文档库 最新最全的文档下载
当前位置:文档库 › 单片机多通道温度采集测控系统

单片机多通道温度采集测控系统

单片机多通道温度采集测控系统
单片机多通道温度采集测控系统

单片机多通道温度采集测控系统

作者:本站来源:https://www.wendangku.net/doc/934122792.html, 发布时间:2007-12-19 10:17:49 发布人:admin

减小字体增大字体单片机多通道温度采集测控系统

摘要3

Abstract4

第一章前言5

第二章单片机多通道温度采集测控系统分析与设计6

2.1 总体分析6

2.2 AT89C51单片机的性能及应用6

2.3 控制框图的设计系统7

第三章单片机多通道温度采集测控系统分析与设计的硬件9

3.1 输入电路的设计9

3.1.1 集成温度传感器AD590的简单介绍9

3.1.2 放大电路的设计10

3.2 单通道,循环检测工作方式选择电路的设计12

3.3 A/D0809与AT89C51接口电路的设计13

3.4 输出电路设计15

3.4.1 四位LED数码管驱动电路的设计15

3.4.2 超温报警电路的设计17

3.4.3 温度控制电路的设计17

3.6 电路板的制作与调试19

3.6.1电路原理图的绘制过程19

3.6.2 PCB板的制作21

3.6.3 电路的焊接24

第四章单片机多通道温度采集测控系统的软件25

4.1 主程序的逐步25

4.1.1 初始化和工作方式选择程序的设计25

4.1.2 显示程序的设计27

4.1.3 二进制温度值转化成BCD码温度显示值的程序设计28

4.1.4 延时子程序的设计30

4.1.5 数模转换测量子程序的设计30

4.1.6 按键检测子程序的设计32

4.1.7 超温报警程序及继电器控制程序的设计33

4.2 CPU抗干扰技术的程序设计34

4.2.1数字滤波35

4.2.2指令冗余和“看门狗”技术35

4.2.3提高RAM 资料可靠性35

4.2.4 总结35

4.3 程序的汇编与调试35

第五章结束语39

5.1 本次设计心得体会39

5.2 总结40

5.3 谢词43

参考文献、资料:44

附录一图和表45

附录二外文资料翻译47

摘要

温度测量与控制在工业、农业、国防等行业有着广泛的应用。利用单片机技术的温度测控系统以其体积小,可靠性高而被广泛采用。本文对该测控系统进行了分析设计。

首先,本文针对系统所使用的单片机的性能和发展情况做了简单介绍;对系统使用的模/数转换芯片ADC08 09做了性能方面的简单说明;同时对测量温度在-55~150之间的集成型恒流测温元件AD590做了介绍。

其次,本文重点对测控硬件、软件的组成进行了分项、模块化逐步分析设计。对各部分的电路一一进行了介绍,最终实现了该系统的硬件电路。绘制了电路原理图,绘制了印制电路板图,并将制成的线路板焊接上了元件,完成了硬件调试。根据硬件的设计和测控系统所要实现的功能,本设计对软件也进行了一一设计,并经过反复的模拟运行、调试,修改简化了软件系统,最后形成了一套完整的程序系统。

关键词:单片机、ADC0809、AD590、软件系统、硬件系统

第一章前言

温度测量在工业,农业,国防等行业有着广泛的应用,而且随着科学技术的发展对温度测量的精度要求愈来愈高。由于AT89C51单片机的设计时间有限其精度不是很高,它的测温范围在0~100℃之间,可以直接应用在对温度精度要求不高的各种现场。

单片机多通道温度采集测控系统采用集成温度传感器满足温度测量,并将温度信号转换成电流,转换为电压信号,通过放大电路最终交由模/数转换芯片转换成数字信号经单片机处理并经输出驱动电路显示于共阳极数码管。该测量仪可实现多点(8点)不同区域测量,单通道,循环测量。还具有超温报警和自动控制功能,当温度超过某一设定值时,系统控制继电器来关闭加温设备。

除此之外,考虑到测控会用于工业生产当中,可靠性要求比较重要,并要具有抗干扰能力和避免、消除干扰的能力,以保证系统平稳工作。

由以上大致分析,整个系统控制将由AT89C51单片机为核心构成。选用ADC0809作为模/数转换芯片,各个检测信号、控制信号、显示信号可由单片机的I/O口进行,并由程序保证系统抗干扰的能力。

设计任务为:用单片机设计一个测温范围在0~100的多通道温度测量仪。设计要求:完成该系统的软硬件设计,学习掌握单片机采集测控系统的设计方法,提高学习新知识、新技能的能力,培养独立设计的能力。

第二章单片机多通道温度采集测控系统分析与设计

2.1 总体分析

由于AT89C51单片机的设计时间有限其精度不是很高,它的测温范围在0~100℃之间,可以直接应用在对温度精度要求不高的各种现场。

单片机多通道温度采集测控系统采用集成温度传感器满足温度测量,并将温度信号转换成电流,转换为电压信号,通过放大电路最终交由模/数转换芯片转换成数字信号经单片机处理并经输出驱动电路显示于共阳极数码管。该测量仪可实现多点(8点)不同区域测量,单通道,循环测量。还具有超温报警和自动控制功能,当温度超过某一设定值时,系统控制继电器来关闭加温设备。

除此之外,考虑到测控会用于工业生产当中,可靠性要求比较重要,并要具有抗干扰能力和避免、消除干扰的能力,以保证系统平稳工作。

由以上大致分析,整个系统控制将由AT89C51单片机为核心构成。选用ADC0809作为模/数转换芯片,各个检测信号、控制信号、显示信号可由单片机的I/O口进行,并由程序保证系统抗干扰的能力。

2.2 AT89C51单片机的性能及应用

单片机是早期Single Chip Microcomputer的直译,它反映了早期单片机的形态和本质。然后,按照面向对象,突出控制功能,在片内集成了许多外围电路及外设接口,突破了传统意义上的计算机结构,发展成micro controller的体系结构,目前国外已普遍称之为微控制器MCU(Microcontroller Unit)。鉴于它完全作嵌入应用,故又称为嵌入式微控制器(Embedded Microcontrolle)。

大多数单片机采用哈佛(Harvard)结构体系,即数据存储空间与程序存储空间相互独立的结构体系。它不同于一般通用计算机系统结构,即程序和数据共用一个空间的冯•诺伊曼(Von Neumann)结构。

AT89C51单片机温度测控仪采用Atmel公司的AT89C51单片机,采用双列直插封装(DIP),有40个引脚。该单片机采用Atmel公司的高密度非易失性存储技术制造,与美国Intel公司生产的MCS—51系列单片机的指令和引脚设置兼容。其主要特征如下:

○18位CPU

○2内置4K字节可重复编程Flash,可重复擦写1000次

○3完全定态操作:0Hz~24Hz,可输出时钟信号

○4128B的片内数据存储器

○532根可编程I/O线

○62个16位定时/计数器

○7中断系统有6个中断源,可编为两个优先级

○8一个全双工可编程串行通道

○9具有两种节能模式:闲置模式和掉电模式

值得注意的是,P0、P1、P2、P3口作为普通I/O口使用时都是准双向口结构,其输入操作和输出操作本质不同,输入操作是读引脚状态,输出是对锁存器的写入操作。当内部总线给口锁存器置0或1时,锁存器中的0、1状态立即反映到引脚上。但在输入操作时,如果锁存器状态为0引脚被钳位0状态,导致无法读出引脚的高电平输入。因此,准双向口作为输入口时,应先使锁存器置1(称之为置输入方式)。然后,再读引脚,例如:要将P1口的状态读入到累加器A中,应执行以下两条指令:

MOV P1,#0FFH ;P1口置入方式

MOV A, P1 ;读P1口引脚状态到A

另外,I/O口的端口自动识别功能,保证了无论是P1口(低8位地址)P2口(高8位地址)的总线复用,还是P3口的功能复用,内部资源自动选择而不需要用指令进行状态选择。

近年来,随着计算机技术的发展,单片机的功能越来越强大。由于单片机的寿命长、速度快、低功耗、低噪声、可靠性高的特点及16位、32位单片机的出现,在工业领域仍具有很大的发展潜力。

2.3 控制框图的设计系统

主要包括对A/D0809的数据采集,检测单通道、循环检测工作方式,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。此外还有复位电路,晶振电路,启动电路等。故现场输入硬件有通道选择键、温度设置键、自动方式键、A/D转换芯片。执行机构有4位数码管、继电器等。系统框图如图2.1:

2.1 控制框图

第三章单片机多通道温度采集测控系统分析与设计的硬件

在硬件的设计前期,根据框图对电路中可能出现的电路,进行了模拟实验,并根据实验结果对后期的硬件设计进行了合理化的修改完善。在第二章中已分析了系统并绘制了框图,下面将根据框图分别设计各部分电路。

3.1 输入电路的设计

温度信号的采集电路。放大电路输入口连接温度传感器AD590的两个引脚。AD590是一种具有良好温度特性的电压输入/电流输出型温度传感器。可以在-55℃~150℃温度范围内正常工作。当输入从+4V~+30V的宽范围电压时,将按1μA/℃的比例输出反映当前温度的电流信号。如当感应温度为0℃时,输出的电流为273μA。本设计中给AD590提供了 12V的电压,以保证其能正常工作,温度监控范围可在0℃~100℃范围内由控制部分自定义。

3.1.1 集成温度传感器AD590的简单介绍

集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b-e结压降的不饱和值VBE与热力学温度T和通过发射极电流I的下述关系实现对温度的检测:

式中,K—波尔兹常数;q—电子电荷绝对值。

集成温度传感器具有线性好、精度适中、灵敏度高、体积小、使用方便等优点,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般为10mV/K,温度0℃时输出为0,温度25℃时输出2.982V。电流输出型的灵敏度一般为1mA/K。

AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下:

1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即:

mA/K

式中:—流过器件(AD590)的电流,单位为mA;

T—热力学温度,单位为K。

2、AD590的测温范围为-55℃~+150℃。

3、AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流变化1mA,相当于温度变化1 K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。

