文档库 最新最全的文档下载
当前位置:文档库 › 电力系统自动化应用的现状及发展

电力系统自动化应用的现状及发展

电力系统自动化应用的现状及发展
电力系统自动化应用的现状及发展

电力系统自动化应用的现状及发展

【摘要】电在现代社会扮演着不可或缺的角色,但是人们在日常生活中的用电方式却存在着很多潜在隐患,因此怎样去及时发现和科学解决这些用电问题就显得格外重要。电力系统自动化正是为解决这一现实难题而生的技术。本文首先简述了电力系统自动化技术的基本理念和特点,对电力系统自动化技术的优势和不足进行了深入的分析,其次就电力系统自动化技术在现实生活中的一些应用进行了介绍,最后对该技术的发展未来进行了展望。

【关键词】电力系统;自动化;应用

引言

随着社会主义经济的飞速发展,人们对电的需求量越来越大,自然而然的逐渐扩大了电力系统的规模。电力系统的正常运行是人们顺利工作和正常生活的基础。利用电力系统自动化技术监控日常电力系统,并将监测信息发送给中央计算机,帮助人们进行电力的调度,发电控制等操作,能有效提高日常电力系统的效率,所以电力系统自动化技术将会在未来的电力系统中大展身手。

1 电力系统自动化的基本概念

利用发电设备将自然界的能源(包括水能,化学能,太阳能等)转化为电能,并经过其他电力设备(如变压器等)将电力输送到每家每户,这一整个过程中离不开电力系统装置。其中各种电力数据的监测和传输,是帮助人们进行电力调节的有效手段。而电力系统自动化技术则是指实现整个电力的产生、传输以及调节的过程都不会有人的参与,而是利用计算机操作系统,按照预先设计好的程序远程控制电力系统的设备,具体的技术包括精确数据的实时采集和快速传输技术等。电力系统自动化的目的是更加安全、高效、快捷地利用电能,对发电、送电和配电过程进行自动控制、自动调度,从而实现对电力系统的自动化管理。

2 电力系统自动化技术的特点

2.1 数据分类

电力系统中的日常运行数据、现场实时数据及系统本身的各类数据纷繁复杂,需要进行科学的分类,这就为电力系统自动化技术提出了数据分类的要求。利用具有瞬时传输特点的网络技术,电力系统自动化技术能够精确的控制电力系统的实时数据,保证对电力系统的支持和服务既安全又可靠,由此大大提高电力系统的运行效率,也能帮助相关人员及时找出潜在的安全问题,减小因人工操作的失误带来的电力系统故障。

