还需要通过换热器再加热才能达到生活热水所需要的温度(55℃~60℃),其投资的回收期也较长,优点是热回收冷水机组制冷运行不受影响。 2、排气热回收(串联) 方式二,在冷水机组中增加一个串连的热回收冷凝器,其原理方式如图2。这种方式使生活热水直接与压缩机的高温排气直接换热,因此可以提供较高的出水温度,螺杆式热回收冷水机组的热水出水温度甚至可以达到55℃,同时冷水机组的制冷运行效率不受影响。这种方式的不足之处是热回收量比例较小,一般不到冷水机组制冷负荷的20%。在本项目中,一台1378KW螺杆式冷水机组只能提供约267kw的回收热量(某品牌参数),热回收比例19.3%,不能满足酒店生活热水用量的需求。 3、排气热回收(并联) 方式三,在冷水机组中增加一个并联的热回收冷凝器,其原理方式如图3。这种方式提供的热水出水温度较第一种方式高,其最大的优点是可回收的热量比例高,理论上可以回收冷凝器100%的冷凝热量。缺点是冷水机组的制冷运行效率会下降,热水的出水温度越高,冷水机组的运行COP越低。 由于第三种热回收方式的热回收量大,综合效益高,符合本工程的实际情况,本文重点对第三种方式进行经济分析计算和比较。 图1 冷却水热回收方式图2 排气热回收方式(串联) 图3 排气热回收(并联)方式 三、可行性分析: 1、原理分析 本项目生活热水采用恒压变频调速泵直接供水方式,供水系统分三个区,原热水供水系统原理图如图4。

关于冷水机组热回收技术的说明

附件 关于冷水机组热回收技术的说明 1、热回收的原理及介绍 1.1背景资料 在酒店、宾馆、医院、浴足、桑拿等场所,既需要热水供应,又要制冷空调。一方面要用燃煤/燃气锅炉生产热水,另一方面要用冷却塔(或地下水、风冷风机等形式)把空调在制冷过程中产生的冷凝热散失到大气中,产生污染的同时浪费能源。热水与制冷空调两套方案相互独立,致使制冷空调的余热得不到充分利用,甚是可惜! 空调压缩机产生的冷凝热量等于空调系统从制冷空间吸收总热量加上压缩机的发热量,约为制冷量的115%以上。目前绝大部分的空调设计,这部分的热量不但没有利用,还要消耗水泵、冷却塔、风冷风机等动力电能,将这部分热量排到大气环境(或地下环境)中去。如果把这一部分热量利用起来,变废为宝,免费获取生活热水,实现空调系统的单向能耗,双向输出,在制冷的同时又产生热水,岂不美哉。 1.2冷水机组热回收技术介绍 常规制冷空调用压缩机的出口处的制冷剂温度在65℃~95℃之间,冷凝管的表面热的烫手,空调热回收技术就是利用这部分的冷凝废热资源,来产生热水的。 1.2.1部分热回收如下图: 热回收装 压缩 膨胀水水 水 水

部分热回收(100%+30%的换热铜管) 双管束换热器:制冷剂侧共用一个回路,水侧上下分层。 1.2.2全部热回收 全热回收(100 %+100%的换热铜管) 双管束冷凝器:制冷剂侧共用一个回路,水侧左右分层。 30℃ 45℃ 制冷剂

2、热回收量 热回收温度一般不高于60℃ 2.1对于水冷螺杆机组的部分热回收量 ① R22机组: 60度热水,回收量最大10%; 55度热水,回收量最大 15%;50度热水,回收量最大30%;45度热水,回收量最大50% 。 ② R134a 机组: 60度热水,回收量最大8%; 55度热水,回收量最 大14%; 50度热水,回收量最大29%;45度热水,回收量最大50%。 说明: ① 对于不同的热回收温度和热回收量,机组需要进行不同的设计和报 价。 ② 以上参数为公司提供的标准热回收产品的性能参数。 2.2对于水冷螺杆机组的全部热回收量 大约为标况下冷量的100±5% 3、热回收系统热水的用途建议 3.1一般的热回收热水有以下用途: 1) 用于洗澡的淋浴; 2) 用于的洗手; 3) 制备工艺热水 注:根据应用场合的实际需要,选择合适的机组制取满足要求的热水。 ℃ ℃ 冷却水

