文档库 最新最全的文档下载
当前位置:文档库 › 专题九 解析几何第二十七讲 双曲线答案

专题九 解析几何第二十七讲 双曲线答案

专题九  解析几何第二十七讲 双曲线答案
专题九  解析几何第二十七讲 双曲线答案

专题九 解析几何

第二十七讲 双曲线

答案部分

1.B 【解析】由题可知双曲线的焦点在x 轴上,因为2

2

2

314c a b =+=+=,

所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .

2.B 【解析】因为双曲线2213-=x y

的渐近线方程为=y x ,所以60∠=MON .不妨设过点F

的直线与直线=

y x 交于点M ,由?OMN 为直角三角形,不妨设90∠=OMN ,则60∠=MFO ,又直线MN 过点(2,0)F ,所以直线MN

的方程为

2)=-y x ,

由2)?=-??=??y x y x

,得3

2

2

?=??

??=??

x y

3(2M ,

所以||==OM

所以|||3==MN OM .故选B . 3.A 【解析】解法一

由题意知,=

=c

e a

,所以c

,所以=b ,

所以=b a

=±=b

y x a

,故选A .

解法二

由=

==c e a

,得=b a

,所以该双曲线的渐近线方程为

=b

y x a

.故选A . 4.C 【解析】不妨设一条渐近线的方程为b

y x a

=

, 则2F 到b y x a =

的距离d b ==,

在2Rt F PO ?中,2||F O c =,所以||PO a =,

所以1||PF ,又1||FO

c =,所以在1F PO ?与2Rt F PO ?中,

根据余弦定理得12cos cos a POF POF c

∠==-∠=-,

即2223)0a c +-=,得2

2

3a c =.所以c

e a

=

=.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a

,2

(,)b B c a -,

取双曲线的一条渐近线为直线0bx ay -=,

由点到直线的距离公式可得22

1bc b d c -==,22

2bc b d c +==

, 因为126d d +=,所以

22

6bc b bc b c c

-++=,所以26b =,得3b =. 因为双曲线22221(0,0)x y a b a b

-=>>的离心率为2,所以2c

a =,

所以222

4a b a +=,所以2294a a +=,解得2

3a =, 所以双曲线的方程为

22139

x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.

因为双曲线22221(0,0)x y a b a b

-=>>的离心率为2,所以2c

a =,

所以222

4a b a +=,所以229

4a a +=,解得23a =, 所以双曲线的方程为

22139

x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为

2b

d c

=

=

,圆心(2,0)到弦的距离也为d =

所以

2b c =222c a b =+,所以得2c a =,所以离心率2c

e a

==,选A . 7.B

【解析】由题意可得:

2

b a =

,3c =,又222a b c +=,解得24a =,2

5b =, 则C 的方程为2

145

x y 2-=.选B .

8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±

,由44PF k c c

-==-,由题意有

4b c a

=

,又c

a =,222c a

b =+

,得b =

a =B .

9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2

2

42x y b

y x ?+=??=??

,解得x y ?

=?

?

??=??

, 故四边形ABCD

的面积为2

324424b

xy b b

==

=+, 解得2

12b =.故所求的双曲线方程为

2

22

4=11x y -,选D . 10.A 【解析】由题意得22

()(3)0m n m n +->,解得22

3m n m -<<,又由该双曲线两焦

点间的距离为4,得M 2234m n m n ++-=,即2

1m =,所以13n -<<.

11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2b

y a

=±,

因为211sin 3MF F ∠=,所以2

222

12112||tan ||222b MF b c a a MF F F F c ac ac

-∠=

====,

122224c a e a c e -=-=

,所以2

102e e -

-=

,所以e =A . 12.D 【解析】由双曲线的标准方程2

2

13

y x -=得,右焦点(2,0)F ,两条渐近线方程为

y =,直线AB :2x =

,所以不妨设取A

,(2,B -,

则||AB =,选D .

13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,

故选B .

14.D

【解析】由题意1e a ==

2e ==

()

()

b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >, 所以当a b >时,01b a <

<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m

+<+, 所以12e e <;当a b <时,

1b a

>,1b m a m +>+,而b b m a a m +>+,22

()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.