2.2 协调调度

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

浅谈电力系统自动化技术的现状及发展趋势 陈祖耀

浅谈电力系统自动化技术的现状及发展趋势陈祖耀 发表时间:2018-07-31T10:35:09.733Z 来源:《基层建设》2018年第18期作者:陈祖耀[导读] 摘要:随着科学技术和经济的快速发展,电力系统自动化技术的作用越来越重要。 国网福鼎市供电公司福建宁德 355200 摘要:随着科学技术和经济的快速发展,电力系统自动化技术的作用越来越重要。电力系统自动化技术作为一项新兴技术实现了电力技术与电子信息技术的融合,对国民经济的发展起到了巨大的推动作用,对电力传输系统的发展产生了深远的影响。目前,电力系统自动化技术已渗透到电力系统的各个方面,取得了显着成效。本文介绍了电力系统自动化技术的现状,并展望了其发展趋势。 关键词:电力系统自动化;技术现状;发展趋势引言 中国目前电力严重短缺。如何采用先进的管理方法和模式实现电力系统的全行业遥控,遥测,遥调,遥信和遥控,已成为保证电力系统高效,安全,可持续运行的重要课题。就目前的发展趋势而言,电网的不断发展,电网运行管理的需求在不断变化。为确保电力生产安全有序发展,有必要进一步将电力系统的自动化控制技术应用于中国电力系统,以促进中国电力系统的健康发展。 1电力系统自动化内涵 电力系统一般由发电,输电,变电站,供电等几个环节联结起来,各控制系统有自己的联系。电力系统自动化不仅对电力供应的稳定性,安全性和可持续性起着决定性的作用,而且可以减少电力系统工人的数量,减少劳动强度,降低事故率,延长设备使用寿命,提高设备性能,电网管理和维护快捷方便。最重要的是电力系统自动化能够有效防止电力系统事故,如大面积停电等严重连锁事故,确保电力支持经济运行稳定可靠,意义长远而深远。电力系统自动化的主要特点是:电力系统是一个动态系统,具有模型不确定性和强非线性;电力系统需要高度的适应性;电力系统自动化难以控制的不确定因素多因素。电力系统自动化的困难包括:电力系统自动化中的多目标优化和多工作模式下故障条件下的稳健性;单个链路上更多的电力系统链路和控制需要该链路和其他链路的协调和配合。电力系统自动化技术应用于电力调度系统,配电网系统和变电站系统。电力调度系统自动化技术的主要应用是电荷预测,发电规划,网络拓扑分析,电力系统状态评估,暂态静态安全分析和自控发电等功能。配电系统中的有线通信促进了内部信息的交换,并提高了实时控制的性能,稳定性,效率和可靠性。变电站系统自动化技术可以收集来自电源线的实时参数,如电流,电压和电抗。通过对主控终端的分析,可以对远端供电设备进行调整,以满足客户的用电需求,保证供电质量。同时,我们可以分析电力需求的趋势,预测趋势并更好地调配电力。 2电力自动化技术的探讨分析 2.1无线技术 无线技术可以实现远程控制和管理,具有高度的信息共享,还可以减少线路的铺设。目前有很多无线技术,但由于无线信号在空间传输过程中所携带的带宽,无线信号的物理障碍,抗干扰,可扩展性和投资成本的易感性随着无线网络技术的不同而不同,因此适合的电力只有几种自动化。用户根据无线技术的环境选择适当的无线技术。目前的无线技术主要是GPRS/GSM,ZIEBB,WIMAX,WIFI和AdHoc 网络,但现在发展最快的网络是WIMAX和WIFI,因为它们在带宽和安全性方面更好,灵活性高,成本更低。 2.2信息化技术 电力信息化是电力自动化的核心,包括发电,调度自动化和管理信息自动化。配备电脑监控系统的发电厂和变电站,实现少数值班人员甚至无人值班,可以改善电厂自动化生产过程中的自动化监控系统。 2.3信息安全技术 现代人的生活离不开电力。电力是社会和经济发展的生命线。电力系统运行的安全和稳定对社会经济发展至关重要。电力系统的安全性是一个世界性的问题,目前尚未解决。尽管电力系统不太可能发生故障,但如果发生故障,将会造成巨大的经济损失和社会影响。在我国,电力系统发生重大事故。现在我们局已经试点建设智能电网,智能电网可以最大限度地减少电力系统故障的发生,减少停电造成的损失。中国经济高速发展,电力系统也迎来了前所未有的速度和发展规模,三峡电站,西电东送等一系列重大电网项目已建成并投入运行,电网安全,设备安全,电力工作者被提出更高的更新要求。 2.4传动技术 动力传动技术主要是实现变频调速,主变频器实现变频调速。变频器是节能减排的首选,已被广泛应用于电力设备和技术上也相当成熟。由于其在节能降耗方面的作用,变频器已成为电力行业改革技术的首要目标。ABB目前是该行业最大的电力自动化领导者,建立了世界上最大的变压器制造基地和绝缘子制造中心。该公司的变频器,PLC,仪器仪表等行业得到了很好的应用。 3电力系统自动化技术发展的现状 3.1自动化技术在电网调度中的应用 现代电网调度自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测,采集和分析,完成系统的高效运行。电网调度自动化操作通过自动控制技术的应用,实现对电网运行状态的实时监控,保证电网运行的质量和可靠性,实现电能的充足供应,使人们需求得到满足。在自动化技术应用的同时,能源损失最小化,保证了电源的经济和环保,实现了节能。 3.2自动化技术在配电网络中的应用 计算机技术在配电网自动化控制中发挥着重要作用。随着电网技术的不断发展,现代化程度和配电网络化程度越来越高,实现了配电网主站,变电站和轻轨终端三层结构,配电网发展,通信传输速度有保证,自动化系统的性能得到提高。加强系统继电保护控制,减少大面积停电现象,保证供电,提高电力系统可靠性和安全性,优化电网事故快速消除机制,科学事故应急响应机制建立,停电时间明显缩短;电力公司要加强对电力系统的控制,使电力系统的运行状况更加方便了解;正常值班模式被打破,无人值班的电厂出现,工作人员的工作效率大大提高。 3.3自动化技术在变电系统中的应用 通过计算机技术,通信技术和网络技术的应用,变电站系统实现了对二次系统的监控。通过功能设计的优化和科学综合系统的协调,可以方便地收集设备的运行信息。 4电力系统自动化技术发展的展望