4、输出电阻为710MW。

5、精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±0.3℃

AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好,常用于测温和热电偶的冷端补偿。

图3.1 AD590的封装形式与基本应用电路

3.1.2 放大电路的设计

在许多需要A/D转换和数字采集的单片机系统中,很多情况下,传感器输出的模拟信号都很微弱,必须通过一个模拟放大器对其进行一定倍数的放大,才能满足A/D转换器对输入信号电平的要求,这种情况下,就必须选择一种符合要求的放大器。仪表器的选型很多,在这里介绍一种用途非常广泛的仪表放大器,其实就是典型的差动放大器。它只需三个廉价的普通运算放大器和几只电阻器,即可构成性能优越的仪表用放大器。广泛应用于工业自动控制、仪器仪表、电气测量、医疗器械及其它数字采集的系统中。

电路图参见图3. 2。电路原理并不复杂。要使电路满足平衡,则R1=R2、R3=R4、R5=R6,因为每个运放的特性不可能完全一致,在A和A2的Pin1、Pin8增设了调零电位器VR1和VR2,这在实际的应用中是非常有用的。假设A1、A2的失配、失调电压和电流均为零的情况下,其差模电压增益为:整个电路采用正负两组电源供电,这样可对正或负输入电压进行放大。电源电压一般可取±5—±15V,但对其稳定度有一定的要求。图1中的电容C用于除抖动和抗干扰,其取值应以实际的用途,根据放大的信号特性决定。

可选用的运算放大器相当多,如OP-07,OP-725,如果要求不高,甚至可选价廉的uA741等通用运算放大器。

本设计的放大电路采用高精度集成运放OP-07做放大元件,OP-07为一种具有低失调电压、低失调电流和低温漂的超低失调运算放大器,其广泛地应用于稳定积分、精密加法、比较、阖值电压检测、微弱信号精确放大等场合,是一种通用性极强的运算放大器。

OP-07的电源电压范围 3~ 18V,输入电压范围为0~ 14V,其引线图如图3. 2。

3.3 OP-07管脚图

3.2 单通道,循环检测工作方式选择电路的设计

通道选择工作方式由独立式按键实现。独立式按键就是各按键相互独立,每个按键各接一根输入线,一根输入线上的按键工作状不会影响其它输入线上的工作状态。因此,通过检测输入线的电平状态可以很容易判断哪个健被按下了。独立式按键电路配置灵活,软件结构简单。但每个按键需占用一根输入口线,在按键数量多时,输入口浪费大,电路结构显得很繁杂,故此种键盘适用于按键较少或操作速度较高的合。用查询方式的独立式按键工作,按键直接与AT89C51的I/O口线相接,通过读I/O口,判定各I/O口线的电平状态,即可识别按下的按键。

独立式按键电路中,各按键开关均采用了上拉电阻,这是为了保证在按键断开时,各I/O口线有确定的高电平,当然如输入口线内部已有上拉电阻,则外电路的上拉电阻可省去。

对独立按键盘进行编程,采用软件消抖的方法,以查询工作方式检测各按键的状态。当有且仅有一键按下时才予以识别,如有两个或多个键同时按下将不予以处理。通道选择由按键选择,由P3.5、P3.6扫描实现

3.3 A/D0809与AT89C51接口电路的设计

ADC0809是美国国家半导体公司(National Semiconduct Corporation)产品。是逐次逼近型芯片,片内带有锁存功能的8路模拟多路开关,可对8路0~~5V的输入模拟电压信号分时进行转换,片内具有多路开关的地址译码和锁存电路、比较器、256R电阻T型网络、树状电子开关、逐次逼近寄存器SAR,控制与时序电路等。输出具有TTL三态锁存缓冲器,可直接连到单片机数据总线。ADC0809的分辨率为8位,单一5V供电,功耗为15mW,图3.4 ADC0809管脚图

不必进行零点和满刻度调整,外部时钟频率范围为10KHz~~1280KHz, ADC0809和

AT89C51的硬件接口有三种方式:查询方式,中断方式,等待延时方式。此测量仪采用中断方式。虽然ADC 0809走过了自己的辉煌时期,已经不是目前功能最好的模数转换器件,但是他的廉价和品质在许多领域被广泛使用。

A∕D转换器ADC0809与单片机的连接如图3.5所示。ADC0809的8个模拟量输入都用了,分别连接温度传感器的测量和放大电路的输出。ADC0809的时钟由AT89C51的ALE图3.5 ADC0809与AT89C51的接口线路

信号提供,根据ACD0809对工作时钟的要求和控制器对漏电和短路信号的反应速度的要求,ADC0809时钟频率通过4024分频器分频,这样,若A∕D转换的时间为0.1ms,则控制器循环采样完8个仿真输入信号需要0.8ms时间。这样的采样速度足够满足漏电和短路的保护要求。

3.4 输出电路设计

3.4.1 四位LED数码管驱动电路的设计

在单片机系统中,常用的显示器有:发光二极管显示器,简称LED(LightEmittingDiode),液晶显示器,简称L CD(LiquidCrystalDisplay);荧光管显示器。近年来也开始使用简易的CRT接口,显示一些汉字及图形。前三种显示器都有两种显示结构;段显示(7段,“米”字型等)和点阵显示(5X?,5X8,8X8点阵等)。而发光二极管显示又分为固定段显示和可以拼装的大型字段显示,此外还有共阳极和共阴极之分等。

三种显示器中,以荧光管显示器亮度最高,发光二极管次之,而液晶显示器最弱,为被动显示器,必须有外光源。

LED显示块是由发光二极管显示字段组成的显示器,有8字段和“米”字段之分。显示块都有dp显示段,用于显示小数点。7段LED的字型码,由于只有7个段发光二极管,所以字型码为一个字节。“米”字段LE D的字型码由于有15个段发光二极管,所以字型码为两个字节。这种显示块有共阳极和共阴极两种。共阴极LED显示块的发光二极管的阴极连接在一起,通常此公共阴极接地,当某个发光二极管的阳极为高电平时,发光二极管点亮,相应的段被显示。同样,共阳板LED显示块的发光二极管的阳极连接在一起,通常此公共阳极接正电压。

由N片LED显示块可拼接成N位LED显示器。本设计是4位LED显示器的结构,原理图如3.2.1所示:

N位LED显示器有N根位选线和8XN(或16XN)根段选线。根据显示方式的不同,位选线和段选线的连接方法也各不相同。段选线控制显示字符的字型,而位选线则控制显示位的亮、暗;

图3.6 4位显示器的构成

LED显示器有静态显示和动态显示两种显示方式,一是LED静态显示方式、二是动态显示。‘

LED显示器工作于静态显示方式时,各位的共阴极(或共阳极)连接在一起并接地(或+5v),每位的段选线(a~d p)分别与一8位的锁存输出相连。之所以称为静态显示,是由于显示器中的各位相互独立,而且各位的显示字符一经确定,相应锁存器的输出将维持不变,直到显示另一个字符为止。也正因为如此,静态显示器的亮度都较高。本设计用的是阳极驱动。

图3.5所示为一个四位动态态LED显示器电路。该电路各位可独立显示,只要在该位的段选线上保持段选码电平,该位就能保持相应的显示字符。由于各位分别由一个8位输出口控制段选码,故在同一时间里,每一位显示的字符可以各不相同。这种显示方式接口,编程容易,管理也简单,付出的代价是占用口线资源较多。如图3.5电路所示,若用I/O口线接口,则要占用4个8位I/O口,若用锁存器(如74LS244)接口,则要用1片74LS244芯片。而如果用“米”字段的LED显示器,则静态显示方式需要更多的硬件资源。如果显示器位数增多,则静态显示方式更是无法适应。因此在显示位数较多的情况下,一般都采用动态显示方式。

3.4.2 超温报警电路的设计

声音是由震动所产生的,一定频率的震动就产生了一定频率的声音。这个实验是喇叭里发出滴答一长一短的报警声音,送出的端口是p2.7输出1khz,2khz变频信号报警,每一秒交换一次。

接线方法:用一根1PIN数据线一端插入CPU部分JP53(P2口)的P2.7另外一端插入小喇叭部分的输入端J P16。如图3.6。

3.7超温报警电路的实现

3.4.3 温度控制电路的设计

利用P2.6输出高低,控制继电器的开合,实现对外部装置的控制。

现代自动控制设备中,都存在一个电子电路与电气电路的互相连接问题,一方面要使电子电路的控制信号能够控制电气电路的执行元件(电动机,电磁铁,电灯等),另一方面又要为电子线路的电气电路提供良好的电隔离,以保护电子电路和人身的安全。电子继电器便能完成这一桥梁作用。

继电器电路中一般都要在继电器的线圈两头加一个二极管以吸收继电器线圈断电时产生的反电势,防止干扰。本电路的控制端为JD,当JD为高电平时,继电器不工作,当JD为低电平时,继电器工作,常开触点吸合。执行时,对应的LED将随继电器的开关而亮灭。

3.8 继电器控制电路

3.5 电源的设计实现

电源要对单片机和各种芯片提供5V,要对运放及传感器提供正负12V。电源通过对220V的交流电源降压,出12V交流;再通过全波整流,输出12V直流。

如图3.9:

3.9 电源电路图

3.6 电路板的制作与调试

PCB板的制作在proter 99 se中进行,Protel 99SE采用数据库的管理方式。Protel 99SE软件沿袭了Protel以前版本方便易学的特点,内部界面与Protel 99大体相同,新增加了一些功能模块,功能更加强大。新增的层堆栈管理功能,可以设计32个信号层,16个地电层,16个机械层。新增的3D功能让您在加工印制版之前可以看到板的三维效果。增强的打印功能,使您可以轻松修改打印设置控制打印结果。Protel 99SE容易使用的特性还体现在“这是什么”帮助,按下右上角的小问号,然后输入你所要的信息,可以很快地看到特性的功能,然后用到设计中,按下状态栏末端的按钮,使用自然语言帮助顾问。

3.6.1电路原理图的绘制过程

在PCB板制作之前,先进行了原理图的绘制。

1新建设计数据库文件

双击Protel 99SE 图标,点击File(文件)中new项,新建设计数据库。

新建设计文件,有两种方式:一种为MS Access Database方式,全部文件存储在单一的数据库中,同原来的9 9文件格式。另一种为Windows File System方式,全部文件被直接保存在对话框底部指定的磁盘驱动器中的文件夹中,在资源管理器中可以直接看到所建立的原理图或PCB文件。

