文档库 最新最全的文档下载
当前位置:文档库 › Al2O3C复合微粒子散射强度分布的计算

Al2O3C复合微粒子散射强度分布的计算

Al2O3C复合微粒子散射强度分布的计算
Al2O3C复合微粒子散射强度分布的计算

第18卷第3期原子与分子物理学报Vol.18,(.3 )**1年+月,-./0102345/6738693:.,6/;:370,4765<-=1.,12>l.,)**1

文章编号:1***?*3@A()**1)*3?*)@B?*A

6l)33C,复合微粒子散射强度分布的计算*

田贵才

(通化师范学院物理系,吉林通化13A**))

摘要:利用6.7.6DEF和:.GEHIEH复合微粒子:JE散射理论计算了6l

)

33C,复合微粒子的散射强度分布函数,分析了影响散射强度分布的因素。

关键词:复合微粒子;散射强度分布函数

中图分类号:3K@1.K文献标识码:6

1引言

微粒子具有优越的红外性质,主要体现在对红外电磁波的散射和吸收。微粒子的存在形式基本分为两种,一种是孤立粒子,如固体火箭尾翼火焰中的6l)33;另一种是复合粒子,如大气中的水滴,其结构是中央有一微小凝聚核,外围包有水。这些粒子的尺度均可以和红外电磁波的波长相比拟,因此对传播于其中的红外电磁波有重要影响。文献[1L3]对微粒子的光学截面及发射率光谱进行了研究,发现6l)33微粒子与碳复合后,形成6l)33C,复合微粒子,其发射率得到极大提高。以往人们关注的只是微粒子对红外电磁场的前向散射,为了深入研究微粒子对电磁波的传输影响,有必要研究电磁波被微粒子散射后,散射场的强度分布,以及影响这种分布的因素。

)理论

设6l

)

33C,复合微粒子为理想同心球结构,如图1所示。平面偏振光沿轴向(M)传播,入射到一个

同心的复合介质球上,1区为纯6l

)

33介质,)区为,介质,3区为空气。入射电场"E i方向选为X轴正向。散射场传播方向与Z轴夹角为θ。

根据这一模型,6.7.6DEF和:.GEHIEH在:JE散射理论基础上,

分别给出了复合球形粒子的光学

)

Σ

N

n=1

()n+1)(|a s n|)+|b s n|))Q e=

|K3|)

Σ

N

n=1

()n+1)R

e

(a s n+b s n)

Q a=Q e-Q s

F(θ)=π[|S1(μ)|)+|S)(μ)|)]

S1(μ)=ΣN

n=1

)n+1

n(n+1)

[a s nπn(μ)+b s nτn(μ)]

S)(μ)=ΣN

n=1

)n+1

n(n+1)

[a s nτn(μ)+b s nπn(μ)]式中:μ=OoP(θ),S1(μ)和S)(μ)为振幅函数;

F(θ)为与散射角θ有关的散射强度分布函

数;

a s n代表电多极子系数;

b s n代表磁多极子系数。

根据上述理论,运用文献[3]相同程序,研究了

*收稿日期:)**1?*3?1K

作者简介:田贵才(1B@3Q),男,1B8@年毕业于吉林大学物理系,现为通化师范学院物理系副教授。

Al2O3/C复合微粒子散射强度的分布,以及影响散射强度分布的因素。

3计算结果与结论

图2所示是当入射波为3.0μm、中心Al2O3介质半径为3.0μm、碳膜厚度分别为0.05μm和0.1μm 时,散射强度分布函数与散射角θ的关系曲线。从曲线上可以看出:首先,红外电磁波被复合粒子散射后,散射场的分布是不均匀的,散射场的能量主要分布在散射角为15o~60o和90o到150o以及大于165o的三个区域;其次是背向散射,即散射角接近180o时的散射强度与粒子中心半径和复合层厚度有关,当复合层(碳)厚度减小时,背向散射场强度急剧增

强。

复合微粒子散射强度分布的计算

Calculation of scattering intensity distribution function of

Al2O3/C composite microparticle

TIAN Gui-cai

(Department of Physics,Tonghua Normal College,Tonghua,Jilin,134002,China)

Abstract:The scattering intensity distribution function of Al2O3/C composite microparticle have been calculated by using Aden’s and Kerker’s theory of Mie scattering.The factor affected on scattering intensity distribution is analysied.

Keywords:Composite microparticle;Scattering intensity distribution function

(continued from page268)

REFERENCES

[1]Zhang Yanhui,Sone Yizhong,et al.Spectro-analysis of gas breakdown in laser-induced plasmas during laser ablating metal [J].Spectroscopy and spectral analysis,2000,V20(1):25~

27.