15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为

2

204

y x -=,即2y x =±,故选C . 16.A 【解析】由题意知2

2a =,2

1b =,所以2

3c =

,不妨设1(F

,2F ,

所以100(,)=-MF x y ,200(3,)=-MF x y ,

又∵00(,)M x y 在双曲线上,所以2

20012

x y -=,即22

0022x y =+, 222

120003310MF MF x y y ?=-+=

-<

,所以033

-

<<

y ,故选A . 17.A 【解析】 由题意22

(,0),(,),(,)b b A a B c C c a a

-,由双曲线的对称性知D 在x 轴上,

设(,0)D x ,由BD AC ⊥得22

1b b a a c x a c

-?=---,解得42

()b c x a c a -

=-,所以42()

b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a ?<

01b a ?<

<,而双曲线的渐近性斜率为b a

±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-,选A .

18.A 【解析】双曲线方程为22

133

x y m -=,焦点F

到一条渐近线的距离为b =A . 19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,

又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .

20.A 【解析】 依题意得22225

b a

c c a b

ì?=???=í???=+??,所以25a =,2

20b =,双曲线的方程为 22

1520

x y -=.

21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,

所以2222

1212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =, 因此22

949b a ab -=,即2

99()40b b a

a -

-=,则(31b a +)(34b a

-)=0, 解得

41(33b b a a ==-舍去)

,则双曲线的离心率5

3

e ==. 22.C

【解析】由题知,c a =54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的

渐近线方程为1

2

y x =±

,故选C . 23.D 【解析】双曲线1C 的离心率是11

cos e θ

=

,双曲线2C 的离心率是

21

cos e θ

=

=

,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率

b

a

必须满

b

a <所以21()33

b a <≤,241()43b a <+

≤,

2<

又双曲线的离心率为c e a =

=23e <≤.

25.C 【解析】∵双曲线22215

x y a -=的右焦点为(3,0),∴2a +5=9,∴2

a =4,∴a =2

∵c =3,∴3

2

c e a =

=,故选C . 26.A 【解析】设双曲线C :22x a -2

2y b

=1的半焦距为c ,则210,5c c ==.

C 的渐近线为b y x a =±

,点P(2,1)在C 的渐近线上,12b

a

∴=,即2a b =. 又2

2

2

c a b =+

,a ∴==∴C 的方程为220x -2

5

y =1.

27.C 【解析】x y 2

2

2-=8可变形为

22

148

x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆2

2

:(3)4C x y -+=,3,c =而

32b

c =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3

y x a

=±,故可知2a =.

30.B 【解析】双曲线22

221(0,0)x y a b a b

-=>>的渐近线为b y x a =±,由双曲线的一条渐

近线与抛物线的准线的交点坐标为(-2,-1)得22

p

-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入b

y x a

=得1b =,

∴c

,即2c =.

31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为

2222

2

21(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312

y y x x b b x x a y y a -+-+=?=?==-+-+,则22225,5,44b b a a ===,

故E 的方程式为

22

145

x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b

-=>>,其渐近线为x a b

y ±=,

∵点(4,2)-在渐近线上,所以

12b a =,由e == 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有22

00143

x y +=, 解得2

2

003(1)4

x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,

所以2

000(1)OP FP x x y ?=++=00(1)OP FP x x ?=++203(1)4x -=2

0034

x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,

所以当02x =时,OP FP ?取得最大值2

22364

++=,选C . 34.12y x =±

【解析】由题意2a =,1b =,∴1

2

b y x x a =±=±.

35.2【解析】不妨设双曲线的一条渐近线方程为b y x

a =

b ==,所

以2

2

2

234b c a c =-=

,得2c a =,所以双曲线的离心率2c

e a

==.

36.232a x c ==,渐近线的方程为y =,

设3(2P ,则3(,2Q ,1(2,0)F -,2(2,0)F ,

所以四边形12F PF Q 的面积为

1211

||||422

F F PQ =?.

37AH MN ⊥,AM AN b ==,MAN ∠=60°,

x

所以30HAN ∠=,又MN 所在直线的方程为b

y x a

=

, (,0)A a 到MN

的距离AH =

在Rt HAN ?中,有cos HA HAN NA =

=

,即2=

因为2

2

2

c a b =+

a c =

,所以c e a ==. 38

.y x =【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+

++=++,而||2p OF =, 所以1242p

y y p ++=?,即12y y p +=,

由22

22212x y a b x py

?-=???=?

得22222

20a y pb y a b -+=,所以2122

2pb y y a +=, 所以22

2pb p a =

,即a =

,所以渐近性方程为2

y x =±.