热回收空调原理、特点及优势

简介:简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。关键字:热回收 热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下: 图3—1 热回收空调系统原理图 热回收空调原理及其节能效果 依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 一、热回收空调的特点 1、就空调系统而言,简约,可靠,无需增加其他电控系统,自动化程度高,运行稳定,无安全隐患。 2、热水系统出水温度恒定(不会有过冷、过热现象发生),能同时实现多点供水,可满足不同需要的生活热水需求。 3、安装容易简便,不受场所限制,安全,使用寿命长。

转轮热回收与乙二醇热回收的比较分析

转轮热回收与乙二醇热回收对比分析 一、转轮热回收和乙二醇热回收工作原理 转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。 乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。 二、关键部件外形图 转轮热回收转轮:乙二醇热回收换热器 三、关键部件材质 转轮热回收转轮: 可选用进口优质产品美国百瑞(Bry-Air)热回收转轮,美国百瑞(Bry-Air)热回收转轮为能量回收领域的领先品牌。 其特点如下: 1、独有分子筛技术:百瑞热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式

分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,美国百瑞(Bry-Air)热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是污染物只留在排风中。 2、百瑞转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.04%。 3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。 乙二醇热回收换热器: 排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。 四、与空调系统配套情况 转轮热回收: 由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。 乙二醇热回收: 由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。 五、换热效率 转轮热回收: 中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达90%(焓换效率)。 乙二醇热回收: 间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。 下面就本工程单台机组冬季运行时作经济分析: 转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

热回收空调原理

热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下: 图3—1 热回收空调系统原理图

热回收空调原理及其节能效果 依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 一、热回收空调的特点 1、就空调系统而言,简约,可靠,无需增加其他电控系统,自动化程度高,运行稳定,无安全隐患。 2、热水系统出水温度恒定(不会有过冷、过热现象发生),能同时实现多点供水,可满足不同需要的生活热水需求。 3、安装容易简便,不受场所限制,安全,使用寿命长。 4、节能环保,运行费用省,经济效益高。 二、热回收空调的优势 1、热回收系统充分利用空调系统的废热,将空调系统中产生的低品位热量有效地利用起来,达到了节约能源的目的。 2、热加收系统减少了排到环境的废热;同时,由于取消冷却塔,减小了建筑物周围的噪音,有效地保护了建筑物周围的环境。 3、使用热回收系统,用户不再需要在家中设置热水器,这样就给用户带来方便与安全;同时,使用热回收系统,业主可以简化或者省去热水加热系统,从而也简化了系统的运行管理。使用热回收系统,是利用废热来回热生活热水,这样就降低了用户使用生活热

热回收空调原理、特点及优势

热回收空调原理、特点及优势

热回收空调原理、特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越多行业学者的关注,这与其本身具备的特点和优势是密不可分的。 热回收空调原理 一、常规空调制冷系统中的能耗问题 业内人士都知道,“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外界能量(如电能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的温度降低的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有利用,还要消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部

分热量利用起来,则可以实现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。 二、热回收原理 因此,基于以上系统能源再利用的出发点考虑,广州哈思空调有限公司研发生产的热回收空调技术,取得了很好的节能效果。其系统原理图及相关工作原理如下:

依上图(图3—1)所示,冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放出来的热量,不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各项生活热水之用。整个空调系统是以电能来驱动工作,而非电能来制热。就节能方面同比之下,电资源虽丰富,但用电直接制热的方式不但耗电量大,运行成本高,而且电热管容易损坏;对于常规用燃油锅炉加热的方式,由于燃油的价格高,产生的效能并不高。因此,该热回收空调技术在节能方面的效果是相当显著的,而且该系统在夏季制冷时所产生的热水是完全免费的。 热回收空调特点及优势 简单地说,热回收空调是把制冷循环中制冷工质冷凝放热过程放出的热量利用起来制备热水。在如今能源紧张、资源匮乏的年代,节能、环保已成为持续发展的主题,空调作为建筑的主要能耗之一,怎么从空调上节约能源是迫切需要面对的问题。热回收空调显著的节能效果现受到越来越