在Browse选项中选取需要存储的文件夹,然后点击OK即可建立自己的设计数据库。然后新建文档,给文档取与设计相同的文件名。双击打开,这样就可以开始工作了。

2 原理图图纸设计

打开“设计”“选项”“图纸选项”就可以设定图纸了,由于本设计原理图不是太大,所以选用A4纸,便于安放器件,所以抓取和可视都选用“5”。图纸放大就可以进行下一步的器件安放了。

3 器件的安放

器件的安放先要添加库,库文件在系统盘下,在99 se下的lib文件夹下。具体路径为“设计”“添加/删除库”然后对话筐打开就可以直接添加了。

库添加完后,就寻找器件,找到后单击,然后“放置”,在器件浮动的状态可以对器件进行旋转,“空格”顺时针旋转90度,“x”左右翻转180度,“y”上下翻转180度。然后根据电路需求进行安放。由于电子产品的日新月异,不是每个都也有图库了,所以有的需要自己建。

当器件按需要安放完后就开始连线了。

3 原理图连线设计

确定起始点和终止点,Protel99 SE就会自动地在原理图上连线,从菜单上选择“Place/Wire”后,按空格键切换自动连线方式。观察状态栏就可以看出“Auto Wire”Protel99 SE 自动连线、任意角度、45连线、9 0连线,使得设计者在设计时更加轻松自如。只要简单地定义AutoWire方式。自动连线可以从原理图的任何一点进行,不一定要从管脚到管脚。

4、同步设计

在Protel99SE中使得原理图与PCB同步是容易的。Protel99SE包含一个强大的设计同步工具,使得非常容易地在原理图和PCB之间转移设计信息。

同步设计是更新目标文件的过程,它基于参考文件中上一次的设计信息。当你执行同步时,通过以下选择告诉它要转换的方向:

从原理图到PCB的更新

从PCB到原理图的更新

同步设计执行设计信息的初始化转移,还有正向和反向标注处理、替换创建的网络表—加载网络表顺序、反向标注—在PCB设计中习惯使用的重标注顺序。

5、在原理图上标注汉字或使用国标标题栏

在原理图上放汉字,可以直接点击“Place”选乡下的“Annotation”放置汉字。

如果想要使用国标图纸做标题栏,选择“Design”下的“Template”里的“Set Template File”,找到国标标题栏所在的目录,打开图纸的标题栏将被切换为国标形式。

3.6.2 PCB板的制作

1、将原理图中的选择传递到PCB中

在原理图中选择一组器件,点击\\Tool\Select pcb components选项,PCB中相同的元件也将被选中。

2、生成网络表

当设计好原理图,在进行了ERC电气规则检查正确无误后,就要生成网络表,为PCB布线做准备。网表生成非常容易,只要在“Design”下选取“Create Netlist”对话框,设置为那种格式的网络表。网表生成后,就可以进行PCB设计了。

3、板框导航

当设计了原理图,生成了网表,下一步就要进行PCB设计。首先要画一个边框,可以借助板框导航,来画边框。在“File”下选择“New”中的“Wizards”,在选取“Printed Circuit Board Wizard”,点击“OK”即可,按照显示对话框的每一步提示,完成板框设计。

4、建立PCB文件

要进行PCB设计,必须有原理图,根据原理图才能画出PCB图。按照上述板框导航生成一张“IBM XT bus fo rmat”形式的印制板边框。选择PCB设计窗口下的“Design”中的“Add/Remove Library”,在对话框上选择“4 Port Serial Interface.ddb”,在“\Design Explorer 99SE\Examples”文件夹中选取,点取“Add”,然后“OK”关闭对话框。在左侧的导航树上,打开“4 Port Serial Interface.prj”原理图文件,选择“Design”下的“Updat e PCB”,点取“Apply”,“Update Design”对话框被打开,点取“Execute”选项。对话框“Confirm Compon ent Associations”对话框将被打开,网络连接表列出,选择应用“Apply”更新PCB文件,由于Protel99SE采用同步设计,因此,不用生成网表也可以直接到PCB设计。这时,一个新的带有网络表的PCB文件将生成。

5、布局设计

布线的关键是布局,多数设计者采用手动布局的形式。“Room”定义规则,可以将指定元件放到指定区域。Protel99 SE在布局方面新增加了一些技巧。新的交互式布局选项包含自动选择和自动对齐。使用自动选择方式可以很快地收集相似封装的元件,然后旋转、展开和整理成组,就可以移动倒板上所需位置上了。当简易的布局完成后,使用自动对齐方式整齐地展开或缩紧一组封装相似的元件。

6、布线设置

在布线之前先要设置布线方式和布线规则。Protel99 SE有三种布线方式:忽略障碍布线(Ignore obstacle),避免障碍布线(Avoid obstacle),推挤布线(Push obstacle)。可以根据需要选用不同的布线方式,在“Tool s”工具菜单下选择“Preferences”优选项中选择不同的布线方式。也可以使用“SHIFT+R”快捷键在三种方式之间切换。

接着选择布线规则,在“Design”下选择“Rules”对话框,选择不同网络布线的线宽,布线方式,布线的层数,安全间距,过孔大小等。

有了布线规则,就可进行自动布线或手动布线了。如果采用自动布线,选择“Auto Route”菜单,Protel 99SE 支持多种布线方式,可以对全板自动布线,也可以对某个网络、某个元件布线,也可手动布线。手动布线可以直接点击鼠标右键下拉菜单“Place track”,按鼠标左键一下确定布线的开始点,按“BackSpace”取消刚才画的走线,双击鼠标左键确定这条走线,按“ESC”退出布线状态。用“Shift”加空格键可以切换布线形式,“45°”“90°”弧形布线等方式之间切换。Protel99 SE提供了很好的在线检查工具“Online DRC”随时检查布线错误(在工具菜单的优选项下面)。如果修改一条导线,只需重画一条线,确定后,原来的导线就会自动被删除。

7 电气规则检查

当一块线路板已经设计好,要检查布线是否有错误,Protel99 SE提供了很好的检查工具“DRC”自动规则检查。只要运行“Tools”下的“Design Rlue Check”,计算机会自动将检查结果列出来。

8 可以在PCB中修改元件封装。

操作步骤:

①增加焊盘,将焊盘设置为被选中状态;

②将需要增加的元件恢复原始图素;

③选\Tools\Covert\Add Selected Prmitives to Component;

④提问要增加焊盘的元件,确认即可。

9 建立新的PCB器件封装

由于硬件厂家发展速度非常快,器件的不断更新,经常需要从库里增加器件封装,或增加封装库。Protel99 SE 提供了很好的导航器,帮助完成器件的添加。根据文件产生PCB封装库

打开“LCD Controller.ddb”设计数据库,选中“LCD Controller.pcb”并打开。在“Tools”下选择“Make Libr ay”,建立一个新库文件“LCD controller.lib”,所有PCB中的器件封装被自动抽取出来,保存在库文件中。在这个新库文件中建立器件封装,点击左侧导航树上的“Browse PCBlib”,可以浏览这个库里现有的元件,创建一个新的元件选择“Tools”下的“New Component”,弹出一个器件封装模板,按照提示,生成需要的器件封装。

10 打印预览

在Protel 99SE中可以观看打印效果,通过\\File\Print/Preview控制打印参数,修改打印结果。可以在打印预览中任意添加层或删除层。

这样,一张完整的pcb图就可以打印出来了。

3.6.3 电路的焊接

当电路板腐蚀出来后,先检查,然后打磨,再搽上松香水。就可以开始按原理图焊接了。焊接时要注意虚焊和短路情况出现。

焊接是要先焊单片机的主电路,以便于对各部分电路的测试。当焊完一部分子电路后,要先输入子程序进行检测,看是否有输入或输出。焊完后,就可以进行电路总体性能测试了。

在测试之前,一定要先对电路检测,看是否有短路情况出现,以免芯片损坏。电源输入电压也是关键因素,在供电之前先量量。

这样,完整的电路就出来了。

第四章单片机多通道温度采集测控系统的软件

4.1 主程序的逐步

图4.1 主程序框图

4.1.1 初始化和工作方式选择程序的设计

系统上电时,初始化程序将70h~77h内存单元清零,P2口置0。

ORG0000H

LJMPSTART

ORG0003H

RETI

ORG000BH

RETI

ORG0013H

RETI

ORG001BH

RETI

ORG0023H

RETI

ORG002BH

RETI

CLERMEMICLRA

MOVP2,A

MOVR0,#7OH

MOVR2,#0DH

LOOPMEM:MOV@R0,A

INCR0

DJNZR2,LOOPMEM

MOV20H,#00H

MOVA,#0FFH

MOVP0,A

MOVP1,A

MOVP2,A

RET

START:LCALLCLEARMEMIO;初始化

LCALLTEST;测量一次

LCALLDISPLAY;显示数据一次

AJMPMAIN

NOP ;PC值出错处理

NOP

NOP

LJMPSTART

4.1.2 显示程序的设计

显示子程序采用动态扫描法实现四位共阳极数码管的数值显示,测量所得的A/D转换数据放在70h~77h内存单元中,测量数据在显示时转换为温度值十进制BCD码放在78h~7bh内存单元中,其中7bh存放通道标志数。寄存器R3用作八路循环控制,R0用作显示数据地址指针。