39.2【解析】221,a b m ==

,所以

c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图

∵OABC 为正方形,2=OA

∴==c OB ,π

4

∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=b

AOB a

又∵2228+==a b c ∴2=a

41.2【解析】由题意||2BC c =,所以||3AB c =,

于是点3(,)2c c 在双曲线E 上,代入方程,得22

22914c c a b

-=,

在由2

2

2

a b c +=得E 的离心率为2c

e a

=

=,应填2. 42

()2

2210x y a a -=>

的一条渐近线为y =

,所以1a =

故3

a =

. 43

2

(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -=

= 44.32【解析】22

122:1(0,0)x y C a b a b

-=>>的渐近线为b y x a =±,

则2222(

,)pb pb A a a ,2

222(,)pb pb B a a

-,22:2(0)C x py p =>的焦点(0,)2p F ,

则22222AF

pb p

a a k p

b b a

-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得222

2(1)4p x a b

=+,根

据已知得22

2

2(1)4p a c b += ①,由||AF c =得

2224

p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.

46

b y x a =±可解得交点为

(

,)33am bm A b a b a --,(,)33am bm B b a b a -++,而1

3AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bm

b a b a b a b a -+

-+-+与点)0,(m P 连线的斜率为-3,可得22

4b a =,

所以2

e =

47.221312

x y -

= 2y x =±【解析】设与2

214y x -=具有相同渐近线的双曲线C 的方程为22

4y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312

x y -=,渐近线方程为2y x =±.

48.45【解析】。所以离心率为45,451625169222

22=?==?=e a

c e a b

49

1【解析】由已知可得,12cos303PF c c ==,22sin30PF c c =

=,由双

2c a -=

,则1c e a =

==. 50.44【解析】由题意得,||||6FP PA -=,||||6FQ QA -=,两式相加,利用双曲线的

定义得||||28FP FQ +=,所以PQF ?的周长为||||||44FP FQ PQ ++=.

51.

121,22,a c PF PF a ==

∴-==

2

2

112224

PF PF PF PF ∴-+=

22

21212122

1212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+=

52.1,2【解析】双曲线的

116422=-y x 渐近线为x y 2±=,而122

22=-b

y a x 的渐近线为x a b y ±=,所以有2=a b

,a b 2=,又双曲线12222=-b

y a x 的右焦点为)0,5(,所以

5=c ,又222b a c +=,即222545a a a =+=,所以2,1,12===b a a .

53.2【解析】由题意得m >0,∴a =m ,b =,4,422++=

∴+m m c m

由e =5=a c 得

54

2=++m

m m ,解得m =2. 54.

22143

x y -=

【解析】由题意可知双曲线的焦点(

,即c =双曲线的离心率

c a =

,所以2a =,故2

3b =,所以双曲线的方程为22

143

x y -=. 55.2【解析】由22

21(0)y x b b -=>得渐近线的方程为22

20y x b

-=,即y bx =±,由一条

渐近线的方程为2y x =得2b =.

56.【解析】(1)设(,0)F c ,因为1b =

,所以c =直线OB 方程为1y x a =-,直线BF 的方程为1()y x c a =-,解得(,)22c c

B a -

又直线OA 的方程为1y x a =

,则3

(,),.AB c A c k a a

= 又因为AB ⊥OB ,所以31()1a a -=-,解得2

3a =,故双曲线C 的方程为22 1.3

x y -=

(2)由(1

)知a =l 的方程为

0001(0)3

x x y y y -=≠,即0033x x y y -= 因为直线AF 的方程为2x =,所以直线l 与AF 的交点

00

23(2,)3x M y -

直线l 与直线3

2x =的交点为00

3

332(,)23x N y

- 则22

022

2004(23)9[(2)]

x MF NF y x -=+- 因为是C 上一点,则2

200 1.3

x y -=,代入上式得 22

2

002

22

220

0004(23)4(23)4

9[(2)]

39[1(2)]3

x x MF x NF y x x --===

+--+-

,所求定值为

MF NF = 57.【解析】(1)设C 的圆心的坐标为(,)x y ,由题设条件知

|4,=

化简得L 的方程为2

2 1.4

x y -= x

T 2

T 1

O

F P

M

(2)过M ,F 的直线l

方程为2(y x =-,将其代入L 的方程得

215

840.x -

+=

解得1212x x l L T T =

=故与交点为 因T 1在线段MF 外,T 2在线段MF 内,故11||||||2,MT FT MF -==

22|||||| 2.MT FT MF -<=,若P 不在直线MF 上,在MFP ?中有 |||||| 2.MP FP MF -<=

故||||MP FP -只在T 1点取得最大值2.