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

热管技术综述

热管技术综述 热管作为一种具有高换热率、结构简单、工作可靠、良好的等温性等优良性能的换热元件,在生产生活中有着广泛的应用,本文就热管的基本工作原理与形式、几种具体热管的研究现状、热管的应用几方面进行综述。 普通的热管通常由蒸发段和冷凝段组成,中间根据需要可布置绝热段。制造时先将内部抽成负压,再填装工质;工作时,工质从热源吸热蒸发,在小压差作用下流向冷凝段,在冷凝段放热冷凝,凝结液通过壁面金属网或多孔材料(吸液芯)的毛细力作用流回蒸发段,如此循环往复,实现热量由热源向冷源的传递。 在上述基本工作原理下,实际使用中的热管根据环境与用途可能又会有差异。在不同的温度下,热管的工质是不同的,选用工质时需要考虑在工作温度区间内工质要有良好的热性能、与热管材料有较好的兼容性等;在低温下(4~200K),通常会选用氦、氖、氮、氧、甲烷等工质,在中温下(200~700K,这是使用很广泛的温度区间),水具有良好热性能,氨由于与铝、钢等工程材料有更好地相容性也是很好的选择;在高温时(大于700K),通常会采用液态金属,如银、铯、钾、纳、锂等。在液体回流方式上,除了上述的靠毛细力回流外,在某些场合可将热管倾斜或垂直放置使用,这就是重力热管,此时不再需要吸液芯,结构简化,生产方便成本低;另外还有使用磁流体工质、提供旋转离心力、利用渗透力等其他回流方式的热管。实际使用中,根据使用环境的不同,可将热管做成各种形式,如圆柱形、环形、星形等。作为上述使用相变换热原理的热管的延伸,还有使用化学反应的焓变来代替相变的焓变的化学热管,其基本原理是通过可逆反应(又叫蓄热反应)在冷热源处的不同方向的反应热效应相反来实现热量的传递,可以想见,这类热管的重要课题是寻找可逆性好、正反反应速度都很大的蓄热反应。 热管具有众多优点:由于热管通过相变换热同时内部热阻小,其传热系数很大;由于工质蒸汽的饱和蒸汽压决定温度,它的等温性很好;由于内部压力小,蒸发段受热后蒸汽以近似音速前进,故响应特性好;同时机构简单,体积小、重量轻,维修方便;没有运动件,工作可靠;可工作在失重状态,从而可用于空间器件。上述优良性能使热管获得了广泛的应用。 热管有各种各样的种类,一些新型的热管如平板热管、环路热管、脉动热管等。 平板热管是由两块平行的板壳和吸液芯组成,通道截面为扁平的矩形。目前,出现了由多个微型热管平行排列组成的新型平板热管,它的两块平行紫铜板中间采用焊接的方式固定若干互相平行的细铜丝,其中每相邻两根铜丝和上下两块紫铜板之间围成一个通道,通道截面由两条半圆曲线和两条平行直线构成。平板热管具有质量轻、良好的启动性和均温性的优势,用热管基板代替金属基板能大大强化基板的热扩散,为与电子元件一体化封装提供了条件,因此平板热管成为目前电子元件散热方面的研究热点,在国外已经得到应用,然而在国内还没有很好实现产业化,主要原因是:虽然目前关于平板热管的研究较多,但平板热管的内部结构优化缺乏完善的理论模型指导设计;已有学者通过建立复杂的三维模型来分析平板热管,但研究还不够深入,尚待加强;加工制造上,对于提高平板热管的尺寸精度、毛细结构的附着等仍存在许多问题,必须改进加工技术与封装工艺。这些都当成为平板热管进一步开发研究实现产业化的努力方向。 环路热管是一种新型热控技术,正逐渐应用于空间飞行器的热控制,成为高功率航天器热控制的有效控制手段之一,同时也是各国航天部门研究的重要内容。