DISPLAY:JB00H,DISP11;标志位为1,则转单路显示控制程序

MOVR3,#08H;8路信号循环显示控制子程序

MOVR0,#70H;显示数据初值70H~77H

MOV7BH,#00H;显示通道数初始值

DISLOOP1:LCALLYNCD;显示数据转为三位BCD码存入7AH,79H,78H

MOVR2,#0FFH;每路显示时间控制在4ms*255,约1s

DISLOOP2:LCALLDISP;调四位显示程序

LCALLKEYWORK1;按键检测

DJNZR2,DISLOOP2

INCR0;显示下一路

INC7BH;通道数据加1

DJNZR3,DISLOOP1

RET

DISP11:MOVA,7BH;单路显示控制子程序

SUBBA,#01H

MOV7BH,A

ADDA,#70H

MOVR0,A

DISLOOP11:LCALLTUNBCD;显示数据转为三位BCD码存入7AH,79H,78H

MOVR2,#0FFH;每路显示时间控制在4ms*25

DISLOOP22:LCALLDISP;调四位显示程序

LCALLKEYWORK2;按键检测

DJNZR2,DISLOOP22

INC7BH;通道显示数据加1

RET

4.1.3 二进制温度值转化成BCD码温度显示值的程序设计TUNBCD:MOVA,@R0;255/51=

5.00V运算

MOVB,#51

DIVAB

MOV7AH,A;个位数放入7AH

MOVA,B;余数大于19H,F0为1,乘法溢出,结果加5

CLRF0

SUBBA,#1AH

MOVF0,C

MOVA,#10

MULAB

MOVB,#51

DIVAB

JBF0,LOOP2

ADDA,#5

LOOP2:MOV79H,A;小数后第1为放入79H

MOVA,B

CLRF0

SUBBA,#1AH

MOVF0,C

MOVA,#10

MULAB

MOVB,#51

DIVAB

JBF0,LOOP3

ADDA,#5

LOOP3:MOV78H,A;小数后第2位放入78H

RET

DISP:MOVR1,#78H;共阳极显示子程序,显示内容只78H~7BH MOVR5,#0FFH;数据在P1口输出

PLAY:MOVP1,#0FFH

MOVA,R5

ANLP3,A

MOVA,@R1

MOVDPTR,#TAB

MOVCA,@A+DPTR

MOVP1,A

JBP3.2,PLAY1;小数点处理

CLRP1.7;小数点显示

PLAY1:LCALLDL1MS

INC R1

MOVA,P3

JNBACC.3,ENDOUT

RLA

MOVR5,A

MOVP3,#0FFH

AJMPPLAY

ENDOUT:MOVP3,#0FFH

MOVP1,#0FFH

RET

TAB:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH 4.1.4 延时子程序的设计

DL10MS:MOVR6,#0D0H

DL1:MOVR7,#19H

DL2:DJNZR7,DL2

DJNZR6,DL1

RET

DL1MS:MOVR4,#0FFH

LOOP11:DJNZR4,LOOP11

MOVR4,#0FFH

LOOP22:DJNZR4,LOOP22

RET

4.1.5 数模转换测量子程序的设计

TEST:CLRA;数模转换子程序

MOVP2,A;转换值放入首值

MOVR0,#70H ;转换8次控制

MOVR7,#08H;启动测试

LCALLTESTART;等A/D转化结束信号

WAIT:JBP3.7,MOVD

AJMPWAIT

TESTART:SETBP2.3;测试启动

NOP

NOP

NOP

CLRP2.3

SETBP2.4

NOP

NOP

CLRP2.4

NOP

NOP

NOP

NOP

RET

MOVD:SETBP2.5;取A/D转换数据

MOVA,P0

MOV@R0,A

CLRP2.5

INCR0

MOVA,P2`;通道地址加1

INCA

MOVP2,A

CJNEA,#08H,TESTEND;等八路A/D转换结束

TESTEND:JCTESTCON

CLRA;结束恢复窗口

MOVA,0FFH

MOVP0,A

MOVP1,A

MOVP3,A

RET

TESTCON:LCALLTESTART

LJMPWAIT

4.1.6 按键检测子程序的设计

KEYWORK1:JNBP3.5,KEY1

KEYOUT:RET

KEY1:LCALLDISP

JBP3.5,KEYOUT

WAIT11:JNBP3.5,WAIT12

CPL00H

MOVR2,#01H

MOVR3,#01H

RET

WAIT12:LCALLDISP

AJMPWAIT11

KEYWORK2:JNBP3.5,KEY1

JNBP3.6,KEY2

RET

KEY2:LCALLDISP

JBP3.6,KEYOUT

WAIT22:JNBP3.6,WAIT21

INC7BH

MOVA,7BH

CJNEA,#08H,KEYOUT11

KEYOUT11:JCKEYOUT1

MOV7BH,#00H

KEYOUT1:RET

WAIT21:LCALLDISP

AJMPWAIT22

END

4.1.7 超温报警程序及继电器控制程序的设计超温报警程序:

DIV: MOV R2,#08H;1kz持续时间

DIV1:MOV R3,#0FAH

DIV2:CPL P3.3;输出1khz方波

LCALL D5ms;调用延时程序1

DJNZR3,DLV2;持续1秒

DJNZ R2,DIV1

MOV R2,#10H;2khz持续时间

DIV3:MOV R3,#0FAH

DI4:CPL P3.3;输出2khz方波

LCALL D25ms;调用延时程序2

DJNZ R3,DIV4

DJNZ R2,DIV3

SIMP DIV;反复循环

D5MS:MOV R7,#0FFH;延时子程序1 LOOP:NOP

NOP

DJNZ R7,LOOP

RET

D25MS:MOVR6,#0FFH;延时子程序2 LIN:DJNZ R6,LIN

RET

继电器控制程序:

START1:MOV SP,#60H

JD: CPL P2.6 ;P2.6取反

LCALL DELAY ;延时

NOP

SJMP JD

DELAY: MOV R0,#0AH ;延时子程序(1秒)

DELAY33: MOV R1,#00H

DELAY44: MOV R2,#0B2H

DJNZ R2,$

DJNZ R1,DELAY44

DJNZ R0,DELAY33

LJMP START1

RET

4.2 CPU抗干扰技术的程序设计

尽管采取了硬件抗干扰措施, 但由于干扰信号产生的原因很复杂, 且有很大的随机性,因此在采取硬件抗干扰措施的基础上, 采取软件抗干扰措施加以补充。常见的软件抗干扰技术有: 数字滤波、指令冗余和“看门狗”技术、系统运行状态监视和提高开关量输入、输出干扰。系统常见的出错现象: 死机、被控对象误操作和定时不准, 他们主要由于内部程序指针错乱使程序进入“死循环”和RAM 资料被冲乱或改变导致的。

4.2.1数字滤波

数字滤波当干扰叠加输入信道的模拟信号时, 使数据采集误差加大。特别当输入信道模拟信号较弱时, 此现象更加严重。为了消除数据采集的误差, 常用算术平均法、比较取舍法、一阶滞后滤波法和中值法, 可根据信号和干扰的规律, 采用最优的设计方法。输入模拟信号处理如图2 所示, 通过数字滤波器可滤掉大部分由于输入信号干扰而引起的输出控制错误。

4.2.2指令冗余和“看门狗”技术

单片机受强干扰会造成程序计数器PC 值改变和破坏程序正常运行。针对这一问题可在关键地方插入一些单字节指令NO P 或有效的单字节指令并用引导指令LJM PMA IN 将捕获的“乱飞”程序引向复位入口地址, 从而避免程序“乱飞”。可是有一些“乱飞”程序会导致死循环, 通常采用软、硬件“看门狗”技术, “看门狗”技术就是不断监视程序运行时间, 当程序运行出现故障时, 计数器溢出, 系统复位并重新运行系统程序。

4.2.3提高RAM 资料可靠性

电源开启和断电及CPU 受到干扰有可能破坏RAM 中的资料。只有采用资料冗余技术保护RAM中的资料。系统复位后, 立即将备用的RAM 对重要参数进行自我检验和恢复, 从而保护RAM 中的资料。提高开关量输入、输出抗干扰控制量有效信号上叠加一系列离散尖脉冲, 这种干扰不易用硬件加以抑制, 可采用软件重复检测以提高输入、输出接口抗干扰性。

4.2.4 总结

不同的单片机系统都有自己的系统要求和特点,在硬件和软件抗干扰设计上也各有自己的特色。针对无线电射频干扰和交流电路工频干扰等5种主要的干扰源以及干扰的方式, 可采用上述的硬件抗干扰措施。对于软件抗干扰措施, 应首先了解测量对象和干扰因素, 分析干扰的来源, 然后根据系统设计有效的抗干扰方法。

4.3 程序的汇编与调试

程序的汇编是通过keil c51进行的。

4.3.1第一课建立您的第一个C 项目

KEIL uVISION2 是众多单片机应用开发软件中最常的软件之一,它支持大部分不同公司的MCS51 架构的芯片,它集编辑、编译、仿真等于一体,同时还支持PLM 、汇编和C 语言的程序设计,它的界面和常用的微软VC++ 的界面相似,界面友好,易学易用,在调试程序,软件仿真方面也有很强大的功能。因此很多开发5

1 应用的工程师或普通的单片机爱好者,都对它十分喜欢。要使用KEIL51 软件,必需先要安装它。下面就以建立一个小程序项目来学习Keil c51的使用。

首先当然是运行KEIL51 软件,接着按下面的步骤建立您的第一个项目。

(1)点击Project 菜单,选择弹出的下拉式菜单中的New Project ,接着弹出一个标准Windows 文件对话窗口,在“文件名”中输入您的第一个C 程序项目名称,这里用“qx”,“保存”后的文件扩展名为uv2 ,这是KEIL uVision2 项目文件扩展名,以后就可以直接点击此文件以打开先前做的项目。

(2)选择所要的单片机,这里选择常用的Ateml 公司的AT89C51 。

(3)首先要在项目中创建新的程序文件或加入旧程序文件。如果没有现成的程序,那么就要新建一个程序文件。在KEIL 中有一些程序示例,在这里以一个汇编程序为例介绍如何新建一个汇编程序和如何加到项目中。菜单File -New 或快捷键Ctrl+N 来实现。现在可以编写程序了,光标已出现在文本编辑窗口中,下面就以一个简单的程序作为示例。程序如下:

(4)用菜单File-Save 或快捷键Ctrl+S 进行保存。因是新文件所以保存时会弹出文件操作窗口,把第一个程序命名为test1.asm ,保存在项目所在的目录中,这时会发现程序单词有了不同的颜色,说明KEIL 的汇编语法检查生效了。鼠标在屏幕左边的Source Group1 文件夹图标上右击弹出菜单,在这里可以做在项目中增加减少文件等操作。选“Add File to Group ‘Source Group 1’”弹出文件窗口,选择刚刚保存的文件,按ADD 按钮,关闭文件窗,程序文件已加到项目中了。这时在Source Group1 文件夹图标左边出现了一个小+号说明,文件组中有了文件,点击它可以展开查看。