解析几何专题含答案

椭圆专题练习 1.【2017浙江,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 3 B . 33 C . 23 D . 13 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的 右焦点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

第七章空间解析几何 第一节作业 一、选择题(单选): 1. 点M(2,-3,1)关于xoy平面的对称点是: (A)( -2,3,1 );( B)( -2,-3,-1 );(C)( 2,-3,-1 );( D)( -2,-3,1 ) 答:() 2. 点M(4,-3,5)到x轴距离为: (A).. 42—(—3)2—52; (B) 3)2—52; (cr. 4252; (D) : 4252. 答:() 、在yoz面上求与A(3,1,2),B(4,-2,-2) 和C(0,5,1)等距离的点。 第二节作业 设u a b c, v a b 2c.试用a, b, c表示2u 3v. 第三节作业 一、选择题(单选): 已知两点M'2,2,?一2)和M2(1,3,0),则MM2的三个方向余弦为: 1 1 V 2 1 1 <2 1 1 42 1 1 V2 (A) , , ; (B) , , ; (C) —, , . (D) —,,. 2 2 2 2 2 2 2 2 2 2 2 2 答:() 二、试解下列各题: 1. 一向量的终点为B( 2,-1,7),它在x轴,y轴,z轴上的投影依次为4, -4,4,求这向量的起点A的坐标。

2. 设m 3i 5 j 3k, n 2i j 4k, p 5i j 4k 求向量 a 4m 3n p 在x 轴 上的投影及在y 轴上的分向量. 3. 求平行于向量a 6,7, 6的单位向量 第四节作业 一、选择题(单选): 1. 向量a 在b 上的投影为: 答:() 2. 设a 与b 为非零向量,则a b 0是: (A )a//b 的充要条件; (B )a b 的充要条件; (C ) a b 的充要条件; (D ) a //b 的必要但不充分条件 答:() 3.向量a,b,c 两两垂直,w —1- — a 1, b —1- J )2, C 3,则s a b c 的长度 为 (A)1 2 3 6; 2 2 2 (B)1 2 3 14; (C)J12 22 32 ; (D) J1 2 3 勺6. 答:() (A) (B) -a a b (D)

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

专题九 解析几何第二十六讲 双曲线

专题九 解析几何 第二十六讲 双曲线 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y x 3.(2018全国卷Ⅲ)已知双曲线22 221(00)x y C a b a b -=>>:,,则点(4,0)到C 的渐近线的距离为 A B .2 C .2 D . 4.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为 A .22139x y -= B .22193x y -= C .221412x y -= D .22 1124 x y -= 5.(2017新课标Ⅰ)已知F 是双曲线C :2 2 13y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ?的面积为 A .13 B .12 C .23 D .32 6.(2017新课标Ⅱ)若1a >,则双曲线2 221x y a -=的离心率的取值范围是

A .)+∞ B .2) C . D .(1,2) 7.(2017天津)已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 A .221412x y -= B .221124x y -= C .2213x y -= D .2 213 y x -= 8.(2016天津)已知双曲线)0,0(122 22>>=-b a b y a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为 A .1422=-y x B .1422=-y x C .15 320322=-y x D .1203532 2=-y x 9.(2015湖南)若双曲线22 221x y a b -=的一条渐近线经过点(3,4)-,则此双曲线的离心率为 A B .54 C .43 D .53 10.(2015四川)过双曲线2 213 y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB = A .3 B . C .6 D . 11.(2015重庆)设双曲线22 221(0,0)x y a b a b -=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,B C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为 A .12 B .22 C .1 D .2

解析几何第四版吕林根课后习题答案第三章(同名3095)

第三章 平面与空间直线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: ?? ? ??++-=-=--=v u z u y v u x 212123 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: ?? ? ??+-=+-=+=v u z u y u x 317521 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: ?? ? ??+-=+=--=v u z u y v u x 235145 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?

