文档库 最新最全的文档下载
当前位置:文档库 › SystemVerilog语言简介,基本语法都有了

SystemVerilog语言简介,基本语法都有了

SystemVerilog语言简介,基本语法都有了
SystemVerilog语言简介,基本语法都有了

vhdl基本语法

VHDL 基础语法篇——VHDL VHDL硬件描述语言 1.1 VHDL概述 1.1.1 VHDL的特点 VHDL语言作为一种标准的硬件描述语言,具有结构严谨、描述能力强的特点,由于 VHDL语言来源于C、Fortran等计算机高级语言,在VHDL语言中保留了部分高级语言的原 语句,如if语句、子程序和函数等,便于阅读和应用。具体特点如下: 1. 支持从系统级到门级电路的描述,既支持自底向上(bottom-up)的设计也支持从顶向下 (top-down)的设计,同时也支持结构、行为和数据流三种形式的混合描述。 2. VHDL的设计单元的基本组成部分是实体(entity)和结构体(architecture),实体包含设 计系统单元的输入和输出端口信息,结构体描述设计单元的组成和行为,便于各模块之间数 据传送。利用单元(componet)、块(block)、过程(procure)和函数(function)等语句, 用结构化层次化的描述方法,使复杂电路的设计更加简便。采用包的概念,便于标准设计文 档资料的保存和广泛使用。 3. VHDL语言有常数、信号和变量三种数据对象,每一个数据对象都要指定数据类型,VHDL 的数据类型丰富,有数值数据类型和逻辑数据类型,有位型和位向量型。既支持预定义的数 据类型,又支持自定义的数据类型,其定义的数据类型具有明确的物理意义,VHDL是强类 型语言。 4. 数字系统有组合电路和时序电路,时序电路又分为同步和异步,电路的动作行为有并行 和串行动作,VHDL语言常用语句分为并行语句和顺序语句,完全能够描述复杂的电路结构 和行为状态。 1.1.2 VHDL语言的基本结构 VHDL语言是数字电路的硬件描述语言,在语句结构上吸取了Fortran和C等计算机高级 语言的语句,如IF语句、循环语句、函数和子程序等,只要具备高级语言的编程技能和数字 逻辑电路的设计基础,就可以在较短的时间内学会VHDL语言。但是VHDL毕竟是一种描述 数字电路的工业标准语言,该种语言的标识符号、数据类型、数据对象以及描述各种电路的 语句形式和程序结构等方面具有特殊的规定,如果一开始就介绍它的语法规定,会使初学者 感到枯燥无味,不得要领。较好的办法是选取几个具有代表性的VHDL程序实例,先介绍整 体的程序结构,再逐步介绍程序中的语法概念。 一个VHDL语言的设计程序描述的是一个电路单元,这个电路单元可以是一个门电路, 或者是一个计数器,也可以是一个CPU。一般情况下,一个完整的VHDL语言程序至少要包含程序包、实体和结构体三个部分。实体给出电路单元的外部输入输出接口信号和引脚信 息,结构体给出了电路单元的内部结构和信号的行为特点, 程序包定义在设计结构体和实体 中将用到的常数、数据类型、子程序和设计好的电路单元等。 一位全加器的逻辑表达式是: S=A⊕B⊕Ci Co=AB+ACi+BCi 全加器的VHDL程序的文件名称是fulladder.VHD,其中VHD是VHDL程序的文件扩展名, 程序如下: LIBRARY IEEE; --IEEE标准库 USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fulladder IS -- fulladder是实体名称 PORT( A, B, Ci : IN STD_LOGIC; --定义输入/输出信号 Co, S : OUT STD_LOGIC ); END fulladder; ARCHITECTURE addstr OF fulladder IS --addstr是结构体名 BEGIN S <= A XOR B XOR Ci; Co <= (A AND B) OR (A AND Ci) OR (B AND Ci); END addstr; 从这个例子中可以看出,一段完整的VHDL代码主要由以下几部分组成: 第一部分是程序包,程序包是用VHDL语言编写的共享文件,定义在设计结构体和实体