灌浆材料的发展现状与展望模板

灌浆材料的发展现状与展望 摘要:灌浆工法作为防渗补强加固的一种重要手段,其灌浆材料起着至关重要的作用。本文对灌浆材料的种类及其使用性能作了详细的描述,同时对今后浆材的发展方向提出了展望。 关键词:灌浆灌浆材料 注浆法出现于19世纪初,注浆工法在水利水电工程中多称灌浆法。采用灌浆技术以解决土建工程的有关技术难题,至今已有一个世纪的历史。浆液注入到地层中去的方式是该工法的关键。随着注浆技术的广泛应用,注浆材料得到了较大的发展。注浆材料从最早的石灰和黏土、水泥,发展到今天的水泥--水玻璃浆液、各种化学浆液。而注浆材料的开发与应用,又反过来推动了注浆工法在更广泛的领域内的应用。通常说的注浆材料是指浆液中的主剂。注浆材料必须是能固化的材料。习惯上把注浆原材料分为粒状材料和化学材料两个系统。而浆液是同主剂、固化剂,以及溶剂、助剂经混合后所配成的液体,分为溶液型和悬浊液型两大类。 1 灌浆材料的种类及其特点 1.1 溶液型浆材 溶液型浆材又叫化学浆材,可分为水玻璃类、木质素类灌浆材料、丙烯酰胺类灌浆材料、丙烯酸盐类灌浆材料、聚氨酯类灌浆材料、环氧树脂灌浆材料、甲基丙烯酸酯类灌浆材料、脲醛树脂类、其它类化学灌浆材料。1.1.1 水玻璃类灌浆材料 水玻璃(硅酸钠)是化学灌浆中最早使用的一种材料,水玻璃类浆液是由水玻璃溶液和相应的胶凝剂组成。其无机胶凝剂有氯化钙、铝酸钠、氟硅酸、磷酸、草酸、硫酸铝、混合钠剂等,有机胶凝剂有醋酸、酸性有机盐、有机酸酯、醛类(乙二醛类)、聚乙烯醇等。二氧化碳亦可与水玻璃溶液在被灌体内生成硅酸凝胶。 灌浆用水玻璃模数在2.4~3.4之间为宜,水玻璃溶液的浓度在35~45°Be'为宜。 水玻璃类浆材主要特点及性能: (1) 胶凝时间从瞬间~24小时不等; (2) 固砂体强度可达6MPa; (3) 粘度从1.2~200×10-3Pa·s; (4) 可灌性好,渗透系数可达10-5~10-6cm/s,可灌入 0.1mm以上的土层。 (5) 毒副作用小,造价低。 1.1.2 木质素类浆液 木质素类浆液由纸浆废液、胶凝剂和促凝剂等组成。木质素类浆液包括铬木素和硫木素浆液两种。铬木素浆液的固化剂是重铬酸钠。但重铬酸钠毒性大,难以大规模使用。硫木素浆液是在铬木素浆液的基础上发展起来的,是采用过硫酸铵完全代替重铬酸钠,使之成为低毒、无毒木质素浆液,是一种很有发展前途的注浆材料。

电力系统自动化习题及答案

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网效果 上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是多 少? 理想条件:实际条件(待并发电机与系统) 幅值相等:UG=UX 电压差Us不能超过额定电压的5%-10% 频率相等:ωG=ωX 频率差不超过额定的0.2%-0.5% 相角相等:δe=0(δG=δX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别有何 影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um之间。 这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的 拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时 小变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得?

5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将Ug和Ux的正弦波转变成与其频率和相位相同的一系列方波,其幅值与Ug和Ux无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电压Us和&e的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 Step 1:计算Usmin,如果Usmin≤USy转Step 2;否则调整G来改变UG Step 2:ωsy的计算 Step 3:如果ωs≤ωsy继续Step 4;否则调整G来改变ωG,ωs=ωG-ωX Step 4:δe的计算:δe=tYJ?ωs Step5:δe≤δey合闸;否则调整G来改变ωG,从而δe 8、简述同步发电机并列后由不同步到同步的过程(要求画图配合说明)。 书上第7页,图1-4 说明:1、如果发电机电压Ug超前电网电压Ux,发电机发出功率,则发电机将被制动减速,当Ug落后Ux,发电机吸收无功,则发电机加速。 2、当发电机刚并入时处于a电,为超前情况,Ws下降---到达b点,Wg=Wx,&e最 大,W下降,&e下降——处于原点,Ug=Ux----&e=0,Wg<Wx——过原点后, &e<0,——Wg上升 总之。A-b-0-c,c-0-a,由于阻尼等因素影响,摆动幅度逐渐减小到同步角9、准同期并列为什么要在δ=0之前提前发合闸脉冲?提前时间取决于什么?恒定越前时间并列装置的恒定越前时间如何设定? 10、恒定越前时间并列装置如何检测ωs<ωSY?