水冷冷水机组热回收介绍

水冷冷水机组热回收方式分类 目前水冷冷水机组有冷却水热回收与排气热回收两种方式。 1)冷却水热回收是在冷却水出水管路中加装一个热回收换热器,如图1所示。这样可以使“热水”从冷却水出水中回收一部分热量。虽然热水的出水温度小于冷却水的出水温度,但是冷水机组的制冷量与COP基本不变。 2)采用排气热回收的冷水机组通常采用增加热回收冷凝器,在冷凝器中增加热回收管束以及在排气管上增加换热器的方法。目前常见的是采用热回收冷凝器,如图2所示。从压缩机排出的高温、高压的制冷剂气体会优先进入到热回收冷凝器中将热量释放给被预热的水。冷凝器的作用是将多余的热量通过冷却水释放到环境中。值得注意的是热水的出水温度越高,冷水机组的效率就越低,制冷量也会相应地减少。 3热回收冷水机组关注点 1)最大热回收量

热回收冷水机组的热回收量在理论上是制冷量和压缩机做功量之和,某些机组最大热回收量可达总冷量的100%。在部分负荷下运行时,其热回收量随冷水机组的制冷量减少而减少。 2)最高热水温度 热回收冷水机组以制冷为主,供热为辅。热水温度越高,则冷水机组的COP越低,甚至会使机组运行不稳定。一般需加其他热源提高热水温度 3)热水温度/热量的控制 热水回水温度控制方案:机组在部分负荷下运行时,热回收量减少,热水的回水温度不变而出水温度降低,使热水(冷却水)的平均温度降低,减少冷凝器与蒸发器压差,冷水机组的COP相对较高。 热水供水温度控制方案:效果相反,可能导致冷水机组运行不稳定。 4热水回水/供水温度控制方案比较 如图3所示,比较热水回水/供水温度控制方案: 1)在100%负荷时,冷却水的供、回水温度为41OC和35OC,其温差为6OC,平均温度为38OC。 2)在50%负荷时,冷却水的流量不变,供、回水温差是100%负荷温差的50%,即为3OC。 3)热水回水温度控制方案:冷却水的回水温度恒定为35OC,由于供、回水温差为3OC,故冷却水的供水温度变为38OC,供、回水的平均温度为36.5OC,比100%负荷时低1.5OC。冷水机组COP相对较高,冷水机组运行稳定性好。 4)热水供水温度控制方案:冷却水的供水温度恒定为41OC,由于供、回水温差为3OC,故冷却水的回水温度变为38OC,供、回水的平均温度为39.5OC,比100%负荷时高1.5OC。冷水机组COP相对较低,可能导致冷水机组运行不稳定。 5排气热回收热量控制原理 图4为排气热回收冷水机组控制原理图,它利用从压缩机排出的高温气态制冷剂向低温处散热的原理,提高标准冷凝器的水温,促使高温气态制冷剂流向热回收冷凝器,将热量散给热回收冷凝器的水流中。通过