(5)汇编程序文件已加到了项目中了,下面就剩下编译运行了。一般在编译程序后都需要生成一个.hex的文件用于芯片烧写。然后右击的Target1项目文件夹,弹出项目功能菜单,选Options for Target’Target1’, 弹出项目选项设置窗口,同样先选中项目文件夹图标,这时在Project 菜单中也有一样的菜单可选。打开项目选项窗口,转到Output 选项页,选择编译输出的路径,设置编译输出生成的文件名,决定是否要创建HEX 文件,选中它就可以输出HEX 文件到指定的路径中。

接下来是编译。可以看到编译的错误信息和使用的系统资源情况等,以后要查错就靠它了。根据creating hex f ile from "c51"...提示,说明现在已经建立一个用于芯片烧写的.hex文件。

进入调试模式,软件窗口样式大致如图4.2所示。图中a 为运行,当程序处于停止状态时才有效,b 为停止,程序处于运行状态时才有效。在停止运按钮的右边的四个按钮,依次跟踪运行、单步运行、运行到子程序末、运行到光标。c 是复位,模拟芯片的复位,程序回到最开头处执行。按d可以打开e 中的串行调试窗口,这个窗口可以看到从51 芯片的串行口输入输出的字符,这里的第一个项目也正是在这里看运行结果。按d 打开串行调试窗口,再按运行键。这样一个汇编项目就完成了。最后停止程序运行回到文件编辑模式中,就要先按停止按钮再按开启\关闭调试模式按钮。

图4.2 程序调试运行

第五章结束语

本多通道温度采集测控系统实用性强,能够很好地巡回采集测量控制多路信号,结构较为简单,成本低,外接元件少。在实际应用中工作性能稳定,测量温度准确,精度较高。系统在硬件设计上充分考虑到了可扩展性,经过一定的添加或改造,很容易增加功能,如从单片机主芯片串行口连接RS232转换芯片MAX232与P C机相连,完成温度实时数据的传递和其他控制工作。适用范围广泛,可以单独使用作为监控仪,应用于农业温室大棚监测植物生长的环境变化,工业厂房测量各部分的工作温度等等。也可以作为智能控制系统的一部分,与其它设备协同工作。系统移植性强,只需改变前端测量用的传感器类型,可在此基础上修改为其他非电量参数的测量系统。

5.1 本次设计心得体会

在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰的要求,避免在设计完成后再去进行抗干扰的补救措施。形成干扰的基本要素有三个:1)干扰源,指产生干扰的元件、设备或信号。(2)传播路径。(3)敏感器件。

具体的抗干扰方案

一软件方面

1、习惯于将不用的代码空间全清成“0”,因为这等效于NOP,可在程序跑飞时归位;

2、在跳转指令前加几个NOP,目的同1;

3、在无硬件WatchDog时可采用软件模拟WatchDog,以监测程序的运行;

4、涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新

发送一遍,这样可使外部器件尽快恢复正确;

5、通讯中的抗干扰,可加数据校验位,可采取3取2或5取3策略;

6、在有通讯线时,如I^2C、三线制等,实际中发现将Data线、CLK线、INH线常态置为高,其抗干扰效果要好过置为低。

二硬件方面:

1、地线、电源线的部线肯定重要了!

2、线路的去偶;

3、数、模地的分开;

4、每个数字元件在地与电源之间都要104电容;

5、在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一1 04和二极管,在触点和常开端间接472电容,效果不错!

6、为防I/O口的串扰,可将I/O口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;

7、当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。

8、选择一个抗干扰能力强的器件比之任何方法都有效,我想这点应该最重要。因为器件天生的不足是很难用外部方法去弥补的,但往往抗干扰能力强的就贵些

5.2 总结

2002年9月,我满怀不快和一份深藏心底的希望来到了昆明理工大学,开始了一次漫长的奋斗。2006年7月我是怎样的心情离开呢?开始一个新的征程。

再回首,走过的路很值得回味和反思,是成是败,我们都必须忘记这段过去开始新的奋斗,因此,我必须做一个全面的总结。

首先,对大学四年中每一年的思想状态,想做的和做过的事情来个快照吧!大一,还没明确大学该怎么学习,需要学些什么,但是时间抓得很紧,努力去做了些事情。最开始我给自己四年定了一个目标:成为一名优秀的技术工程师,大一下学期后确定要做一个学习一般般,动手能力强的人;大二和大三参加了校内外的勤工助学活动很多很多,能维持自己的生活费用,在管理学的启发下开始考虑重新构筑自己的大学生活;大四,在最兵荒马乱的时间里遇到了些挫折,也顽强的接受了挑战。大四下,遗憾的是没有抓住时间来好好的学习技术,浪费了不少时间。

“谋事在人,成事在天”这句古谚包含着深刻的道理,我不能控制别人,但是我可以把握自己。应该说四年来我很好的把握了自己,没有随风逐流,始终在大多数时间里做着自己想做、要做的事情。尤其是在寝室内,虽然没能够群体奋发,形成很好的团体,但是很好的避免了群体迷失,感谢周围还有一批批清醒的朋友,支持我的朋友,也感谢能在最垃圾的时间里找到《管理学》,激发了对整个大学生活的重新思考。

其次,总结大学生活,简单的说,应该学会做人。关于大学里做人,我有以下几点体会。

1、自我尊重

一般说来,这是容易理解的,但是在我们做事的时候往往难以每次都真正上实施。自我尊重,还要自我包装,注意自己的外观形相,让别人尊重自己就得先自己尊重自己。

2、坚持正直

的确,这个社会有很多让人不满意的地方,尤其是当你真正步入社会做点事情的时候。有句话叫做:“你可以不诚实,但是不可以不保持正直”恰到好处的为我们提供了解决这个问题的一个很好的原则。诚实固然是一种很好的品质,然而在面对一个经常不诚实的对象时就另当别论了,不然就会吃亏。在个人生活当中,诚实自然是莫高于此的。然而,我们处事或生活过程中,正直才是可以永远坚持的。

3、为别人着想

现在的社会需要合作,需要团队,忘记了队友的利益很多时候就等同于忽略了自己的利益。利他在竞争过程中往往转换为了利己,因为对方获利了,他必有成功的道理,这些恰恰给了自己一个弥补缺失的机会,为以后获取更多的收获奠定基础。在学习工作过程中不应忘记了给你的竞争对手一些力所能及的帮助,协助对方实现他们的目标。

在生活中,和谐的寝室环境,社交圈环境更多的需要你不断的付出,随时随地的为别人的利益着想,考虑到自己的所作所为对周围人有没有不好的影响。有句话说:”付出总有回报”,我觉得不是不报,而是时候没到或者是你更本就没有觉察到。

4、适应环境

这是我们这一代大学生最需要的基本能力。现在社会,是一个飞速变化的社会,一个激烈竞争的社会,适者生存在这里无需用语言来解释。让自己适应环境,让环境接纳自己是我们跳进这个社会圈首先必须学会的。然而,很多人都还没有意识到这一点,抱怨高考失利,抱怨周围的同学,抱怨周围没有好的学习环境,学习气氛,整天在那里干些不愿意干的事情,甚至做一些消极的事情,浪费了自己宝贵的青春又一无所获。人活着应该要有一种精神:面对现实,接受现实,改变现实。当我们走上社会,我们和一个初中毕业的打工者一样,都是出卖劳动力,很多方面我们甚至都赶不上他们,这就需要我们阁下自己的“尊贵”地位,从基层干起,从点点滴滴干起,这样才能真正体现受教育的价值!

5、决心、雄心和恒心

一个真正优秀的大学生应该保持雄心,在现实的前面还要放好雄心的位置,无论现实多么残酷都不应该散尽雄心,任何时候都对自己的努力满意,保持微笑。在雄心规划下的目标,计划可以作为激励的一个来源,引领困境前行!决心没有大小,可以是很小的,坚持每天打开水,每天拖地板,坚持每天都对自己笑笑都是无

价的。执着是一个人最难得的品质,扬弃急功近利和浮躁的心,经久必成!有了雄心,决心,我们所需要的就只是是默默无闻,持之以恒的按计划做好手头的每一件事情了。

大学象一座宝矿山,想挖到宝藏的人总会不断的付出,从而不断的采摘、收获。我是个比较执着的人,一旦认定了的就一定要坚持实现。挫折也好,苦闷也好,都是人生必须经历的,没有谁能够逃脱,没有痛苦就没有新生,就没有更高层次的解脱,也就成不了一个完整的人,可以说正是挫折与苦闷造就了世间不朽的伟人。

5.3 谢词

经过四年的学习,今天终于要毕业了。在学习期间经过了风风雨雨,在各位老师和同学的帮助和支持下得也最终完成。

在此,感谢我的父母和姑奶奶,是他们把我养大,并供我读书;感谢我的老师,各位老师在学习期间在学习中、生活上的关心和照顾;感谢各位同学,同学们在生活中给于很大的帮助,在学习上也给极大的鼓舞;感谢我的社友,各位社友的帮忙让我最终完成学业;特别感谢杜老师和赵老师在本次设计中的关心和技术支持,才得以本次设计的顺利完成;最后,我得感谢我自己。

参考文献、资料:

[1] 单片机应用技术选编何立民.北京航空航天大学出版社

[2] 51系列单片机高级实例开发指南李军.北京航空航天大学出版社

[3] 单片机原理及接口技术李朝青.北京航空航天大学出版社

[4] 检测技术及仪表李军.李赋海.中国轻工业出版社

[5] 模拟电子技术童诗白.华成英.高等教育出版社

[6] Protel PCB 99SE电路版设计谢淑如.郑光钦.杨渝生.清华大学出版社

[7] 单片机器件应用手册王毅人民邮电出版社,1994.5

[8] 传感器电路分析与设计李道华、李玲、朱艳.武汉大学出版社

[9] 单片机应用技术选编.1 何立民主编北京航空航天大学出版社,1993.2

[10] 单片机原理与应用李晓荃.电子工业出版社,

[11] 单片机原理及应用刘和平.重庆大学出版社,

[12] 电子线路设计.实验.测试(第二版) 谢自美. 华中科技大学出版社,

[13] MCS51系例单片机实用接口技术李华北京航空航天大学出版社

[14]放大电路实用设计手册段九洲辽宁科学技术出版社,2002.5

[15]单片机开发应用十例李兰友电子工业出版社,1994.2

[16] 网页“https://www.wendangku.net/doc/934122792.html,/index.htm”