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

中国磁性材料产业现状及其发展展望(1)

中国磁性材料产业现状及其发展展望(1) 摘要:磁性材料是各种电子产品主要的配套产品,无论是消费家电产品和工业类如计算机、通讯设备、汽车,以及国防工业均离不开磁性材料。当前,中国各种磁性材料的产量基本上世界第一,成为磁性材料生产大国和磁性材料产业中心。中国磁性材料的中长期市场前景十分光明,中国的磁性材料产品在全球的地位必将进一步提高。必须加强科技创新力度、加强技术改造加强企业管理水平,调整产业结构和提高产品档次,使中国磁性材料从大国走向强国。本文着重从宏观角度分析了中国磁体产业整体情况,介绍了稀土永磁材料特别是中国钕铁硼烧结和粘结产业现状,以及中国新型的稀土永磁材料的研究开发情况,同时对我国磁体产业发展前景进行了预测和分析。 1 中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁;50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体,包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平

均以每年10%的速度增长。中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。 1997~20XX的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 20XX年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企

电力系统自动化技术的应用现状及发展趋势

电力系统自动化技术的应用现状及发展趋势 摘要:计算机技术的应用和发展使得电力系统如今也趋于智能化,现代化。自 动化电路系统确保了电子系统的稳定运行,同时还能够有效提高企业供电能力和 经济效益。本文将对自动化技术在电力系统中的实际应用现状加以分析,通过合 理的预测分析未来行业发展前景,以及提及适当措施保障电力自动化供应能力。 关键词:电力系统;自动化;发展 电力系统与人们的日常生活、有着密切联系。随着经济社会发展和人们生活质量提高, 对电能的需求量也在不断增加。为确保供电顺利进行,提高电力系统的质量是必要的。一般 而言,电力系统主要包括发电、输电、变电、配电和用电五个部分组成,随着电力技术创新 发展,电力系统综合性能、电压等级、供电等级也在不断提升。目前,电力系统逐渐连成网络,结构日趋复杂、规模不断扩大、供电能力也在不断提升。与此同时,为更好满足人们的 用电需要,确保电力系统的安全、稳定以及可靠运行,提高供电质量和效益,发展并利用电 力系统自动化技术显得越来越重要。 1电力系统自动化技术的工作流程 随着自动化技术的应用,电力系统控制中心得到升级和改造,不再采用传统的人工控制 方式,而是在控制中心装备计算机,建立现代化的控制中心,从而有利于全面监测和详细掌 握电力系统运行的基本情况。通常以计算机控制为中心,构建向四周辐射的控制网络体系, 并在整个电力系统之中,建立完整的、立体化的覆盖网络,实现全面而畅通的信息传递和指 令传输。有利于管理人员及时掌握电力系统的基本情况,实现供电的安全、稳定与可靠,进 而满足人们的用电需要。中心控制计算机的主要作用是,整合并使用各种软件,负责对电力 系统进行整体调度和控制,实现电力系统运行、监测等各项操作的自动化。同时,在电力系 统自动化进程中,通常采用分层操作和控制方式,全面掌握系统每层运行的基本情况,对存 在的不足及时改进和调整。从而有利于保障电力系统稳定及可靠运行,提高供电的安全性。 2电力系统自动化技术的控制要求 在自动化技术逐渐推广和应用的前提下,为促进自动化技术得到有效利用,使其在电力 系统之中充分发挥作用,加强自动化控制,提高操作人员素质,把握每个操作控制要点是必 要的。一般而言,自动化控制的要求表现在以下方面:准确并迅速收集电力系统的运行参数,做好电力系统元器件的检测工作,对存在的缺陷及时采取措施修复。加强电力系统运行监控,及时掌握系统运行状况,了解各种元器件的技术、安全和经济节能方面的要求。并注重对系 统操作人员和调控人员的管理培训,让他们把握每个技术要点,严格按要求进行设备操作和 元器件调控。重视电力系统不同层次、局部系统以及各种元器件的综合协调,优化整合各种 资源,为整个电力系统寻找最优质的供电方式,确保电力系统安全有效运行,并且还有利于 节约电能,降低供电成本。总之,通过自动化技术的应用,实现电力系统的自动化调节和控制,不仅可以降低工作人员的劳动强度,节约人力资源和管理成本,还能促进电力设施更为 有效的发挥作用,延长电力设备使用寿命。并改进电力设备的运行性能,实现对安全事故的 预防,减少大面积停电事故发生的可能,确保供电的稳定性与可靠性,为人们日常生活创造 良好条件。 3电力系统自动化技术的应用现状 3.1电网调度自动化技术