中央空调废热全热回收技术原理

天然科技中央空调废热全热回收技术 一、中央空调废热全热回收技术原理: 中央空调运用卡诺循环的原理,通过消耗少量的电能做功,把房间内大量的热量转移到室外,在整个过程中遵循热力学第一定律。因此中央空调散发到室外的热量远远大于其耗电量。 众所周知,夏季空调器在制冷运行的同时,必须通过冷凝向外界散发出大量的冷凝废热,目前绝大部分空调器在设计时并没有将这部分热量加以有效的利用,而是将其直接排放到大气中,如风冷机组铜鼓风扇、水冷机组通过冷却直接向外界排放大量的热量,而因主机的机器效率和电机的功率因素散发出热量大约是制冷量的120%。因此,热回收技术利用这部分热量来获取热水,实现空调废热再利用的目的,它是在原有空调机组上改进,在中央空调机组上安装一个高效的热回收设备及热泵接驳装置,该装置使高温的冷媒与自来水进行热交换,将排到大气中的废热转变为有用的可再生二次能源,免费制造75-100℃生活热水及供暖功能。 二、中央空调机组节能改造热泵制暖、废热回收制热水系统: 1.热回收技术应用于水冷机组,减少原冷凝器的热负荷,使其热交换效率更高;应用风冷机组,使其部分实现水冷化,使其兼具有水冷机组高效率的特性;根据我们的工程经验所有的水冷、风冷机组。经过热回收改造后,其工作效率都会有如下显著的改善。

2.制冷时降低了冷凝压力,也就是降低压缩机的排气压力,使空调机组耗电量节约10-30%。 3.制冷时降低了冷凝温度,提高机组制冷量。根据计算:冷却水温度(冷凝温度)每降低1℃:机组制冷量可提高1.3%。冷凝热回收后,如果冷却水流量不变,冷凝温度可降低3-5℃:可提高机组制冷量4%左右,节电效果明显。 4.在过渡时期不冷不热天气,或冬季气温低时,空调系统转换热泵模式控制系统,进行全热回收供酒店客房制暖及制热水。制暖时空调机组实现单向耗能,双向输出,在不受影响制暖的同时制造免费的 60-100℃生活热水。 5.风冷机组经过节能改造后热水可达到100℃,水冷机组经过节能改造后热水可达到60-80℃。 6. 热回收系统可自动回收现有的空调废热制取60℃-75℃的免费热水(系统可自行设定出水温度最高水温可达100℃),空调可再生能源二次利用减少地球资源损耗,节约烧水的电力、燃气燃油热水锅炉的资源消耗,减少空调系统温室气体排放数量及燃油锅炉的废热污染破坏地球环境,减少城市热岛效应,有效的保护大自然生态环境,使空调系统能源得到全面的综合利用,达到双节能及双减排经济效益。 7.本系统广泛应用于酒店、宾馆、招待所、医院、酒家、桑拿浴室、高级公寓、游泳池、学校、企业、工厂、家庭等需要大量热水、制冷

排风热回收系统经济性分析报告

排风热回收系统经济性分析报告

目录 目录 (2) 1、技术原理 (3) 2、项目方案 (4) 3、空调系统设计参数及设备性能参数 (4) 4、热回收经济分析 (5) 4.1夏季节约费用计算 (5) 4.2冬季节约费用计算 (6) 4.3夏、冬季节约费用合计 (7) 5、回收期计算 (7) 6、结论 (7)

排风热回收系统方案设计 1、技术原理 在空调系统中,为了维持室内空气量的平衡,送入室内的新风量和排出室外的排风量要保持相等。由室外进入的新风通过一些空调段的处理(冷却、加湿、加热等)到合适的状态才能被送入室内。这样,新风和排风之间就存在一种能耗,一般称之为新风负荷。新风量越大,需要被处理的空气越多,则新风负荷就越大。然而,对于常规的空调系统,排风都是不经过处理而直接排至室外,导致这一部分的能量被白白的浪费掉。 空气热回收装置是使进风和排风之间产生显热或全热交换,回收冷(热)量的装置。国家标准《室内空气质量标准》GB/T1883-2002于2002年开始施行,此标准规定了每个人的新风量为30CMH,新风量的大小不仅关系到保证人体的健康,也与能耗、初投资和运行费用密切相关。2005年国家建设部又颁布了《公共建筑节能设计标准》GB50189-2005,进一步划分不同场合的新风量标准。排风热回收装置的运用使得新风处理的能耗减少而节能并降低了运行费用。 空气热回收装置运行原理是:夏季运行时,室内排风通过热回收装置时,轮芯吸收房间空气的冷量,温度降低,含湿量降低,当轮芯转到进风侧与室外新鲜空气接触时,装置向高温的新鲜空气放出冷量及吸收了水分,使新鲜空气降温降湿。冬季与之相反,升高新风温湿度。通过回收排风中的冷热量使空调系统的制冷量制热量降低,达到了节能的目的。