SystemVerilog

SystemVerilog 语言简介 SystemVerilog 是一种硬件描述和验证语言(HDVL),它基于 IEEE 1364-2001 Verilog 硬件描述语言 (HDL) 并对其进行了扩展, , 包括扩充了 C 语言数据类型、结构、压缩和非压缩数组、 接口、断 言等等, 这些都使得 SystemVerilog 在一个更高的抽象层次上提高了 设计建模的能力。SystemVerilog 由 Accellera 开发,它主要定位在 芯片的实现和验证流程上, 并为系统级的设计流程提供了强大的连接 能力。 下面我们从几个方面对 SystemVerilog 所作的增强进行简要的 介绍, 期望能够通过这个介绍使大家对 SystemVerilog 有一个概括性 的了解。 1. 接口(Interface) Verilog 模块之间的连接是通过模块端口进行的。为了给组成设 计的各个模块定义端口, 我们必须对期望的硬件设计有一个详细的认 识。不幸的是,在设计的早期,我们很难把握设计的细节。而且,一 旦模块的端口定义完成后,我们也很难改变端口的配置。另外,一个 设计中的许多模块往往具有相同的端口定义,在 Verilog 中,我们必 须在每个模块中进行相同的定义,这为我们增加了无谓的工作量。 SystemVerilog 提供了一个新的、高层抽象的模块连接,这个连 接被称为接口(Interface)。接口在关键字 interface 和 endinterface 之间定义,它独立于模块。接口在模块中就像一个单一的端口一样使 用。在最简单的形式下,一个接口可以认为是一组线网。例如,可以 将 PCI 总线的所有信号绑定在一起组成一个接口。通过使用接口, 我们在进行一个设计的时候可以不需要首先建立各个模块间的互连。 随着设计的深入,各个设计细节也会变得越来越清晰,而接口内的信 号也会很容易地表示出来。当接口发生变化时,这些变化也会在使用 该接口的所有模块中反映出来,而无需更改每一个模块。 下面是一个 接口的使用实例: interface chip_bus; // 定义接口 wire read_request, read_grant; wire [7:0] address, data; endinterface: chip_bus
更多免费资料下载请进: https://www.wendangku.net/doc/903941831.html, 中国最大的免费课件资料库

vhdl语法格式(1)

上篇基础元素 目录:数据类型数据对象运算符语句基本程序结构电路描述方式 数据类型 预定义类型 bit bit_victor integer std_logic std_logic_victor 自定义类型 枚举类型 type 新数据类型 is (元素1, 元素2, ...) 例定义 type state_type is (s1, s2, s3. s4); -- 定义一个新类型state_type 引用 signal state : state_type; -- 定义一个信号state,类型为state_type 数组类型 type 数组 is array (范围) of 数据类型; 例定义 type byte is array (7 downto 0) of bit; -- 定义一个8bit的数组 type word is array (31 downto 0) of bit; -- 定义一个32bit的数组 数据对象 端口声明端口 : in | out 数据类型; -- 端口在特性上等同于信号,但赋值在entity的port中赋值端口 <= 表达式; 信号声明signal 信号 : 数据类型; 赋值信号 <= 表达式; 变量声明varable 变量 : 数据类型; 赋值变量 := 表达式; 常数声明常数 : 数据类型 := 数值; 运算符 算术运算 +, -, * 并置运算 & 关系运算 =, /=, <, <=, >, >= 逻辑运算 and, or, not, nand, nor, xor, xnor 语句 并行语句 ⑴信号赋值语句 简单信号赋值语句信号 <= 表达式; 选择信号赋值语句 with 选择表达式 select

system verilog教程

SystemVerilog Tutorials 下面的手册会帮助你了解一些SystemVerilog中最重要的新特点。手册还提供了一些代码样本和例子使你可以对语言有更好"感觉"。这些辅导假设你们已经了解了一些Verilog语言。如果没有,你可以先去看看Verilog设计者指南(V erilog Designer’s Guide)。 * Data types * RTL design * Interfaces * Clocking * Assertion-based verification * Classes * Testbench automation and constraints * The Direct Programming Interface (DPI) SystemVerilog 的数据类型 这个手册将描述Systemverilog新引进的数据类型。他们大多数都是可以综合的,并且可以使RTL级描述更易于理解和书写。 整型和实型 SystemVerilog引进了几种新的数据类型。C语言程序员会熟悉其中的大多数。引进新的数据类型构思是这样的,如果C语言和SystemVerilog有相同的数据类型可以使C语言算法模型更容易的转化为SystemVerilog模型。 Verilog的变量类型有四态:既是0,1,X,Z。SystemVerilog引进了新的两态数据类型,每一位只可以是0或是1。当你不需要使用的X和Z值时,譬如在写Testbench和做为for语句的循环变量。使用两态变量的RTL级模型,可以使模拟器更有效率。并且使用得当的话将不会对综合结果产生影响。 二态整型 类型描述例子 Bit user-defined size bit [3:0] a_nibble; Byte 8 bits, unsigned byte a, b; Shortint 16 bits, signed shortint c, d; Int 32 bits, signed int i,j; Longint 64 bits, signed longint lword;