电力系统自动化

计算题。(1题2分 2-8每题3分,9-10每题6分,共35分) 1.某地区2007年被调度部门确认的事故遥信年动作总次数为120次,拒动1次,误动1次,求地区2007年事故遥信年动作正确率为多少?(答案小数点后保留两位) 解:2007年事故遥信年动作正确次数:120-(1+1)=118 Ayx=118/120=98.33% 2.一条10KV配电线路的二次电压为100V,二次电流为3A,功率因数为0.8,三相电压对称,三相负荷平衡,其中电压变比为10000/100,电流变比为300/5,试计算测得的二次功率,并计算其折算到一次侧的功率。 解:二次功率P2= 1.732UICOSφ=1.732×100×3×0.8≈415.68(W) 一次功率P1=415.68×(10000÷100)×(300÷5)=2494080(W)≈ 2.49(MW) 3.一台UPS主机为10kVA,问要达到10kVA4h的配置要求,约需要配置多少节12V100Ah的蓄电池? 解:1)UPS主机要求配置的总VAh数为:10kV A×4h=40kV Ah=40000V Ah;2)每节电池的V Ah数为:12V×100Ah=1200V Ah; 3)需要的电池节数:40000÷1200=33.33节,约需34节。 4.某一线路的TA变比为300/5,当功率源中的电流源输入变送器的电流为4A时,调度端监控系统显示数值为多少这一路遥测才为合格(综合误差<1.5%) 由综合误差<1.5%知300A×1.5%=4.5A 所以,在标准值为±4.5A之内均为合格。又因输入4A,工程量标准值为 300/5 ×4=240(A) 240+4.5=244.5(A) 240-4.5=235.5(A)监控系统显示电流值大于235.5A,小于244.5A均为合格。 5.某调度自动化系统包括10个厂站,9月12日发生3站远动通道故障各3小时,9月20日发生1站RTU故障4小时,现求出该系统本月远动系统月运行率、远动装置月可用率和调度日报月合格率。(小数后保留2位) 远动系统月运行率:(10×30×24-3×3-4)/10×30×24×100%=99.82%;远动装置月可用率:(10×30×24-4)/10×30×24×100%=99.94%;调度日报月合格率(10×30-4)/10

浅议热管技术及其在热能工程中的应用参考文本

浅议热管技术及其在热能工程中的应用参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

浅议热管技术及其在热能工程中的应用 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 热管技术现在运用的越来越频繁,本文对热管的基本 组成,热管的工作原理,以及热管的分类和热管在应用的 过程中,所要解决的技术关键做了详细的分析,并且对热 管技术在热能工程的应用进行了分析和研究,给以后的热 管研究提供了参考。 随着科学技术的发展越来越快,热能工程的发展也是 与日俱进,热管技术也投入到了应用。热管的导热系数非 常高,是铝、银等金属的上千倍。如果使用热管技术,热 管的截面非常的小,并且不需要加入任何的动力就可以让 巨大的热能,进行传输。因此,热管在热能工程的应用越 来越广泛。

热管的组成和原理 1.1.热管的组成 典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: 1.1.1.热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面; 1.1. 2.液体在蒸发段内的(液--汽)分界面上蒸发;

镁基复合材料的研究发展现状与展望

——颗粒增强镁基复合材料 课程名称:金属基复合材料 学生姓名: 学号: 班级: 日期:2010/12/26

——颗粒增强镁基复合材料 摘要:镁基复合材料具有很高的比强度、比刚度以及优良的阻尼减震性能,是汽车制造、航空航天等领域的理想材料之一。本文综述了颗粒增强镁基复合材料的研究概况,镁基复合材料常用的基体合金和常用的增强相。着重介绍了其制备方法、力学以及阻尼性能,并对它的发展趋势进行了展望。 关键词:镁基复合材料;制备方法;基体镁合金;颗粒增强体;性能 1.前言 与传统的金属材料相比,金属基复合材料具有高的比强度、比刚度、耐高温、耐磨损耐疲劳、热膨胀系数小、化学稳定性和尺寸稳定性好等优异性能。金属基复合材料的增强体主要有长纤维、短纤维、颗粒和晶须等,其中颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向,正在向工业规模化生产和应用发展。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;由于镁的密度更低(1.74 g/cm3),仅为铝的2/3,具有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空、航天、汽车、机械及电子等高技术领域的重视.自20世纪8O年代至现在,镁基复合材料已成为金属基复合材料的研究热点之一。颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易近终成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。 2.制备方法 2.1粉末冶金法 粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。 2.2熔体浸渗法 包括压力浸渗、无压浸渗和负压浸渗。压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。增强颗粒与基体的润湿性是无压浸渗技术的关键。负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件中。由负压浸渗制备的SiC/Mg颗粒在基体中分布均匀。