解析几何专题含答案

椭圆专题练习 1.【2017,2】椭圆22 194 x y +=的离心率是 A . 13 B . 5 C . 23 D . 59 2.【2017课标3,理10】已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2, 且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A . 6 B . 3 C . 2 D . 13 3.【2016高考理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合, e 1,e 2分别为C 1,C 2的离心率,则() A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m >的左 焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段 PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为() (A ) 1 3 (B )12 (C ) 23 (D ) 34 5.【2015高考新课标1,理14】一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为. 6.【2016高考卷】如图,在平面直角坐标系xOy 中,F 是椭圆22 221()x y a b a b +=>>0的右焦 点,直线2 b y = 与椭圆交于,B C 两点,且90BFC ∠=,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :22 22=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,

第七章空间解析几何与向量代数[作业No.40]班级_.

第七章空间解析几何与向量代数[作业No.40] 班级 §1空间直角坐标系§2向量及其加减法,向量与数的乗法姓名________ 一、概念题 1、在空间直角坐标系中,指出下列各点在哪个卦限。 (】,-2, 3) ________ (2,- 3,- 4) _________ (- 1,- 3,- 5) _________ (-1, 5,- 3)____________ (2, 3,- 4)____________ (- 2,- 3, ]) _______________ (-5 , 3 , 1) _________ (3 , 4 , 6) _______________ 2、指出下列各点的位置。 A(3,4,0) ___________ B(0,4,3) ________ C(3,0,0) ___________ D(0,—1,0) ________ 3、指出当点的坐标适合下列条件之一时,该点所在的卦限。 点)在__________________ 上的对称点是1 5、点A (—4,3,5 )在%0『平面上的投影点为_________________________ 在ZOX平面上的投影点为 _______________ 在0X轴上的投影点为 _________________ 在oy轴上的投影点为__________________ 6、点P (—3,2,— 1)关于yoz平面的对称点为_______________________ 关于ZOX 平面的对称点为 ______________ 关于oy轴的对称点为_______________ 关于ox轴的对称点为_______________ 7、在y轴上与点A (1,—3,7 )和点B (5,7,—5 )等距离的点 为_______________ 8、u a b 2 c, v a 3b c,用a, b, c 表示2u 3v = __________________ 二、计算题:

高中数学解析几何双曲线性质与定义

双曲线 双曲线是圆锥曲线的一种,即双曲线是圆锥面与平行于轴的平面相截而得的曲线。 双曲线在一定的仿射变换下,也可以看成反比例函数。 双曲线有两个定义,一是与平面上两个定点的距离之差的绝对值为定值的点的轨迹,二是到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一、双曲线的定义 ①双曲线的第一定义 一动点移动于一个平面上,与该平面上两个定点F 1、F 2的距离之差的绝对值始终为一定值2a(2a 小于F 1和F 2之间的距离即2a<2c )时所成的轨迹叫做双曲线。 取过两个定点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立直角坐标系。 设M(x ,y)为双曲线上任意一点,那么F1、F2的坐标分别是(-c ,0)、(c ,0).又设点M 与F1、F2的距离的差的绝对值等于常数2a 。 将这个方程移项,两边平方得: 两边再平方,整理得:()() 22222222a c a y a x a c -=-- 由双曲线定义,2c >2a 即c >a ,所以c 2-a 2>0.设222b a c =- (b >0),代入上式得: 双曲线的标准方程:122 22=-b y a x 两个定点F 1,F 2叫做双曲线的左,右焦点。两焦点的距离叫焦距,长度为2c 。坐标轴上 的端点叫做顶点,其中2a 为双曲线的实轴长,2b 为双曲线的虚轴长。 实轴长、虚轴长、焦距间的关系:222b a c +=,

②双曲线的第二定义 与椭圆的方法类似:对于双曲线的标准方程:122 22=-b y a x ,我们将222b a c +=代入, 可得:()a c c a x c x y =± ±+2 2 所以有:双曲线的第二定义可描述为: 平面内一个动点(x,y )到定点F (±c,0)的距离与到定直线l (c a x 2 ±=)的距离之比为 常数()0c e c a a =>>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双 曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e == 22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122222-=-=-==e a c a a c a b k ; 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=,相对于右焦点 )0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相对于上焦点),0(2c F 对 应着上准线 a y l 2 2:=。

第七章_空间解析几何与向量代数复习题(答案)

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12 213+= -=z y x 的距离是:( A ) A 138 B 118 C 158 D 1 7. 设,23,a i k b i j k =-=++求a b ?是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=-