[2]Song Yizhong,Li Liang.Mechanism of the continuum radiation in the plasma induced by laser ablating Al[J].Laser& infrared,2000,V30(3):148~150.

[3]Song Yizhong,Li Liang et al.Effects of laser pulse energy on

the emission characteristics of aluminum plasma ablated with

laser[J].Chinese journal of atomic and molecular physics,2000,V17(4):589~594.

[4]Song Yizhong,Shi Songbo.Atom Al absorbing energy in the plasma induced by laser ablating Al[J].Laser&infrared,2000,V30(4):216~220.

[5]Song Yizhong,Shi Songbo.wavelength distribution of continuum emission in the plasma induced by laser ablating Al [J].Chinese journal of atomic and molecular physics,2000,V17(3):395~402.

272原子与分子物理学报2001年

抗拉强度与硬度对照表

第2章金属材料的硬度试验 2.1 硬度试验的简介 2.1.1、硬度试验的概述 金属的硬度可以认为是金属材料表面在接触应力作用下抵抗塑性变形的一种能力。硬度测量能够给出金属材料软硬的数量概念。由于在金属表面以下不同深度的材料承受的应力和所发生的变形程度不同,因而硬度值可以综合的反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。硬度值越高,表明金属抵抗塑性变形的能力越大,材料所产生的塑性变形就越困难。另外,硬度与其它机械性能(如强度指标σ 及塑性指标Ψ和 b δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件 或工具的使用性能以及寿命具有决定性的意义。

硬度的试验方法有很多,在机械工业中广泛采用压入法来测定硬度,压入法又可以分为布氏硬度、洛氏硬度、维氏硬度等。 压入法硬度试验的主要特征是: 1. 试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。 2. 金属的硬度与强度指标之间存在如下近似的关系:σ =K·HB , b 式中:σ ---材料的抗拉强度值; b HB---布氏硬度值; K---系数; 退火状态的碳钢 K=0.34~0.36 合金调质钢 K=0.33~0.35 有色金属合金 K=0.33~0.53 3. 硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常情况下,当硬度值越高,这些性能也就越好。在机械零件设计图纸上对性能的技术要求,往往只是标注硬度值,其原因就在于此。 4. 硬度测定后由于仅在金属表面局部体积内产生很小的压痕,并不损坏零件,因而适合于成品检验。 5. 设备简单,操作迅速方便。 实验目的:主要是了解硬度测定的基本原理及应用范围;布氏、洛氏硬度试验机的主要结构和操作方法。 实验设备:HB-3000型布氏硬度试验机和H-100型洛氏硬度试验机以及相关的读数放大镜等仪器。 试样:Ф20×10毫米的45钢的淬火和调质状态,Ф20×10毫米的硬铝。

预应力钢绞线参数及计算公式汇总

预应力钢绞线参数及计算公式汇总 参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1.95*105Mpa,松弛率为2.5%,公称直径¢s=15.2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0.3mm。预应力筋平均张拉力按下式计算: p p=(p(1-e-(kx+μ?)))/kx+μ? 式中:p p---预应力筋平均张力(N)。 p-----预应力筋张拉端的张拉力(N)。 X-----从张拉端至计算截面的孔道长度(m)。 ?-----从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。 K-----孔道每米局部偏差对摩擦的影响系数,参见附表G-8。 μ-----预应力筋与孔道比壁的摩擦系数,参见附表G-8。 注:e=2.71828,当预应力筋为直线时p p= p。 预应力筋的理论伸长值△L(mm)可按下式计算; △L =(p p *L)/A p*Ep 式中:p p-----预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式。 L-------预应力筋的长度(mm)。

A p-----预应力筋的截面面积(mm2)。 Ep------预应力筋的弹性模量(N/ mm2)。 附表G-8 系数K及μ值表 注意事项: 预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。伸长值应从初应力时开始量测。力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。 预应力张拉实际伸长值△L(mm)=△L1+△L2 式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2-初应力以下的推算伸长值(MM),可采用相邻级的伸长值。