电力系统自动化

实验一励磁控制基本特性实验 一、实验目的 1)加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。 2)了解微机励磁调节装置的基本控制方式。 3)掌握励磁调节装置的基本使用方法。 二、原理与说明 同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图1-1如下所示,交流励磁电源取自380V市电,构成他励励磁系统,励磁系统的可控整流模块由TQLC-III微机自动励磁装置控制。 图1-1励磁控制系统示意图 TQLC-III型微机自动励磁装置的控制方式有四种:恒U g(恒机端电压方式,保持机端电压稳定)、恒I L(恒励磁电流方式,保持励磁电流稳定)、恒Q(恒无功方式,保持发电机输出的无功功率稳定)和恒α(恒控制角方式,保持控制角稳定),可以任选一种方式运行。恒Q和恒α方式一般在抢发无功的时候才投入。大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调

差特性。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节装置的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节装置的增减磁按钮,可以增加或减少发电机的无功输出。 无论是在“手动”还是“自动”方式下,都可以操作增减磁按钮,所不同的是调节的参数不同。在“自动”方式下,调节是的机端电压,也就是上下平移特性曲线,在“手动”方式下,改变的是励磁电流的大小,此时即使在并网的情况下,也不具备调差特性。 三、实验项目与方法 3.1不同α角对应的励磁电压测试 实验准备 1)将发电机组电动机三相电源插头与机组控制屏侧面“电动机出线”插座连接,发电机 三相输出电压插头与“发电机进线”插座连接,发电机励磁电源插头与“励磁出线”插座连接。 2)检查机组控制屏上各指示仪表的指针是否指在0位置,如不在则应调到0位置。 3)合上“调速励磁电源”开关(380V)。注意,一定要先合“220V电源”开关,再合“调 速励磁电源”开关,否则,励磁或调速输出的功率模块可能处于失控状态! 4)检查调速、同期、励磁三个装置液晶显示屏显示和面板指示灯状态,正常情况下,