SystemVerilog语言简介(doc 26页)

SystemVerilog语言简介(doc 26页)

SystemVerilog语言简介 SystemVerilog是一种硬件描述和验证语言(HDVL),它基于IEEE 1364-2001 Verilog硬件描述语言(HDL),并对其进行了扩展,包括扩充了C语言数据类型、结构、压缩和非压缩数组、接口、断言等等,这些都使得SystemVerilog在一个更高的抽象层次上提高了设计建模的能力。SystemVerilog由Accellera 开发,它主要定位在芯片的实现和验证流程上,并为系统级的设计流程提供了强大的连接能力。下面我们从几个方面对SystemV erilog所作的增强进行简要的介绍,期望能够通过这个介绍使大家对SystemVerilog有一个概括性的了解。 1. 接口(Interface) Verilog模块之间的连接是通过模块端口进行的。为了给组成设计的各个模块定义端口,我们必须对期望的硬件设计有一个详细的认识。不幸的是,在设计的早期,我们很难把握设计的细节。而且,一旦模块的端口定义完成后,我们也很难改变端口的配置。另外,一个设计中的许多模块往往具有相同的端口定义,在Verilog中,我们必须在每个模块中进行相同的定义,这为我们增加了无谓的工作量。 SystemVerilog提供了一个新的、高层抽象的模块连接,这个连接被称为接口(Interface)。接口在关键字interface和e ndinterface之间定义,它独立于模块。接口在模块中就像一个

单一的端口一样使用。在最简单的形式下,一个接口可以认为是一组线网。例如,可以将PCI总线的所有信号绑定在一起组成一个接口。通过使用接口,我们在进行一个设计的时候可以不需要首先建立各个模块间的互连。随着设计的深入,各个设计细节也会变得越来越清晰,而接口内的信号也会很容易地表示出来。当接口发生变化时,这些变化也会在使用该接口的所有模块中反映出来,而无需更改每一个模块。下面是一个接口的使用实例:

Systemverilog的一个牛人总结

转一篇Systemverilog的一个牛人总结 (2012-12-12 16:47:06) 转载▼ 标签: 分类:Dreamywork systemverilog 验证 面向对象 杂谈 Systemverilog 数据类型 l 合并数组和非合并数组 1)合并数组: 存储方式是连续的,中间没有闲置空间。 例如,32bit的寄存器,可以看成是4个8bit的数据,或者也可以看成是1个32bit的数据。 表示方法: 数组大小和位,必须在变量名前指定,数组大小必须是【msb:lsb】 Bit[3:0] [7:0] bytes ; 2)二维数组和合并数组识别: 合并数组: bit [3:0] [7:0] arrys; 大小在变量名前面放得,且降序 二维数组: int arrays[0:7] [0:3] ; 大小在变量名后面放得,可降序可升序 位宽在变量名前面,用于识别合并和非合并数组,位宽在后面,用于识别数组中元素个数。 3)非合并数组 一般仿真器存放数组元素时使用32bit的字边界,byte、shortint、int都放在一个字中。 非合并数组:字的地位存放变量,高位不用。 表示方法: Bit [7:0] bytes; 4)合并数组和非合并数组的选择 (1)当需要以字节或字为单位对存储单元操作。 (2)当需要等待数组中变化的,则必须使用合并数组。例如测试平台需要通过存储器数据的变化来唤醒,需要用到@,@只能用于标量或者合并数组。

Bit[3:0] [7:0] barray[3] ; 表示合并数组,合并数组中有3个元素,每个元素时8bit,4个元素可以组成合并数组 可以使用barry[0]作敏感信号。 l 动态数组 随机事物不确定大小。 使用方法:数组在开始是空的,同时使用new[]来分配空间,在new[n]指定元素的个数。 Int dyn[]; Dyn = new[5]; //分配5个元素空间 Dyn.delete() ; //释放空间 l 队列 在队列中增加或删除元素比较方便。 l 关联数组 当你需要建立一个超大容量的数组。关联数组,存放稀疏矩阵中的值。 表示方法: 采用在方括号中放置数据类型的形式声明: Bit[63:0] assoc[bit[63:0]]; l 常量: 1)Verilog 推荐使用文本宏。 好处:全局作用范围,且可以用于位段或类型定义 缺点:当需要局部常量时,可能引起冲突。 2)Parameter 作用范围仅限于单个module 3)Systemverilog: 参数可以在多个模块里共同使用,可以用typedef 代替单调乏味的宏。 过程语句 l 可以在for循环中定义变量,作用范围仅在循环内部 for(int i=0;i<10;i++) array[i] =i; l 任务、函数及void函数 1)区别:

system verilog 类的继承

类的继承 SystemVerilog支持单继承(类似Java,而不像C++). 有一个让SystemVerilog支持多重继承的提案[1], 但是短期内不会看到曙光。 目录 ? 1 什么是继承? ? 2 有什么好处 ? 3 开-关定律 ? 4 参考资料 什么是继承? 继承是面向对象编程范式的关键概念。类用来创建用户自定义类型. 继承使得用户可以用非常安全,非侵入的方式对类的行为进行增加或者修改。 使用继承可以定义子类型,在子类型中增加新的方法和数据。被继承的类一般称为基类(SystemVerilog中的超类),得到的新类一般称为引申类(或子类)。 为什么继承如此重要? 因为它使得复用得以实现。让我们通过实例来说明. 假设我们对一个图像模块进行建模. 对其中一部分,我们写了一个代表颜色的类: class Color; byte unsigned red; byte unsigned green; byte unsigned blue; function new(byte unsigned red_=255, byte unsigned green_=255, byte unsigned blue_=255); red=red_; green=green_; blue=blue_; endfunction:new function mix(Color other); function brighter(float percent); task draw_pixel(int x,int y);

Now现在它的下一个版本希望能够处理部分透明的图像。为此,我们给Color类增加了一个alpha成员,。alpha代表图像的透明度。alpha越大,图像的像素越结实(不透明)。'0'代表完全透明,使得图片的背景全部可见。因此,我们修改color类如下: class Color; byte unsigned red; byte unsigned green; byte unsigned blue; byte unsigned alpha; function new(byte unsigned red_=255, byte unsigned green_=255, byte unsigned blue_=255, byte unsigned alpha_=255); red=red_; green=green_; blue=blue_; alpha=alpha_; endfunction:new function mix(Color other);// new implementation -- would depend on // alpha values for both the colors function brighter(float percent);// original implementation good enough task draw_pixel(int x,int y);// new implementation // Other functions ... endclass:Color 注意,即使许多代码是由之前版本的Color类复制而来,我们还是需要单独维护两个版本的代码。这时继承就可以发挥作用,使用继承,我们可以简单的从原始的Color类继承出新类,来添加alpha成员。 class ColorWithAlpha extends Color; byte unsigned alpha; function new(byte unsigned red_=255, byte unsigned green_=255, byte unsigned blue_=255, byte unsigned alpha_=255);

system_verilog教程

基于断言的验证技术 SystemVerilog Tutorials 下面的手册会帮助你了解一些SystemVerilog中最重要的新特点。手册还提供了一些代码样本和例子使你可以对语言有更好"感觉"。这些辅导假设你们已经了解了一些Verilog语言。如果没有,你可以先去看看Verilog设计者指南(V erilog Designer’s Guide)。 * Data types * RTL design * Interfaces * Clocking * Assertion-based verification * Classes * Testbench automation and constraints * The Direct Programming Interface (DPI) SystemVerilog 的数据类型 这个手册将描述Systemverilog新引进的数据类型。他们大多数都是可以综合的,并且可以使RTL级描述更易于理解和书写。 整型和实型 SystemVerilog引进了几种新的数据类型。C语言程序员会熟悉其中的大多数。引进新的数据类型构思是这样的,如果C语言和SystemVerilog有相同的数据类型可以使C语言算法模型更容易的转化为SystemVerilog模型。 Verilog的变量类型有四态:既是0,1,X,Z。SystemVerilog引进了新的两态数据类型,每一位只可以是0或是1。当你不需要使用的X和Z值时,譬如在写Testbench和做为for语句的循环变量。使用两态变量的RTL级模型,可以使模拟器更有效率。并且使用得当的话将不会对综合结果产生影响。 二态整型 类型描述例子 Bit user-defined size bit [3:0] a_nibble;

systemverilog面试

Qi1)What is callback (Qi2)What is factory pattern (Qi3)Explain the difference between data types logic and reg and wire . (Qi4)What is the need of clocking blocks (Qi5)What are the ways to avoid race condition between testbench and RTL using SystemVerilog (Qi6)Explain Event regions in SV. (Qi7)What are the types of coverages available in SV (Qi8)What is OOPS (Qi9)What is inheritance and polymorphism (Qi10)What is the need of virtual interfaces (Qi11)Explain about the virtual task and methods . (Qi12)What is the use of the abstract class (Qi13)What is the difference between mailbox and queue