[17] 网页“单片机坐标”

附录一图和表

AD590系列产品主要技术指标

型号AD590IAD590JAD590KAD590LAD590M单位

最大非线性误差±0.3±1.5±0.8±0.4±0.3℃

最大标定误差(+25℃)±10.0±5.0±2.51±.0±0.5℃

额定温度系数1.0µA/K

额定输出电流298.2(+25℃)µA

长期温度漂移±0.1℃/月

响应时间20µs

壳与管脚的绝缘1010Ω

等效并联电容100pF

工作电压范围+4-+30V

元件清单

器件数量器件数量

AD08091共阳极led4

74ls244190154

AT89C511AD5901

7404140241

变压器1按键3

78051继电器8

78121万用板2

78121运放OP073

12M晶振1电阻电容若干

传感器新技术的发展

传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。如果把计算机比作大脑,那么传感器则相当于五官,传感器能正确感受被测量并转换成相应输出量,对系统的质量起决定性作用。自动化程度越高,系统对传感器要求越高。在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。如今传感器新技术的发展,主要有以下几个方面:

一、发现并利用新现象

利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。它的制造工艺远比超导量子干涉器件简单。可用于磁成像技术,有广泛推广价值。

利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。美国加州大学巳研制出这类传感器。

二、利用新材料

传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。高分子聚合物能随周围环境的相对湿度大小成比例地吸附和释放水分子。高分子电介常数小,水分子能提高聚合物的介电常数。将高分子电介质做成电容器,测定电容容量的变化,即可得出相对湿度。利用这个原理制成等离子聚合法聚苯乙烯薄膜温度传感器,其有以下特点:

测湿范围宽;

温度范围宽,可达-400℃~ +1500℃;

响应速度快,小于1S;

尺寸小,可用于小空间测湿;

温度系数小。

陶瓷电容式压力传感器是一种无中介液的干式压力传感器。采用先进的陶瓷技术,厚膜电子技术,其技术性能稳定,年漂移量小于0.1%F.S,温漂小于±0.15%/10K,抗过载强,可达量程的数百倍。测量范围可从0到60 mpa。德国E+H公司和美国Kavlio公司产品处于领先地位。

光导纤维的应用是传感材料的重大突破,其最早用于光通信技术。在光通信利用中发现当温度、压力、电场、磁场等环境条件变化时,引起光纤传输的光波强度、相位、频率、偏振态等变化,测量光波量的变化,就可知道导致这些光波量变化的温度、压力、电场、磁场等物理量的大小,利用这些原理可研制出光导纤维传感器。光纤传感器与传统传感器相比有许多特点:灵敏度高,结构简单、体积小、耐腐蚀、电绝缘性好、光路可弯曲、便于实现遥测等。光纤传感器日本处于先进水平。如Idec Izumi公司和Sunx公司。光纤传感受器与集成光路技术相结合,加速光纤传感器技术的发展。将集成光路器件代替原有光学元件和无源光器件,使光纤传感器有高的带宽、低的信号处理电压,可靠性高,成本低。

三、微机械加工技术

半导体技术中的加工方法有氧化、光刻、扩散、沉积、平面电子工艺,各向导性腐蚀及蒸镀,溅射薄膜等,

这些都已引进到传感器制造。因而产生了各种新型传感器,如利用半导体技术制造出硅微传感器,利用薄膜工艺制造出快速响应的气敏、湿敏传感器,利用溅射薄膜工艺制压力传感器等。

日本横河公司利用各向导性腐蚀技术进行高精度三维加工,制成全硅谐振式压力传感器。核心部分由感压硅膜片和硅膜片上面制作的两个谐振梁结成,两个谐振梁的频差对应不同的压力,用频率差的方法测压力,可消除环境温度等因素带来的误差。当环境温度变化时,两个谐振梁频率和幅度变化相同,将两个频率差后,其相同变化量就能够相互抵消。其测量最高精度可达0.01%FS。

美国Silicon Microstructure Inc.(SMI)公司开发一系列低价位,线性度在0.1%到0.65%范围内的硅微压力传感器,最低满量程为0.15psi(1KPa),其以硅为材料制成,具有独特的三维结构,轻细微机械加工,和多次蚀刻制成惠斯登电桥于硅膜片上,当硅片上方受力时,其产生变形,电阻产生压阻效应而失去电桥平衡,输出与压力成比例的电信号.象这样的硅微传感器是当今传感器发展的前沿技术,其基本特点是敏感元件体积为微米量级,是传统传感器的几十、几百分之一。在工业控制、航空航天领域、生物医学等方面有重要的作用,如飞机上利用可减轻飞机重量,减少能源。另一特点是能敏感微小被测量,可制成血压压力传感器。

中国航空总公司北京测控技术研究所,研制的CYJ系列溅谢膜压力传感器是采用离子溅射工艺加工成金属应变计,它克服了非金属式应变计易受温度影响的不足,具有高稳定性,适用于各种场合,被测介质范围宽,还克服了传统粘贴式带来的精度低、迟滞大、蠕变等缺点,具有精度高、可靠性高、体积小的特点,广泛用于航空、石油、化工、医疗等领域。

四、集成传感器

集成传感器的优势是传统传感器无法达到的,它不仅仅是一个简单的传感器,其将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、自诊断和网络通信的功能,它可降低成本、增加产量,美国LUCAS、NOVASENSOR公司开发的这种血压传感器,每星期能生产1万只。

五、智能化传感器

智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:

具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;

可实现多传感器多参数测量;

有自诊断和自校准功能,提高可靠性;

测量数据可存取,使用方便;

有数据通信接口,能与微型计算机直接通信。

把传感器、信号调节电路、单片机集成在一芯片上形成超大规模集成化的高级智能传感器。美国HONY W ELL公司ST-3000型智能传感器,芯片尺寸才有3×4×2mm3,采用半导体工艺,在同一芯片上制成CPU、E PROM、静压、压差、温度等三种敏感元件。

智能化传感器的研究与开发,美国处于领先地位。美国宇航局在开发宇宙飞船时称这种传感器为灵巧传感器(Smart Sensor),在宇宙飞船上这种传感器是非常重要的。我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路工艺水平有限。

传感器的发展日新月异,特别是80年代人类由高度工业化进入信息时代以来,传感器技术向更新、更高的技术发展。美国、日本等发达国家的传感器技术发展最快,我国由于基础薄弱,传感器技术与这些发达国家相比有较大的差距。因此,我们应该加大对传感器技术研究、开发的投入,使我国传感器技术与外国差距缩短,促进我国仪器仪表工业和自化化技术的发展。

基于单片机的多路温度采集系统毕业设计(论文)外文翻译

华南理工大学学院 本科毕业设计(论文)外文翻译 外文原文名Structure and function of the MCS-51 series 中文译名MCS-51系列的功能和结构 学院电子信息工程学院 专业班级自动化一班 学生黎杰明 学生学号 3 指导教师吴实 填写日期2016年3月10日 页脚.

外文原文版出处:《association for computing machinery journal》1990, V ol.33 (12), pp.16-ff 译文成绩:指导教师(导师组长)签名: 译文: MCS-51系列的功能和结构 MSC-51系列单片机具有一个单芯片电脑的结构和功能,它是英特尔公司的系列产品的名称。这家公司在1976年推出后,引进8位单芯片的MCS-48系列计算机后于1980年推出的8位的MCS-51系列单芯片计算机。诸如此类的单芯片电脑有很多种,如8051,8031,8751,80C51BH,80C31BH等,其基本组成、基本性能和指令系统都是相同的。8051是51系列单芯片电脑的代表。 一个单芯片的计算机是由以下几个部分组成:(1)一个8位的微处理器(CPU)。(2)片数据存储器RAM(128B/256B),它只读/写数据,如结果不在操作过程中,最终结果要显示数据(3)程序存储器ROM/EPROM(4KB/8KB).是用来保存程序一些初步的数据和切片的形式。但一些单芯片电脑没有考虑ROM/EPROM,如8031,8032,80C51等等。(4)4个8路运行的I/O接口,P0,P1,P2,P3,每个接口可以用作入口,也可以用作出口。(5)两个定时/计数器,每个定时方式也可以根据计算结果或定时控制实现计算机。(6)5个中断(7)一个全双工串行的I/UART(通用异步接收器I口/发送器(UART)),它是实现单芯片电脑或单芯片计算机和计算机的串行通信使用。(8)振荡器和时钟产生电路,需要考虑石英晶体微调能力。允许振荡频率为12MHz,每个上述的部分都是通过部数据总线连接。其中CPU是一个芯片计算机的核心,它是计算机的指挥中心,是由算术单元和控制器等部分组成。算术单元可以进行8位算术运算和逻辑运算,ALU单元是其中一种运算器,18个存储设备,暂存设备的积累设备进行协调,程序状态寄存器PSW积累了2个输入端的计数等检查暂时作为一个操作往往由人来操作,谁储存1输入的是它使操作去上暂时计数,另有一个操作的结果,回环协调。此外,协调往往是作为对8051的数据传输转运站考虑。作为一般的微处理器,解码的顺序。振荡器和定时电路等的程序计数器是一个由8个计数器为2,总计16位。这是一个字节的地址,其实程序计数器,是将在个人电脑进行。从而改变它的容可以改变它的程序进行。在8051的单芯片电脑的电路,

接口实验报告-基于51单片机的脉搏温度测试系统-

摘要 接口实验报告 题目:脉搏波体温自动采集系统院(系):电子工程与自动化学院 专业:仪器仪表工程 学生姓名: 学号: 指导老师:李智 职称:教授 20 年8月28日 I