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

解析几何第二十七讲 双曲线

专题九解析几何 第二十七讲双曲线 2019 年 1.(2019 全国III 理10)双曲线C: x y =1 的右焦点为F,点P 在C 的一条渐进线 2 2 4 2 上,O 为坐标原点,若PO = PF ,则△PFO 的面积为A. 3 2 4 B.3 2 2 C.2 2 D.3 2 2.(2019 江苏7)在平面直角坐标系xOy 中,若双曲线 y 2 2 x 2 1(b 0) 经过点(3,4), b 则该双曲线的渐近线方程是 . x 2 y 2 3.(2019 全国I 理16)已知双曲线C: 2 2 a b 1( 0, 0) a b 的左、右焦点分别为F1,F2,

过F1 的直线与C 的两条渐近线分别交于A,B 两点.若 F A AB , F B F B ,则C 的 1 1 2 0 离心率为____________. 4.(2019 年全国II 理11)设F 为双曲线C: x 2 2 y 2 2 a 1( 0, 0) a b 的右焦点,O 为坐标 b 原点,以OF 为直径的圆与圆x2 y2 a2 交于P,Q 两点.若PQ OF ,则C 的离心率为A.2 B.3 C.2 D.5 5.(2019 浙江2)渐近线方程为x±y=0 的双曲线的离心率是A. 22 B.1 C.2 D.2 2 6. (2019 天津理5 )已知抛物线y 4x 的焦点为F ,准线为l ,若l 与双曲线 x 2 y 2 的两条渐近线分别交于点A 和点B ,且| AB | 4 | OF |(O 为 2 2 a b 1 ( 0, 0) a b 原点),则双曲线的离心率为A. 2 B. 3 1 C. 2 D. 5 2010-2018 年

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

高考数学专题10 解析几何中两类曲线相结合问题(第五篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第五篇解析几何 专题10 解析几何中两类曲线相结合问题 【典例1】【湖南省湖南师范大学附属中学2020届月考】已知椭圆C :()22 2210x y a b a b +=>>的右焦点为F , 离心率为 2 ,P 是椭圆C 上位于第一象限内的任意一点,O 为坐标原点,P 关于O 的对称点为P ',4P F PF '+=,圆O :222x y b +=. (1)求椭圆C 和圆O 的标准方程; (2)过点P 作PT 与圆O 相切于点T ,使得点F ,点T 在OP 的两侧.求四边形OFPT 面积的最大值. 【思路引导】 (1)设椭圆左焦点为F ',连接PF ',P F '',易知四边形P FPF ''为平行四边形,则 2PF PF PF P F a ''+=+=,可求得,,a b c ,即可求得椭圆C 和圆O 的标准方程; (2)设()()0000,0,0P x y x y >>,代入椭圆方程可得到00,x y 的关系式,然后分别求得,OFP OTP S S V V 的面积的表达式,即可得到四边形OFPT 面积的表达式,结合00,x y 的关系式,求OFPT 面积的最大值即可. 【详解】

(1)设椭圆左焦点为F ',连接PF ',P F '', 因为P O PO '=,OF OF '=,所以四边形P FPF ''为平行四边形, 所以24PF PF PF P F a ''+=+==,所以2a =, 又离心率为 2 ,所以c =,1b =. 故所求椭圆C 的标准方程为2 214 x y +=,圆O 的标准方程221x y +=. (2)设()()0000,0,0P x y x y >>,则220014 x y +=,故22 0014x y =-. 所以22 2000222 314TP OP OT x y x =+-= =-,所以0TP x =, 所以0124 OTP S OT TP x = ?=V . 又()0,0O ,) F ,所以0012OFP S OF y y =?=V . 故0022OFP OTP OFPT x y S S S ??==++ ???四边形V V ==. 由220014x y +=,得1≤,即001x y ?≤, 所以22 OFPT S = ≤ 四边形, 当且仅当2 2 00142x y ==,即0x =02 y = 时等号成立. 【典例2】【重庆市2019届高三高考全真模拟】已知点(1,0)F ,直线:1l x =-,P 为直角坐标平面上的动

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

第七章空间解析几何与向量代数.