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

复合材料层合板强度计算现状

复合材料层合板强度计算现状 作者:李炳田 1.简介 复合材料是指由两种或者两种以上不同性能的材料在宏观尺度上组成的多相材料。一般复合材料的性能优于其组分材料的性能,它改善了组分材料的刚度、强度、热学等性能。复合材料从应用的性质可分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能,例如:导电复合材料,它是用聚合物与各种导电物质通过分散、层压或通过表面导 电膜等方法构成的复合材料;烧灼复合材料,它由各种无机纤维增强树脂或非金属基体构成,可用于高速飞行器头部热防护;摩阻复合材料,它是用石棉等纤维和树脂制成的有较高摩擦系数的复合材料,应用于航空器、汽车等运转部件的制动。功能复合材料由于其涉及的学科比较广泛,已不是单纯的力学问题,需要借助电磁学,化学工艺、功能学等众多学科的研究方法来研究。结构复合材料一般由基体料和增强材料复合而成。基体材料主要是各种树脂或金属材料;增强材料一般采用各种纤维和颗粒等材料。其中增强材料在复合材料中起主要作用,用来提供刚度和强度,而基体材料用来支持和固定纤维材料,传递纤维间的载荷。结构复合材料在工农业及人们的日常生活中得到广泛的应用,也是复合材料力学研究的主要对象,是固体力学学科中一个新的分支。在结构复合材料中按增强材料的几何形状及结构形式又可划分为以下三类: 1.颗粒增强复合材料,它由基体材料和悬浮在基体材料中的一种或多种金属或非金属颗 粒材料组合而成。 2.纤维增强复合材料,它由纤维和基体两种组分材料组成。按照纤维的不同种类和形状 又可划分定义多种复合材料。图1.1为长纤维复合材料的主要形式。 图1.1 3.复合材料层合板,它由以上两种复合材料的形式组成的单层板,以不同的方式叠合在 一起形成层合板。层合板是目前复合材料实际应用的主要形式。本论文的主要研究对象就是长纤维增强复合材料层合板的强度问题。长纤维复合材料层合板主要形式如图1.2所示。 图1.2 一般来说,强度是指材料在承载时抵抗破坏的能力。对于各向同性材料,在各个方向上强度均相等,即强度没有方向性,常用极限应力来表示材料的强度。对于复合材料,其强度的显著的特点是具有方向性。因此复合材料单层板的基本强度指标主要有沿铺层主方向(即纤维方向)的拉伸强度Xt和压缩强度Xc;垂直于铺层主方向的拉伸强度Yt和压缩强度Yc以及平面内剪切强度S等5个强度指标。对于复合材料层合板而言,由于它是由若干个单层

2020年硬度与抗拉强度的关系对照表

作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13 一、硬度与抗拉强度的关系 当钢的硬度在500HB以下时,其抗拉强度与硬度成正比,kg/m ㎡(óB)=1/3 X HB=3.2 X HRC=2.1 X HS,但上述关系式也并非在什么场合都成立,从热处理方面说,回火温度低时,kg/m㎡与HRC时的相关关系便可能被破坏,钢的回火温度,硬度和抗拉强度的关系如图所示。 由此图可见硬度随回火温度的升高而下降,但在淬火状态以及300℃以下低温回火时,硬度与抗拉强度的关系难以成立。当回火温度在300℃左右时,kg/m㎡与HRC具有相关关系,即硬度高,抗拉强度就高;硬度低,抗拉强度就低。在低温回火状态欲求出kg/m㎡值是很困难的,因为此时抗拉强度值分布很离散。

由于低温回火件的kg/m㎡不稳定而不能确定,故在日本工业标准(JIS)中也是通试验来测定400℃以上温度回火件的拉伸特性(也有300℃回火工件)。换言之是只对调质件(淬火+400℃回火)进行拉伸试验。在工业上只是在要求抗旋转弯曲疲劳和抗磨损时才使用低温回火件。高频淬火和渗碳淬火即为此适用例。受拉应力的零件不采用低温回火。不过在低碳钢中,但淬火M能发生自回火(故Ms点高)时,亦有在淬火状态下使用者。低碳钢的板条马氏体组织结构自回火,正可在工业上应用,但此时必须考虑淬透性和质量效应(必要时应添加B、Cr、Mn等金属元素)。 二、钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表

如果您要查的抗拉强度>1000N/mm2,或者维氏硬度>310HV,或者布氏硬度>300HB,或者洛氏硬度>32HRC,请查本表

洛氏硬度HRB、HRA与其它硬度、强度换算关系表1

返回目录 附录二 洛氏硬度与其它硬度、强度换算表-1 (摘自GB/T1172-1999) 洛氏硬度布氏硬度F/D2=30 HRC HRA HBS HBW 维氏硬度 HV 强度(近似值) MPa b / σ 20 60.2 225 226 774 21 60.7 229 230 793 22 61.2 234 235 813 23 61.7 240 241 833 24 62.2 245 247 854 25 62.8 251 253 875 26 63.3 257 259 897 27 63.8 263 266 919 28 64.3 269 273 942 29 64.8 276 280 965 30 65.3 283 288 989 31 65.8 291 296 1014 32 66.4 298 304 1039 33 66.9 306 313 1065 34 67.4 314 321 1092 35 67.9 323 331 1119 36 68.4 332 340 1147 37 69.0 341 350 1177 38 69.5 350 360 1207 39 70.0 360 371 1238 40 70.5 370 370 381 1271 41 71.1 380 381 393 1305 42 71.6 391 392 404 1340 43 72.1 401 403 416 1378 44 72.6 413 415 428 1417 45 73.2 424 428 441 1459 46 73.7 436 441 454 1503 47 74.2 449 455 468 1550 48 74.7 470 482 1600 49 75.3 486 497 1653 50 75.8 502 512 1710 51 76.3 518 527 52 76.9 535 544 53 77.4 552 561 54 77.9 569 578 55 78.5 585 596