(Qi14)What data structure you used to build scoreboard (Qi15)What are the advantages of linkedlist over the queue (Qi16)How parallel case and full cases problems are avoided in SV (Qi17)What is the difference between pure function and cordinary function (Qi18)What is the difference between $random and $urandom (Qi19)What is scope randomization (Qi20)List the predefined randomization methods. (Qi21)What is the dfference between always_combo and always@(*)c (Qi22)What is the use of packagess (Qi23)What is the use of $cast (Qi24)How to call the task which is defined in parent object into derived class (Qi25)What is the difference between rand and randc (Qi26)What is $root (Qi27)What is $unit

Systemverilog的数据类型教程

本教程将介绍新引入Systemverilog的数据类型。他们大多数是可综合的,而且使得RTL级描述更易于被编写和理解。 整型和实型 SystemVerilog 引入了几种新的数据类型。C语言程序员会熟悉其中的大多数。引进新的数据类型构思是这样的,如果C语言和SystemVeri log有相同的数据类型的话可以使C语言算法模型更容易的转化为Syst emVerilog模型。 Verilog的变量类型是四态类型:即0,1,X(未知值)和Z(高阻值)。SystemVerilog新引入了两态的数据类型,每一位只可以是0或者1。当你不需要使用的X和Z值时,譬如在写Testbench和做为For 语句的循环变量时。使用两态变量的RTL级模型,可以使仿真器效率更高。而且使用得当的话将不会对综合结果产生任何的影响。 注意:和C语言不一样,SystemVerilog指定了一些固定宽度的数据类型。 logic是一种比reg型更好更完善的数据类型。我们将会看到,你可

以使用logic型来替代过去您有可能使用reg型或wire型的地方。 数组 在Verilog-1995中,你可以定义标量或是矢量类型的线网和变量。你也可以定义一维数组变量类型的存储器数组。在Verilog-2001中允许多维的线网和变量数组存在,并且取消了部分存储器数组用法的限制。 SystemVerilog进一步完善了数组的概念,并对数组重新进行了定义,从而允许对数组进行更多的操作。 在SystemVerilog中,数组可以有压缩尺寸或是非压缩尺寸的属性,也可以同时具有两种属性。考虑下面的例子: reg [3:0][7:0] register [0:9]; 压缩尺寸是[3:0]和[7:0],非压缩尺寸是[0:9] 。(只要你喜欢可以有任意大小的压缩尺寸和非压缩尺寸) 压缩尺寸: 1)保证将在存储器中产生连续的数据 2)可以复制到任何其他的压缩对象中 3)可切片("部分选取") 4)仅限于位类型(bit, logic, int等),其中有些(如int)有固定的 尺寸 相比之下,非压缩数组在内存中的排列方式由仿真器任意选定。我们可以可靠地复制非压缩数组到另一个具有相同数据类型的数组中。对于不同数据类型的数组,你必须使用强制类型转换(有几个非压缩数组转换到压缩数组的规则)。其中非压缩数组可以是任意的类型,如实数数组。