第七章 空间解析几何与向量代数 §7.1空间直角坐标系 一. 空间点的直角坐标 右手系 坐标轴,坐标面,卦限 空间点的直角坐标 横坐标,纵坐标和竖坐标 二.空间两点的距离 设M 1 X i , y i , z i ,M 2 X 2,y 2,Z 2 为空间两点 特殊地,点M X, y,z 与坐标原点O 0,0,0的距离 .向量的概念 1 .定义 3 .自由向量 4 .零向量 单位向量 零向量的方向可以看作是任意的 二.向量的加减法 (1 )交换律:a b b a 的负向量:记 a 大小相等,方向相 反 三.向量与数的乖法 1 .定义 2 .运算规律 (1 )结合律: (2 )分配律: (2 )结合律:(a b) c a (b c) 1. 2. 3. =J 2 X 2 X 1 y 2 2 y i Z 2 2 Z i D = J x 2 y 2 z 2 §7 .2向量及其加减法 向量与数的乘法 2 .向径:OM 叫点M 对于点O 的向径

定理1 .设向量a 0,那么,向量b//a 存在唯一的实数 ,使b a 注:(1 ). b 可以为零向量,此时 0 (2 ).规定零向量与任何向量都平行 3 .与a 同方向的单位向量:a 0 一. 向量在轴上的投影 1 .轴u 上有向线段 AB 的值.记AB 2.点A 在轴U 上的投影 * 3 .向量在.轴U 上的投影,记prj u AB 二. 向量的坐标 1 . P 1P 2 Q i Q 2 R i R 2 2 .向量a 的坐标 a a x , a y , a z a x ,a y , a z 为a 在x,y,z 轴上的投影 上式叫向量a 的坐标表示式 §7 .3 向量的坐标 AB * 4 .(性质1 )投影T h 向量AB 在轴 u 上的投影等于向量的模乘以轴与向量的夹角 的余弦:prj u AB AB cos 5.(性质2 ) prj prj a prj b 6 .(性质3 ) prj prj a M 1M 2 M 1P M i Q M i R X 2 X 1 y 2 * j 上式称为向量基本单位向量的分解式

解析几何F答案

解析几何F答案

《解析几何》试题(F )答案 一、填空题:(每空2分,共30分) 1、 {} 36,45,48--; 2、 )3 ,3,3( 3 21321321z z z y y y x x x ++++++; 3、4 π或43π ,{}2,1,1-或{}2,1,1--; 4、15-; 5、)1,1,2(-; 6、01844-=-=-z y x 或0 1 241-= -=-z y x ; 7、3; 8、14 1arcsin ,)0,2,2(--; 9、 2; 10、双叶双曲面; 11、锥面; 12、椭圆抛物面; 13、旋转椭球面。 二、(本题16分) 解:(1)矢量设A 在矢量B 方向上的射影为 B B A A prj B ?= ,………………………………………… …………………………2 由于b a A 32+=,b a B -=,所以, 2 2 223),(cos 232))(32(b b a b a a b ab a b a b a B A -∠+=-+=-+=?, (2)

而 ) ,(cos 22))((2 2 222 b a b a b a ab b a b a b a B ∠-+=-+=--=, (2) 又由于1=a ,2=b ,3),(π=∠b a , 所 以 9 -=?B A , 3 2 =B ,…………………………………………… ………………..2 解 得 3 3-=A prj B 。………………………………………… ………………………….2 ( 2 ) 因 为 =?B A ),(sin 55)()32(b a b a a b b a b a ∠=?=-?+ (3) =353 sin 10=π。 所以以A 和B 为邻边的平行四边形的面积为 3 5。 (3) 三、(本题8分) 解:由于四面体的四个顶点为)0,0,0(A ,)6,0,6(B , )0,3,4(C 及)3,1,2(-D ,则以点)0,0,0(A 为始点,分别以点) 6,0,6(B ,)0,3,4(C 及)3,1,2(-D 为终点的矢量是 (1) {} 6,0,6=…………………………………………… (1)