转轮热回收原理及应用

转轮热回收原理及应用 ?https://www.wendangku.net/doc/993484615.html, ?https://www.wendangku.net/doc/993484615.html,/EEB/heat_recovery.html 转轮式全热交换器的心脏是一个以10转/分钟的速度不断转动的蜂窝状转轮.转 芯用特殊金属箔作载体,将无毒、无味、环保型蓄热、吸湿材料,用高科技方法合成,制作成具有蓄热吸湿等性能的蜂窝状转轮,装配在一个左右或上下分隔区的金属箔箱体内由传动装置通过皮带驱动轮子转动。冬季运动时,室内排风经过过滤后再通过热回收转轮处理时,转芯温度升高,水分含量增加,当转芯转过清洗扇后与室外新鲜空气接触,转轮向低温的新鲜空气放出热量和水分,使新鲜空气升温增湿。夏季与之相反,降低新风温湿度。通过换热从而使空调系统达到节能的目的。 这种蜂窝式转轮的设计构成了一个吸湿、蓄热、传质、传热的巨大接触面积,蕴藏了超级能量,具备了回收显热和潜热的优异特性。 在空调系统中,为了人员舒适和通风顺畅,必须考虑引入外界新鲜空气,同时排出部分室内浑浊空气。由于新风为高温高湿状态,因此冷负荷大部分要被新风负荷所占有,能耗惊人。 工作原理 转轮式能量回收换热器有两种型式,即全热回收和显热回收。 转轮作为蓄热芯体,新风通过轮转的一个半圆,而同时排风逆向通过转轮的另一个半圆,新风和排风以这种方式交替逆向通过转轮。 在冬季,转轮蓄热芯体吸收排风中的热(湿)量,当转到新风侧时,由于存在温(湿)差的原因,蓄热芯体就会释放其中的热(湿)量,当再转到排风侧时,又继续吸收排风中的热(湿)量。如此往复循环实现能量的回收,其工作原理如图。 在夏季则是一个相反的处理过程。

结构特点 高热回收效率:蜂窝状的蓄热芯体设计,构成了一个蓄热、吸湿、传热、传质的巨大接触面积具备了回收显热和潜热的优异特性。 自清洁功能:通过转轮的气流方向不断的交替改变以及设置双清洁扇面,保证了自清洁能达到最佳的效果。 低运行费用:转轮的结构特点,决定了其运行费用较低。 便于控制:可以根据室内外温湿度变化控制转轮转速,以达到最佳运行效果。 热回收效率 寿命周期成本 标准的转轮能量回收换热器装有双清洁扇面,其工作原理如图。这种结构不仅防止了气体、细菌、灰尘颗粒等在转轮中从排风混流到新风中,也确保了气流的充分分开和气流的交叉污染,这在某些场合显的优为重要。

热回收技术原理及其在冷水机组上的应用

热回收技术原理及其在冷水机组上的应用 1.前言 本世纪头二十年,我国经济将继续保持平稳较快的增长态势,然而能源的相对短缺已越来越成为制约我国经济持续健康发展的瓶颈,这一矛盾在今后相当长的时期内将长期存在,并且有愈加明显的趋势,同时,经济的高速发展也是以牺牲环境为代价的,如今人们赖以生存的环境已不堪重负。为此,国家确立了“节约与开发并重,节约优先”的能源方针,并提出“科学发展观”,“构建社会主义和谐社会”的全新发展理念。随着生活水平的不断提高和生产条件的日益改善,人们对生产生活环境也提出了更加严格的要求,如今,各类冷水机组已成为重要的实现方式,但伴随的却是巨大的能源消耗。因此,节能降耗理应成为全社会共同的责任,更是摆在每一家空调制造企业面前重大的课题。 2.单级蒸气压缩式制冷循环 压缩机吸收来自蒸发器的低温低压气态制冷剂,压缩成高温高压的制冷剂蒸气排入冷凝器,冷凝为中温(30℃—50℃)高压的制冷剂液体,经膨胀阀节流降压为低温低压的液态制冷剂(实际为气液混合物),进入蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,回到压缩机,完成一个制冷循环。 由热力学第一定律可知,φk=φ0+Pin 式中,Pin—压缩机吸收并压缩制冷剂消耗的功率; φ0—制冷剂在蒸发器吸收的热量,即制冷量; φk—系统通过冷凝器放出的热量。 3.热回收技术 3.1热回收原理 机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物