SystemVerilog 中的随机化激励

SystemVerilog中的随机化激励 神州龙芯集成电路设计公司 杨鑫 徐伟俊 陈先勇 夏宇闻 [摘要]:随着集成电路的验证工作日渐复杂,对验证的可靠性提出了越来越高的要求。传统的验证工作中也使用随机化激励以便减轻测试代码编写的工作量,以提升验证的可靠性。在SystemVerilog更强调了利用随机化激励函数以提高验证代码的效率和验证可靠性的重要性。本文以VMM库为例,阐述了如何在SystemVerilog中使用随机化函数来编写高效率的测试代码,重点介绍了可重用验证函数库的使用方法,以帮助读者理解如何使用SystemVerilog高效率地完成复杂的设计验证。 关键字:VMM SystemVerilog 激励随机化 1. 前言 随着电路工艺设计技术的不断发展,集成电路的逻辑设计变得越来越复杂,随之对验证工作提出了更高的要求。由于投片(tip-out)的费用较高,很有必要在投片前对芯片设计进行全面、可信的验证,以尽量减少“设计——测试——投片——调试——发现Bug修改设计”这一流程的迭代次数。因此在集成电路芯片的设计中,尤其是复杂逻辑设计中,对测试工作的效率和可靠性提出了更高的要求。 在传统的验证方法中,也有将激励随机化的方法,这样可以用较少的测试代码生成较多、较全面的测试激励。这些方法减少了人为因素的干扰,能有效地提高验证的工作效率和可靠性。 在SystemVerilog中,强调在验证中使用可重用的验证IP,包括如何生成随机化激励。对于如何尽可能地使用已有的验证IP,以及编写符合标准的可重用验证组件,SystemVerilog提供了一整套的工作机制,这使得符合规范的随机化激励组件能够很好地在多个设计间复用,这更进一步地提高了验证工作的效率和可靠性。 2. 在验证中使用随机化激励 在验证中,可以依照DUT(Design Under Test,被测设计,以下简称DUT)的验证要求来设计定向的激励,并对照DUT的预期响应,用人工的方法来判断设计是否正确。但也可以使用随机化激励来驱动DUT,并使用特定的机制来完成响应的自检测。 利用随机化来产生激励可以看作一种近似的自动化激励产生,因为随机化足够长的时间后,所生成的激励可以覆盖绝大部分的待验证特性。但是纯粹的随机化激励效率并不高,因为其中正确的,或是有意义的激励只占很少一部分。必须使用一定的约束条件限制随机化的范围,从而产生大量随机而有意义的激励。

systemverilog 实验

INTRODUCTION In this tutorial, we will verify the Switch RTL core. Following are the steps we follow to verify the Switch RTL core. 1) Understand the specification 2) Developing Verification Plan 3) Building the Verification Environment. We will build the Environment in Multiple phases, so it will be easy for you to learn step by step. Phase 1) We will develop the testcase and interfaces, and integrate them in these with the DUT in top module. Phase 2) We will Develop the Environment class. Phase 3) We will develop reset and configuration methods in Environment class. Then using these methods, we will reset the DUT and configure the port address. Phase 4) We will develop a packet class based on the stimulus plan. We will also write a small code to test the packet class implementation. Phase 5) We will develop a driver class. Packets are generated and sent to DUT using driver. Phase 6) We will develop receiver class. Receiver collects the packets coming from the output port of the DUT. Phase 7) We will develop scoreboard class which does the comparison of the expected packet with the actual packet received from the DUT. Phase 8) We will develop coverage class based on the coverage plan. Phase 9) In this phase , we will write testcases and analyze the coverage report.

vhdl基本语法(简略共34页)

VHDL硬件描述语言 1.1 VHDL概述 1.1.1 VHDL的特点 VHDL语言作为一种标准的硬件描述语言,具有结构严谨、描述能力强的特点,由于 VHDL语言来源于C、Fortran等计算机高级语言,在VHDL语言中保留了部分高级语言的原 语句,如if语句、子程序和函数等,便于阅读和应用。具体特点如下: 1. 支持从系统级到门级电路的描述,既支持自底向上(bottom-up)的设计也支持从顶向下 (top-down)的设计,同时也支持结构、行为和数据流三种形式的混合描述。 2. VHDL的设计单元的基本组成部分是实体(entity)和结构体(architecture),实体包含设 计系统单元的输入和输出端口信息,结构体描述设计单元的组成和行为,便于各模块之间数 据传送。利用单元(componet)、块(block)、过程(procure)和函数(function)等语句, 用结构化层次化的描述方法,使复杂电路的设计更加简便。采用包的概念,便于标准设计文 档资料的保存和广泛使用。 3. VHDL语言有常数、信号和变量三种数据对象,每一个数据对象都要指定数据类型,VHDL 的数据类型丰富,有数值数据类型和逻辑数据类型,有位型和位向量型。既支持预定义的数 据类型,又支持自定义的数据类型,其定义的数据类型具有明确的物理意义,VHDL是强类 型语言。 4. 数字系统有组合电路和时序电路,时序电路又分为同步和异步,电路的动作行为有并行 和串行动作,VHDL语言常用语句分为并行语句和顺序语句,完全能够描述复杂的电路结构 和行为状态。 1.1.2 VHDL语言的基本结构 VHDL语言是数字电路的硬件描述语言,在语句结构上吸取了Fortran和C等计算机高级 语言的语句,如IF语句、循环语句、函数和子程序等,只要具备高级语言的编程技能和数字 逻辑电路的设计基础,就可以在较短的时间内学会VHDL语言。但是VHDL毕竟是一种描述 数字电路的工业标准语言,该种语言的标识符号、数据类型、数据对象以及描述各种电路的 语句形式和程序结构等方面具有特殊的规定,如果一开始就介绍它的语法规定,会使初学者 感到枯燥无味,不得要领。较好的办法是选取几个具有代表性的VHDL程序实例,先介绍整 体的程序结构,再逐步介绍程序中的语法概念。 一个VHDL语言的设计程序描述的是一个电路单元,这个电路单元可以是一个门电路, 或者是一个计数器,也可以是一个CPU。一般情况下,一个完整的VHDL语言程序至少要包含程序包、实体和结构体三个部分。实体给出电路单元的外部输入输出接口信号和引脚信 息,结构体给出了电路单元的内部结构和信号的行为特点, 程序包定义在设计结构体和实体 中将用到的常数、数据类型、子程序和设计好的电路单元等。 一位全加器的逻辑表达式是: S=A⊕B⊕Ci Co=AB+ACi+BCi 全加器的VHDL程序的文件名称是fulladder.VHD,其中VHD是VHDL程序的文件扩展名, 程序如下: LIBRARY IEEE; --IEEE标准库 USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fulladder IS -- fulladder是实体名称 PORT( A, B, Ci : IN STD_LOGIC; --定义输入/输出信号 Co, S : OUT STD_LOGIC ); END fulladder; ARCHITECTURE addstr OF fulladder IS --addstr是结构体名 BEGIN