摘要 本文介绍了一种基于51单片机的心率体温采集系统。首先介绍了51系列单片机的内部相关配置、工作原理以及编程方法,其次介绍了温度传感器PT100的相关测温方法以及通过红外光电传感器TCRT5000对射的方法来抓取人体脉搏信号。此次设计的电路部分主要包括:传感测量电路、放大电路、滤波整形电路、AD转换电路、控制电路、电源供电电路等。上位机为通过VC编程界面。通过上位机按键控制,将PT100及TCRT5000输入的微弱信号进行放大整形,最后AD采集转换传送给单片机,在上位机界面上显示相关体温及心率信息。 本次硬件设计基于比较稳定可行、低成本的设计思想,软件设计采用模块化的设计方法,并且详细分析了红外传感器TCRT5000应用于心率测量上以及PT100应用于温度测量上的原理及优点,阐述了其他各配合电路的组成与工作特点,并且通过仿真进行电路的可行性验证,最后完成实物电路的设计,使得本次课题的预期结果得以实现。 关键词:51单片机;传感器;仿真;AD转换

Abstract Abstract This paper introduced a heart rate and body temperature acquisition system that based on 51 single chip microcomputer. First the internal configurations of 51 single chip microcomputer are introduced. And the paper also tell how 51 single chip microcomputer works and how can we program on it. Then the method of using temperature sensor PT100 to get body temperature is introduced, and we use infrared photoelectric sensor TCRT5000 to get the pulse signal of human body.The design of the circuit mainly comprises sensing circuit, amplifying circuit, filtering and shaping circuit, AD converting circuit, counting and displaying circuit, controlling circuit, power supplying circuit and so on. When the keyboard is pressed, the system starts to get signal. The small signal from PT100 and TCRT5000 will be amplified and shaped. Then ad converter will change the analog signal into digital signal and send to 51 single chip microcomputer. At last LCD1602 will display the information of body temperature and heart rate. Keywords: Piezoelectric sensors;control circuit;counters;Multisim2001 simulation software control circuit. III

单片机课程设计说明书 多点温度采集电路设计

单片机课程设计说明书题目:多点温度采集电路设计

课程设计(论文)任务书 I、课程设计(论文)题目: 多点温度采集电路设计 II、课程设计(论文)使用的原始资料(数据)及设计技术要求: 1.设计一个基于单片机的多点温度采集电路,至少可采集8个点。 2.测温范围:0℃-800℃。 3.采用LED数码直读显示检测点、温度。 4.温度分辨率:1℃。 5.应用protel画出原理图,给出硬件清单。 II、课程设计(论文)工作内容及完成时间: 5月21日至5月23日:查找资料,方案论证; 5月24日至5月25日:总体设计; 5月25日至5月30日:软、硬件详细设计与调试; 5月31日至6月1日:整理数据,撰写报告。 Ⅳ主要参考资料: 1.曹天汉.单片机原理与接口技术.北京:电子工业出版社,2006. 2.求是科技.单片机典型模块设计实例导航.北京:人民邮电出版社,2004. 3.李广弟,朱月秀,王秀山.单片机基础(修订本).北京:北京航空航天大学出版社,2001. 4.传感器电路分析与设计李道华、李玲、朱艳.武汉大学出版社,2000. 专业类班 学生:

日期:自2012年5月21日至2011年6月1日指导教师: 助理指导教师(并指出所负责的部分): 教研室主任: 附注:任务书应该附在已完成的课程设计说明书首页。 目录 △、设计摘要 (1) 一、设计背景 (2) 1.1 课题背景 (2) 1.2 课题的目标及意义 (2) 1.3 主要研究内容 (3) 二、设计准备 (4) 2.1设计时间安排 (4) 2.2设计需求 (4)

2.2.1 所需元件 (4) 2.2.2 部分元件解析 (4) 三、设计分析 (11) 3.1 总图展示 (11) 3.2 线口说明 (11) 四、设计总结 (16) 参考文献 (17)

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

51单片机测温程序

#include #include #define uint unsigned int #define uchar unsigned char uinti,numone,numtwo,temp; ucharqian,bai,shi,ge,xiaoshu; sbitdq=P2^2; sbitdula=P2^6; sbitwela=P2^7; uchar code list[]={ 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d ,0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 0x39 , 0x5e , 0x79 , 0x71,0x80 }; unsigned char code listone[] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; void delay(uint z) { uintx,y; for(x=100;x>0;x--) for(y=z;y>0;y--); } voiddelayone(unsigned char i)

{ while(--i); } /****************************************** 此延时函数针对的是12Mhz的晶振 delay(0):延时518us 误差:518-2*256=6 delay(1):延时7us (原帖写"5us"是错的)delay(10):延时25us 误差:25-20=5 delay(20):延时45us 误差:45-40=5 delay(100):延时205us 误差:205-200=5 delay(200):延时405us 误差:405-400=5*/ voidshuma(uchar temp) { shi=temp/100; ge=temp%100/10; xiaoshu=temp%10; dula=1; P0=list[shi]; dula=0; P0=0xff; wela=1; P0=0xfe;

(完整版)基于单片机的多点温度检测系统毕业设计论文

集成电路课程设计 课题:基于AT89C51单片机的多点温度测量系统设 计 姓名:韩颖 班级:测控12-1 学号:

指导老师:汪玉坤 日期: 目录 一、绪论 二、总体方案设计 三、硬件系统设计 1主控制器 2 显示模块 3温度采集模块 (1)DS18B20的内部结构 (2)高速暂存存储器 (3)DS18B20的测温功能及原理 (4)DS18B20温度传感器与单片机的连接

(5)单片机最小系统总体电路图 四、系统软件设计 五、系统仿真 六、设计总结 七、参考文献 八、附源程序代码 一、绪论 在现代工业控制中和智能化仪表中,对于温度的控制,恒温等有较高的要求,如对食品的管理,冰箱的恒温控制,而且现在越来越多的地方用到多点温度测量,比如冰箱的保鲜层和冷冻层是不同的温度这就需要多点的测量和显示可以让用户直观的看到温度值,并根据需要调节冰箱的温。它还在其他领域有着广泛的应用,如:消防电气的非破坏性温度检测,电力、电讯设备之过热故障预知检测,空调系统的温度检测。。。。。。温度检测系统应用十分广阔。 本设计采用DALLAS最新单线数字温度传感器DS18B20 简介新的"一线器件"体积更小、适用电压更宽、更经济DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持"一线总线",测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°二、设计过程及工艺要求 1、基本功能 (1)检测两点温度 (2)两秒间隔循环显示温度 2、主要技术参数 测温范围:-30℃到+99℃

测量精度:0.0625℃ 显示精度:0.1℃ 显示方法:LCD循环显示 3、系统设计 系统使用AT89C51单片机对两个DS18B20进行数据采集,并通过1602LCD液晶显示器显示所采集的温度。 DS18B20以单总线协议工作,51单片机首先分别发送复位脉冲,使信号上所有的DS18B20芯片都被复位,程序先跳过ROM,启动DS18B20进行温度变换,再读取存储器的第一位和第二位读取温度,通过IO口传到1602LCD显示。 1 2 3 图(1)DS18B20引脚图 引脚定义如图(1): (1) GND为电源地; (2) DQ为数字信号输入输出端; (3) Vcc为外接供电电源输入端(在寄生电源接线方式时接地)。 4、设计原理框图 图(2)原理框图 三、硬件设计 1、主控制器(单片机) 基于设计的要求要使用AT89C51单片机作为本系统设计的核心器件。由于 AT89C51 单片机是一种带 4K 字节闪烁可编程可擦除只读存储器的低电压,高性能cMOS8 位微处理器。该器件采用 ATMEL 高密度非易失存储器制造技术制造,与工业标准的 MCS-51 指令集和输出管脚相兼容。由于将多功能8 位 CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51 是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性

基于单片机的温度采集系统设计

摘要 单片机已在各行业得到广泛应用,为适应更多的应用领域,厂家采取了在一块单片机芯片上集成多种功能部件和大容量存储器的方法。因而,整个应用系统不需要扩展,而体积变小、可靠性增高,使单片机成为真正意义上的单片机系统。 第一章单片机概述 单片机是单片微型计算机的简称,有时称为微控制器,是将计算机的主要功能单元集成在一个芯片中而构成的器件。由于单片机在一个芯片上集成诸多功能,因此就单项功能而言,通常都没有普通计算机强大,如计算机速度不够快、字长较短、外部可扩展接口的数量少且规模小等。但是,单片机具有体积小、价格便宜和技术成熟等优点,是各种电子产品的重要组成部分,在国民经济的各个领域发挥着重要作用。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

单片机温度采集程序

单片机温度采集程序 用一片DS18B20 构成测温系统,测量的温度精度达到0.1 度,测量的温度的范围在-20 度到+100 度之间,用8 位数码管显示出来。 由于DS18B20 是在一根I/O 线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20 有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。 DS18B20 的读时序 对于DS18B20 的读时序分为读0 时序和读1 时序两个过程。 对于DS18B20 的读时隙是从主机把单总线拉低之后,在15 秒之内就得释放单总线,以让DS18B20 把数据传输到单总线上。DS18B20 在完成一个读时序过程,至少需要60us 才能完成。 对于DS18B20 的写时序仍然分为写0 时序和写 1 时序两个过程。 对于DS18B20 写0 时序和写1 时序的要求不同,当要写0 时序时,单总线要被拉低至少60us ,保证DS18B20 能够在15us 到45us 之间能够正确地采样IO 总线上的“0 ”电平,当要写1 时

序时,单总线被拉低之后,在15us 之内就得释放单总线。 本程序实现温度的采集并且实时在数码管上显示出来。 具体程序如下: /*----------------------------------------------- 名称:18B20温度传感器 日期:2009.5 修改:无 内容:18B20单线温度检测的应用样例程序,请将18b20插紧, 然后在数码管可以显示XX.XC,C表示摄氏度,如显示25.3C表示当前温度25.3度 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #include #include #define uchar unsigned char #define uint unsigned int; /******************************************************************/ /* 定义端口*/ /******************************************************************/ sbit seg1=P2^0; sbit seg2=P2^1; sbit seg3=P2^2; sbit DQ=P1^3;//ds18b20 端口 sfr dataled=0x80;//显示数据端口 /******************************************************************/ /* 全局变量*/ /******************************************************************/ uint temp; uchar flag_get,count,num,minute,second; uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //7段数码管段码表共阳 uchar str[6]; /******************************************************************/ /* 函数声明*/ /******************************************************************/ void delay1(uchar MS); unsigned int ReadTemperature(void); void Init_DS18B20(void); unsigned char ReadOneChar(void);