空调热回收技术

空调热回收技术 在科技高度发达的今天,人们追求更舒适的生活,为此空调和热水系统已普遍的用于公共建筑和 住宅。然而空调行业是耗能大户(约占建筑总能耗的 60%以上),空调将室内的热量连同其耗废的能量 一同排往室外,给室外环境造成了严重的热污染,并加重了城市的热岛效应;另外,需要利用新的高 品质能源提供热水,这造成了能量的双重浪费。面对能源日益紧张,资源严重浪费, “节用”、空调不 可再生能源的二次利用及环保的重要性在经济社会的发展进程中日渐凸现。 我司经过三年不懈努力的钻研,研发出两种不同形式的划时代的空调热回收技术:一是空调主机 逆卡诺循环系统三级独立热交换回收余热技术; 二是覆叠式热交换回收中央空调系统冷却水余热技术。 空调热回收技术原理及具体实施方式: 空调热回收技术是根据能量守衡原理,把室内的热量转移到水中,进行能源的二次有效利用,既 避免了废热对大气环境的污染,减少了热岛效应的现象,又免费提供了生活热水,有效节能。 空调主机逆卡诺循环系统三级独立热交换回收余热技术 是在其各自的热区独自作循环热 回收,各工作状态点作不断良性循环,避免了高压前侧液团堵塞,避免了冷凝高温高压所形成电机增 大反力矩。其具体实施技术是在原有空调机组的基础上改进,在压缩机的吐出段设置相应的套管式换 热器联接,用电磁阀控制交换水量,使冷媒的温度降到 70 C;冷凝器同样采用套管式换热器联接,用 电磁阀控制交换水量,使冷媒的温度降到 40C ;节流前同样采用套管式换热器联接,通过补充水(自 来水)热交换使冷媒温度降至或接近自来水温。三个热交换的热水分别联接:其一是接至 66C 保温水 箱循环,其二是接至 45C 保温水箱循环,其三是接至 45 C 保温水箱补充水入口,以此形成的三级热回 收(原理图如图一所示)。这样既能生产大量 60C 以上的热水,又能使设备良性循环、长期稳定、节能 运行。 覆叠式热交换回收中央空调系统冷却水余热技术 是在原有中央空调系统的基础上加装热 回收冷水机组,热回收冷水机组作为高效移热并转移热量的系统装置,并(与冷却塔落差小)或分流 旁路联接中央空调冷却水,使冷却水经自动调节阀进入“热回收冷水机组“的蒸发器进行热交换。使 中央空调冷却水的热量移向生活热水池,从而提供了所需要的大量 60C 以上的热水(原理图如图二所 示)。 空调热回收技术特点: 空调系统采用热回收技术,其整个大楼的经济效益都会有显著的改善: 一机二用,既为室内提供空调,又能全天候(不受气候变化)供应生活热水,省去热水锅炉的投 资。 降低了空调机组的耗电量,有效的提高了空调主机的能效比,减少了运行费用。 使设备运行平稳可靠,延长了设备的寿命。 夏天实现了能源的二次利用, “变废为宝”,免费提供了生活热水;冬天热回收型热水机组制热水 机理等同于热泵热水器,其运行费用约为电热水锅炉的 科研创新 1/4。

相关文档
相关文档 最新文档