浅谈电力系统自动化技术的现状及发展趋势 梁艳飞

浅谈电力系统自动化技术的现状及发展趋势梁艳飞 发表时间:2018-04-18T15:17:46.627Z 来源:《电力设备》2017年第33期作者:梁艳飞 [导读] 摘要:随着我国社会经济的稳步发展,相应的产业也得到了快速的发展。 (国网河南省电力公司邓州市供电公司河南邓州 474150) 摘要:随着我国社会经济的稳步发展,相应的产业也得到了快速的发展。对于产业的发展,离不开相关技术的支持。其中,电力系统的自动化技术将在推动电力系统发展中发挥重要作用。基于对电力自动化技术现状的分析,本文进一步探讨了电力系统自动化技术的现状以及未来的发展方向,为电力系统自动化技术的健康发展奠定了基础。 关键词:电力系统;自动化技术;现状;发展趋势 引言 电力工程是我国基础设施建设工程的一个重要分支,在促进我国国民经济快速稳定发展中发挥着巨大的作用。电力不足将会严重阻碍着国民经济的发展。世界各国的经验表明,只有在电力生产的发展速度应高于其他部门的发展速度的情况下,才能促进国民经济的协调发展和人民生活水平的稳步提高,因此电力系统的自动化技术成为当今的重要话题。 电力系统自动化技术的现状 随着国民经济与科学技术的迅猛发展,我国城市化进程不断加快,在一定程度上推动了我国电力建设行业的发展与进步,人们对供电质量也提出了更严格的要求。此外,技术的发展也给电力运行系统带来了发展契机,特别是电力自动化技术的应用,该技术的运用不仅保证了电网的平稳运行,而且还解决了系统运行过程中出现的主要问题,在当前形势下,电力自动化技术主要体现在以下3个方面。 1.1自动化技术在电网调度中的应用 电网调度的现代化自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测、收集和分析,并完成系统操作的高效进行。对于电网的自动调度,主要采用自动控制技术,然后完成相应电网的实时监控,使电网更可靠,更安全的运行,也可以良好的满足居民的用电需求。当前的网格自动调度是通过使用相应的电网的自动控制技术来实现的。实时监控,确保电网正常高效运行,确保居民有足够的电能尽可能满足居民的需要。采用自动化技术同时,可以节约更多的电能,减少消耗到最低限度。 1.2自动化技术在配电网络中的应用 通过特高压或高压输送过来的电能,须通过变压器进行转换,变成日常生活比较适用的220V电压,来满足生产和生活的需要这种情况下就促进了配电系统的出现。配电系统就是把高压电转化为低压电,然后配送到需要电能的地方,包括工厂、餐厅、居民楼、公园等。这些地方都要用电,配电系统也就包括铺设电线电缆、安装电表等一系列的工作内容。另外,电力系统采用自动化技术,采用计算机技术和通信技术,进一步有效地处理两台设备,并完成两台设备的测量和监控。同时,也可以应用于优化设计功能,从而建立起比较完整的系统,并在操作设备操作信息的收集中发挥一定的作用。 1.3自动化技术在变电系统中的应用 通常情况下,变电系统自动化技术是通过计算机技术、通信技术以及网络技术实现的,在此基础上还优化和改造了二次设备的一些功能设计,进而确保了拥有综合功能的电力系统的实现。变电系统通过计算机技术、通信技术和网络技术的应用,汽对二次系统的监测得得以实现,通过功能设计的优化,协调科学的综合性系统得到建立,设备的运行操作信息可以被方便的搜集。 2电力系统自动化技术的发展趋势 在计算机技术,通信技术和控制技术的支持下,电力自动化处理功能越来越完善。毫无疑问,电力自动化技术的未来也可以有更大的发展前景。随着我国市场经济的不断改革和深入,无论是人们的日常生活还是企业的生产发展都离不开对电能的需求。现如今,我国不断坚持科技强国和人才强国的战略,我国的科学技术水平在迅猛发展,给电力自动化技术水平的发展也带来了很大的机遇。这就需要我们探究电力系统自动化的发展方向。 2.1电力自动化技术自身发展方面 基于电力系统的发展,电力自动化技术将走向智能化,协调一致的方向。自动化技术的力量将逐步从单一功能转变为多功能,集成功能。电力自动化技术将提高电力系统的性能,更好地反映电力系统管理和服务,加快电力系统的运行。显然,在电力自动化技术方面,该系统在电力系统应用中,有效提高了电力系统的安全性和供电能力,同时也有效降低了各种干扰。在目前的情况下,在中国,采用标准化接口标准,界面标准化,使设备管理更方便简单。同时,大大减少了设备操作的编程过程。在未来发展的过程中,电气自动化需要一个共同的平台,连同电力自动化技术,其功能和作用,在此过程中得到充分展示,使用无需机械接口和程序接口的电力自动化。随着电力自动化技术的日益增长,它可以在投资和生产成本的开发中发挥巨大的作用,同时技术也随着中国电力系统发展的需要。从发展的角度来看,电力自动化技术已经经历了模拟技术、准数字技术阶段、数字技术阶段和网络阶段。对于网络阶段,主要功能是对设备进行自我诊断,并对系统进行实时操作。逐渐成为智能化阶段,在这个阶段,自组织网络功能可以自动识别网络,同时增强自身的集成功能和管理功能,提供更快的通信速度,而大型应用可以完全由网络支持。 2.2远程自动化趋势 我国电气系统自动化中的RTU在过去的设计中,通过工业控制计算机的方式进行的,利用相应的硬件接口电路,实现遥控。此类方式具有扩展性以及开发方便等优势,但是自身结构缺乏一定的灵活性,功能损耗也较大,开发与维护成本较高。随着科学技术的发展,此类系统将会被新技术所替代。系统本身也会朝着远程自动化的方向发展,使得电力系统实现智能化的远程控制,将各项管理系统在网络化的范围下进行运转操作。这对我国电力系统自动化发展具有深远意义,有效改善各项系统运行终端的整体功能。 2.3电力系统功能分层分布趋势 电力系统的自动化与信息的传递、处理技术两者的关系紧密,其中这三种的通信的方法分别是:光纤、双绞线、电力线载波和无线等。其中因为配网节点的数量很多,以前的点对点的通信方法已经不能够适应现代化的发展要求,配电载波中的阻波器已经不能适应新电网的发展。 2.4变电站自动化未来形势 通过对现有的技术和自动化模式革新,使得技术应用更贴近生活实际需求,是当前变电站自动化发展主要方向。将设备与监控系统有

相关文档
相关文档 最新文档