System Verilog笔记总结

Systemverilog 数据类型 l 合并数组和非合并数组 1)合并数组: 存储方式是连续的,中间没有闲置空间。 例如,32bit的寄存器,可以看成是4个8bit的数据,或者也可以看成是1个32bit的数据。 表示方法: 数组大小和位,必须在变量名前指定,数组大小必须是【msb:lsb】 Bit[3:0] [7:0] bytes ; 2)二维数组和合并数组识别: 合并数组: bit [3:0] [7:0] arrys; 大小在变量名前面放得,且降序 二维数组: int arrays[0:7] [0:3] ; 大小在变量名后面放得,可降序可升序 位宽在变量名前面,用于识别合并和非合并数组,位宽在后面,用于识别数组中元素个数。 3)非合并数组 一般仿真器存放数组元素时使用32bit的字边界,byte、shortint、int都放在一个字中。 非合并数组:字的地位存放变量,高位不用。 表示方法: Bit [7:0] bytes; 4)合并数组和非合并数组的选择 (1)当需要以字节或字为单位对存储单元操作。 (2)当需要等待数组中变化的,则必须使用合并数组。例如测试平台需要通过存储器数据的变化来唤醒,需要用到@,@只能用于标量或者合并数组。 Bit[3:0] [7:0] barray[3] ; 表示合并数组,合并数组中有3个元素,每个元素时8bit,4个元素可以组成合并数组 可以使用barry[0]作敏感信号。 l 动态数组 随机事物不确定大小。 使用方法:数组在开始是空的,同时使用new[]来分配空间,在new[n]指定元素的个数。 Int dyn[]; Dyn = new[5]; //分配5个元素空间 Dyn.delete() ; //释放空间

systemverilog验证学习笔记

=阻塞串行 <=非阻塞并行 1)时序逻辑----使用非阻塞赋值 2)锁存器----使用非阻塞赋值 3)用always块生成的组合逻辑----用阻塞赋值 4)在同一个always块中既有时序逻辑又有组合逻辑--- 用非阻塞赋值 5)在同一个always块中不要既用阻塞赋值又用非阻塞赋值 6)不要在一个以上的always块中对同一个变量赋值 7)用$strobe显示用非阻塞赋值指定的变量值 8)不要用#0 过程性赋值Modport将信号分组并指明方向 函数不能消耗时间,不能有#100@(posedge clk)wait之类的阻塞语句 Interface arb_if(input bit clk); Logic [1:0] a,b; Logic rst; Modport test(output a,rst, Input b,clk); Endinterface

Module arb(arb_if.test arbif); ………… Endmodule 数组定位 Int tq[$],d[]=’{9,1,8,3,4,4}; Tq=d.find_index(x) with (item>3); //{0,2,4,5}得到的是脚标 Tq=d.find with (item>3); //{9,8,4,4} 数组求和 Int count,total; Count=d.sum with(item>7); //2:{9,8} 返回结果为元素与7比较表达式返回1为真或者零这里面返回,{1,0,1,0,0,0}求和得2 Total=d.sum with ((item>7)*item) ; //{1,0,1,0,0,0}和对应元素相乘求和得17=9加8 数组排序 d.reverse(); //逆序 d.sort(); //从小到大 d.rsotr(); //从大到小 d.shuffle();