(完整版)(整理)第七章空间解析几何

第七章空间解析几何与向量代数内容概要

习题7-1 ★★1.填空: (1) 要使b a b a -=+成立,向量b a , 应满足b a ⊥ (2) 要使 b a b a +=+成立,向量b a , 应满足 //b a ,且同向 ★2.设c b a v c b a u -+-=+-=3 , 2,试用c b a , , 表示向量v u 32- 知识点:向量的线性运算 解:c b a c b a c b a v u 711539342232+-=+-++-=- ★3.设Q , P 两点的向径分别为21 , r r ,点 R 在线段PQ 上,且 n m RQ PR = ,证明点R 的向径为 n m m n += +r r r 12 知识点:向量的线性运算 证明:在OPQ ?中,根据三角形法则PQ OP OQ =-,又)(21r r -+=+= n m m n m m , ∴n m m n n m m PR OP OR ++=-++ =+=22r r r r r 1 11)( ★★4.已知菱形 ABCD 的对角线b a ==B , ,试用向量b a , 表示 , , , 。 知识点:向量的线性运算 解:根据三角形法则, b a ==-==+B D AD , AB AC BC AB ,又ABCD 为菱形, ∴ =(自由向量), ∴222 AB AC BD AB CD DC AB --=-=-?=?=-=-= u u u r u u u r u u u r u u u r u u u r u u u r u u u r a b b a a b ∴2b a +==,2 DA +=-u u u r a b ★★5.把ABC ?的BC 边五等分,设分点依次为4321 , , , D D D D ,再把各分点与点 A 连接,试以 a c ==BC AB , 表示向量 , , 321A D A D A D 和A D 4。

解析几何(直线与圆、椭圆、双曲线和抛物线)

2012届数学二轮复习专题十 考试范围:解析几何(直线与圆、椭圆、双曲线和抛物线) 一、选择题(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线07 tan =+y x π 的倾斜角是 ( ) A .7 π - B . 7π C .75π D .7 6π 2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 ( ) A .012=--y x B .072=-+y x C .042=--y x D .05=-+y x 3.“2-=a ”是直线()021:1=-++y x a l 与直线()0122:2=+++y a ax l 互相垂直的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.直线0=+++b a by ax 与圆222=+y x 的位置关系为 ( ) A .相交 B .相切 C .相离 D .相交或相切 5.已知点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,若PQ 的最小值为122-,则k = ( ) A .1 B .1- C .0 D .2 6.若椭圆122=+my x 的离心率??? ? ??∈22, 33e ,则m 的取值范围是 ( ) A .?? ? ??32,21 B .()2,1 C .()2,132,21 ?? ? ?? D .??? ??2,21 7.已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,则该双曲线的离心率为 ( ) A . 3 3 2 B . 3 C .2或3 3 2 D . 3 3 2或3 8.M 是抛物线x y 42 =上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最 小的角为60°,则=FM ( ) A .2 B .3 C .4 D .6 9.设抛物线x y 82 =的准线经过中心在原点,焦点在坐标轴上且离心率为 2 1 的椭圆的一个顶点,则此椭圆的方程为 ( ) A .1161222=+y x 或112 1622=+y x B .1644822=+y x 或1486422=+y x C .112 162 2=+y x 或 143 1622=+x y D .13 422=+y x 或143 1622=+x y 10.已知定点()0,21-F 、()0,22F ,动点N 满足1=ON (O 为坐标原点),NM M F 21=,()R MF MP ∈=λλ2,01=?PN M F , 则点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .圆 二、填空题(本大题共5小题;每小题5分,共25分.将答案填在题中的横线上) 11.以点()2,1-为圆心且与直线1-=x y 相切的圆的标准方程是 . 12.圆06442 2=++-+y x y x 上到直线05=--y x 的距离等于 2 2 的点有 个. 13.若点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:2 2=+-y x C 只有一个公共点M ,且PM 的最小值为4,则=m .

解析几何大题带答案

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中, M 、N 分别是椭圆 12 42 2=+y x 的顶点,过坐标原点 的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,), 2,0(),0,2(,2,2--= =N M b a 故所以线 段MN 中点的坐标为)2 2 ,1(- -,由于直线PA 平分 线段MN ,故直线PA 过线段MN 的中点,又直 线PA 过坐标 原点,所以 .2 2122 =-- = k

解法二: 设) 0,(),,(,,0,0),,(),,(1112121 2 2 1 1 x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为2 1 ,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 )() (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y 因此.,11 PB PA k k ⊥-=所以 28. (北京理19) 已知椭圆 2 2:1 4 x G y +=.过点(m,0)作圆 221 x y +=的 切线I 交椭圆G 于A ,B 两点. (I )求椭圆G 的焦点坐标和离心率; (II )将AB 表示为m 的函数,并求AB 的最大值. (19)(共14分) 解:(Ⅰ)由已知得,1,2==b a 所以. 322--=b a c 所以椭圆G 的焦点坐标为) 0,3(),0,3(-

相关文档
相关文档 最新文档