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

基于51单片机的温度警报器的设计

西安文理学院物理与机械电子工程学院课程设计任务书

目录 摘要 (3) 1 引言 (3) 1.1课题背景 (3) 1.2研究内容和意义 (5) 2 芯片介绍 (5) 2.1 DS18B20概述 (5) 2.1.1 DS18B20封装形式及引脚功能 (6) 2.1.2 DS18B20内部结构 (6) 2.1.3 DS18B20供电方式 (9) 2.1.4 DS18B20的测温原理 (10) 2.1.5 DS18B20的ROM命令 (11) 2.2 AT89C52概述 (13) 2.2.1单片机AT89C52介绍 (13) 2.2.2功能特性概述 (13) 3 系统硬件设计 (13) 3.1 单片机最小系统的设计 (13) 3.2 温度采集电路的设计 (14) 3.3 LED显示报警电路的设计 (15) 4 系统软件设计...................................................15 4.1 流程图........................................................15 4.2 温度报警器程序.................................................16 4.3 总电路图..................................................... 19 5总结 (20)

摘要 随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。 本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;AT89C52;DS18B20; 1 引言 1.1课题背景 温度是工业对象中主要的被控参数之一,如冶金、机械、食品、化工各类工业生产中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的温度处理要求严格控制。随着科学技术的发展,要求温度测量的范围向深度和广度发展,以满足工业生产和科学技术的要求。 基于AT89C51单片机提高了系统的可移植性、扩展性,利于现代测控、自动化、电气技术等专业实训要求。以单片机为核心设计的温度报警器,具有安全可靠、操作简单方便、智能控制等优点。 温度对于工业生产如此重要,由此推进了温度传感器的发展。温度传感器主要经过了三个发展阶段[1]: (1)模拟集成温度传感器。该传感器是采用硅半导体集成工艺制成,因此亦称硅传感器或单片集成温度传感器。此种传感器具有功能单一(仅测量温度)、

基于采用AT89S51单片机和LM35温度传感器的温度采集显示系统设计

基于采用AT89S51单片机和LM35温度传感器的温度采集显示系统设计随着电子和传感技术的快速发展,温度的测量和控制在民用、工业以及航空航天技术等领域,等到了广泛应用。小型的、低功耗的、廉价的、可靠性高的温度传感器引起了人们的广泛关注。在实际生产、生活等领域中,温度是环境因素不可或缺的一部分,对温度进行及时精确的控制和检测显得尤为重要。本文基于AT89S51单片机,采用 LM35温度传感器,设计了一种灵敏度较高,抗干扰能力强,工作稳定可靠的温度采集显示系统。 1、系统结构及工作原理温度采集显示系统电路由温度采集模块、A/D转换模块、单片机控制模块、数码管显示模块和下载模块组成。电路工作原理是:首先由LM35温度传感器采集外界环境的温度,经LM358放大10倍后以电压形式输入到A/D采样电路,由A/D 转换器TLC549将温度的数字量值传送给单片机系统,再有单片机系统驱动数码管显示温度。本文设计的基于LM35的单片机温度采集显示系统的温度测量范围为25℃~80℃温度采集显示系统电路是一个开环控制系统系统原理框图如图1示: 2、系统核心硬件电路设计系统核心硬件电路设计主要包含温度采集模块的设计、A/D转换模块的设计、单片机控制模块的设计、数码管显示模块的设计和下载模块的设计。 2.1、采集模块的设计 传感器是信号输入的第一个环节,也是整个测试系统性能的关键环节之一,因此对传感器的正确选用显得尤为重要。在本系统中,温度采集模块的核心硬件采用LM35温度传感器,该器件有很高的工作精度和较宽的线性工作范围,其输出电压与摄氏温度线性成比例,温度每上升1℃,电压上升10ms。LM35无需外部校准,可以提供±1/4℃的常用室温精度。从经济适用等多方面考虑,系统采用LM35温度传感器和LM358放大电路进行温度采集模块的设计,设计原理图如图2 所示。图2中,经过LM35传感器采集后的微弱电压通过LM358 放大电路放大10倍后送入单片机。 2.2、/D 转换模块的设计

CAN总线多点温度采集节点硬件设计

CAN总线多点温度采集节点硬件设计 【摘要】随着科学技术的发展,温度监控系统的应用越来越广泛,本文阐述了一种基于CAN总线的多点温度采集系统,可以实现温度实时监测,该系统能应用于工农业生产的诸多场合。系统以AT89C52单片机为微处理器,外接数字式温度传感器DS18B20获得现场环境的温度信号。通过CAN总线控制器SJA1000和CAN总线驱动器PCA82C250将数据发送到CAN总线上,从而实现对温度的采集。 【关键词】CAN总线;节点;温度采集 0 概述 现场总线是安装在生产制造过程中的装置与控制室内的控制装置之间的一种数字式、串行、多点通信的数据线。应用现场总线技术不仅可以降低系统的布线成本,还具有设计简单、调试方便等优点。同时,由于现场总线本身还提供了灵活且功能强大的协议,这就使得用户对系统配置,设备选型具有强大的自主权,可以任意的将多种功能模块组合起来扩充系统的功能。在众多的现场工业总线中。随着温度控制技术在各个领域得到广泛地推广和应用,相关行业对温度控制技术的要求与日俱增。目前市场上也有一些温度控制系统,但是这些系统在传送数据时实时性能实现的不是很好,而CAN总线的实时性强、成本低,而且还具备可靠性高、抗干扰强等特点。综合多方面因素考虑,我们能够利用CAN总线的特点和优势设计温度控制系统。 1 设计方案 1.1 系统功能要求 系统能够接受数字式温度传感器DS18B20的温度信号,将温度信号传给单片机,完成单片机最小系统设计,并把此系统作为CAN的节点,节点的硬件包括AT89C52单片机、CAN总线驱动器PCA82C250、CAN总线控制器SJA1000、单片机的时钟和复位电路。主要研究基于AT89C52单片机与DS18B20数字温度传感器的多点温度测量系统。完成数字式温度传感器与CAN总线节点的接口设计及电路设计,实现具有数字式串行温度采集功能的CAN总线节点的硬件设计。应用CAN总线控制器SJA1000及其总线收发器的工作原理,完成数字式温度传感器与CAN总线节点的接口设计。 1.2 硬件功能模块 该系统主要由现场数据采集模块和总线发送模块构成。现场数据的采集是以AT89C52单片机为核心控制单元,外接数字传感器DS18B20,从而获得现场环境的温度信号。通过CAN总线控制器SJA1000和CAN总线驱动器PCA82C250将数据发送到CAN总线上。CAN节点由微处理器、CAN控制器SJA1000、CAN

基于51单片机的的温度报警器设计

1引言 (1) 1.1 单片机的应用背景 (1) 2 总体设计方案 (2) 2.1 功能简介 (2) 2.2 设计思路 (2) 2.3 芯片器材 (3) 3 硬件设计 (3) 3.1 AT89C51 (3) 3.1.1 AT98C51引脚图 (3) 3.1.2 AT89C51结构特点 (5) 3.2 温度获取 (5) (7) 3.3 时钟电路 (8) 3.4 温度显示电路 (8) 3.5报警电路 (10) (10) 4 程序设计 (10) 4.1 程序流程图 (11) 4.2 初始化子程序 (11) 4.3 读子程序 (12) 4.4 写子程序 (13) 4.5 数据处理子程序 (13) 4.6 显示子程序 (15) 4.7报警子程序 (17) 5 实验仿真 (18) (18) 6 总结 (19) 参考文献 (20) 附录 (21) 1引言 1.1 单片机的应用背景 目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通信与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录象机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机,更不用说自动控制领域的机器人、智能仪表、医疗机械了。

世面上主要的单片机类型有Motorola 单片机、Microchip 单片机、东芝单片机、8051单片机、Atmel 单片机等。此次课设中用到的是ATMEL公司,下面着重介绍一下ATMEL公司的单片机。 ATMEL 公司是世界上著名的高性能低功耗非易失性存储器和数字集成电路的一流半导体制造公司。ATMEL 公司最令人注目的是它的EEPROM 电可擦除技术闪速存储器技术和质量高可靠性的生产技术。在CMOS 器件生产领域中,ATMEL 的先进设计水平优秀的生产工艺及封装技术一直处于世界的领先地位。这些技术用于单片机生产,使单片机也具有优秀的品质在结构性能和功能等方面都有明显的优势,ATMEL 公司的单片机是目前世界上一种独具特色。 而性能卓越的单片机它在计算机外部设备通讯设备自动化工业控制宇航设备仪器仪表和各种消费类产品中都有着广泛的应用前景。其生产的AT90系列是增强型RISC内载FLASH单片机,通常称为A VR系列。AT91M系列是基于ARM7TDMI 嵌入式处理器的ATMEL 16/32 微处理器系列中的一个新成员,该处理器用高密度的16 位指令集实现了高效的32 位RISC 结构且功耗很低。另外ATMAL的增强型51系列单片机目前在市场上仍然十分流行,其中AT89S51十分活跃。 当今社会,人们在追求高质量的生活,所以生活中离不开单片机,根据国家权威统计显示,目前我国的单片机容量达3亿片,且每年以大约20%的速度增长,但在世界市场我国的占有率还不到1%。沿海地区尤其像电子产品高度发达的深圳大部分单片机应用更是广泛,这种发展趋势也不断向内地辐射,因此,学好单片机有很重要的意义。 2 总体设计方案 2.1 功能简介 8位LED数码管直接显示DS18B20所测量的温度,超出-50~110℃范围时喇叭报警,并且对应的发光二极管开始闪烁,在温度范围内时喇叭停止报警并且数码管显示其温度,测量精度为0.5℃。 2.2 设计思路

相关文档
相关文档 最新文档