最新整理Systemverilog语言简介.doc

SystemVerilog语言简介 SystemVerilog是一种硬件描述和验证语言(HDVL),它基于IEEE 1364-20 xx Verilog硬件描述语言(HDL),并对其进行了扩展,包括扩充了C语言数据类型、结构、压缩和非压缩数组、接口、断言等等,这些都使得SystemVerilo g在一个更高的抽象层次上提高了设计建模的能力。SystemVerilog由Acceller a开发,它主要定位在芯片的实现和验证流程上,并为系统级的设计流程提供了强大的连接能力。下面我们从几个方面对SystemVerilog所作的增强进行简要的介绍,期望能够通过这个介绍使大家对SystemVerilog有一个概括性的了解。 1. 接口(Interface) Verilog模块之间的连接是通过模块端口进行的。为了给组成设计的各个模块定义端口,我们必须对期望的硬件设计有一个详细的认识。不幸的是,在设计的早期,我们很难把握设计的细节。而且,一旦模块的端口定义完成后,我们也很难改变端口的配置。另外,一个设计中的许多模块往往具有相同的端口定义,在Verilog中,我们必须在每个模块中进行相同的定义,这为我们增加了无谓的工作量。 SystemVerilog提供了一个新的、高层抽象的模块连接,这个连接被称为接口(Interface)。接口在关键字interface和endinterface之间定义,它独立于模块。接口在模块中就像一个单一的端口一样使用。在最简单的形式下,一个接口可以认为是一组线网。例如,可以将PCI总线的所有信号绑定在一起组成一个接口。通过使用接口,我们在进行一个设计的时候可以不需要首先建立各个模块间的互连。随着设计的深入,各个设计细节也会变得越来越清晰,而接口内的信号也会很容易地表示出来。当接口发生变化时,这些变化也会在使用该接口的所有模块中反映出来,而无需更改每一个模块。下面是一个接口的使用实例:interface chip_bus; // 定义接口 wire read_request, read_grant; wire [7:0] address, data; endinterface: chip_bus module RAM (chip_bus io, // 使用接口 input clk); // 可以使用io.read_request引用接口中的一个信号 endmodule module CPU(chip_bus io, input clk); ...

System verilog概述

SystemVerilog断言及其应用 神州龙芯集成电路设计公司 陈先勇 徐伟俊 杨鑫 夏宇闻 [摘要]:在介绍SystemVerilog断言的概念、使用断言的好处、断言的分类、断言的组成以及断言如何被插入到被测设计(DUT)的基础上,本文详细地介绍了如何使用不同的断言语句对信号之间的复杂时序关系进行严格的检查,并针对每个例子展示了在ModelSim 6.1b仿真环境中所显示的波形。本文旨在帮助读者理解如何使用断言对设计中信号间复杂时序关系进行验证的方法,并由此介绍一些基本的SystemVerilog断言、操作符、代码段和断言验证方法学。 关键字:SystemVerilog,断言, DUT, SVA,Assertion 1.前言 当今,数字电路的规模和复杂度在不断增长,这使得对设计进行彻底的验证将成为一项巨大的挑战。在整个芯片设计过程中,验证工作所需的时间将占去设计周期的70%~80%,验证工程师的人数将是设计工程师的两倍。这就迫切需要提高验证工作的效率,以解决验证瓶颈问题。 传统上,对被测设计(DUT)的验证都是通过在DUT的输入端口加上具有特定时序激励,然后观察DUT的内部状态变化和最后的输出信号,以确定DUT工作是否正确。这种方法对简单的小规模的设计很有用。但当设计规模变大时,要想使用这种方法来验证DUT是不现实的。因为对于规模大的设计,要想遍历设计将遇到的各种情况,验证其正确性,需要成千上万的特定时序激励。并且如果设计稍有一点变动,这些时序激励就得重新编写。设计的复杂性迫使验证工程师使用随机测试平台来生成更多的验证激励。高级验证语言,如OVA,PSL等,便在创建复杂测试平台时得到了广泛的应用。但这些验证语言和RTL级的编码语言不一致,使得验证很容易出现错误,造成调试工作的不方便。 SystemVerilog的出现可以解决这些问题。 SystemVerilog是在Verilog语言的基础上发展而来的,用SystemVerilog语言可以很容易地生成复杂的随机测试激励,并能方便地编写断言和测试代码覆盖率的代码。断言在验证过程中的用途如下图所示:

相关文档