螺栓抗拉承载力计算

螺栓抗拉承载力计算 首先,纠正一下,楼主的问题应当是:螺栓抗拉承载力计算。 简单说,强度是单位面积的承载力,是一个指标。 公式: 承载力=强度x 面积; 螺栓有螺纹,M24螺栓横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积. 普通螺栓C级(4.6和4.8级)抗拉强度是170N/平方毫米。 那么承载力就是:170x353=60010N. 换算一下,1吨相当于1000KG,相当于10000N,那么M24螺栓也就是可以承受约6吨的拉力。 螺栓有效面积可以从五金手册或钢结构手册查,强度指标可以从相关钢结构手册或规范查。当然这些也可以从网上查. 焊缝的抗拉强度计算公式比较简单 许用应力乘焊接接头系数在乘焊缝面积除以总面积,这就是平均焊接抗拉强度 抗拉强度与伸长率计算 公称直径为$7.0mm,其最大拉伸力为22。4KN,其断后标距为76.10mm,计算它的抗拉强度与身长率~!] 抗拉强度=拉力值/实际横截面面积 伸长率=(断后标距-标距)/标距*100% 抗拉强度Rm=22.4/(3.14*3.5*3.5)*10000=713.38MPa,修约后=715MPa 延伸A=(76.1-70)/70=8.71% ,修约后=8.5% 修约规则<0.25 约为0 ≥0.75约为1 ≥0.25且小于0.75约为0.5 请问抗拉强度和屈服强度有什么区别? 抗拉强度: 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

UMAT子程序在复合材料强度分析中的应用

UMAT子程序在复合材料强度分析中 的应用 进损伤压缩强度分析,介绍UMAT用户子程序编写方法及在Abaqus/CAE 中的设置。本章使用最大应变强度理论作为复合材料单层板的失效准 则,相应的Fortran程序简单易读,便于理解UAMT 知识要点: 强度分析 UMAT用户子程序 最大应变理论 刚度折减

&.1 本章内容简介 本章通过两个实例介绍UMAT用户子程序在复合材料单层板的应力分析和强度分析中的应用。在第一个实例中,对一个简单的复合材料单层板进行应力分析,UMAT子程序主要计算应力,不进行强度分析,本例用于验证UMAT子程序的计算精度。在第二个实例中,对复合材料单层板进行渐进损伤强度分析,UMAT子程序用于应力计算、强度分析和刚度折减。 本章所用复合材料为T700/BA9916,材料属性如表&-1所示。 表&-1 T700/BA9916材料属性 参数值强度值 E1/GPa114X T/MPa2688 E2/GPa X C/MPa1458 E3/GPa Y T/MPa μ12Y C/MPa236 μ13Z T/MPa μ23Z C/MPa175 G12/GPa S XY/MPa136 G13/GPa S XZ/MPa136 G23/GPa S YZ/MPa

&.2 实例一:UMAT 用户子程序应力分析 &.问题描述 复合材料单层板几何尺寸为15mm ×10mm ×,纤维方向为45°,单层板的3D 实体模型如图&-1所示,X 轴方向为0°方向,左侧面施加X 轴向对称边界条件,下侧面施加Y 轴向对称边界条件,垂直于Z 轴且Z=0的平面施加Z 轴向对称边界条件,右侧面施加100MPa 的拉力。 图&-1 单层板边界条件及加载情况 本例中单位系统为mm 、MPa 。 &. UMAT 用户子程序 本例使用的UMAT 用户子程序的全部代码如下,字母C 及“!”之后为注释内容。 1 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 2 1 RPL,DDSDDT,DRPLDE,DRPLDT, 3 2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 4 3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 5 4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 6 C 7 INCLUDE '' 8 C 9 CHARACTER *80 CMNAME 10 DIMENSION STRESS(NTENS),STATEV(NSTATV), 11 1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 12 2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 13 3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 14 4 JSTEP(4) 15 16 DIMENSION EG(6), XNU(3,3), STRAND(6), C(6,6), STRESS0(6) 17 C**************************** 在使用UMAT 用户子程序进行高级应用之前,应该先了解UMAT 子程序,熟悉UMAT 子程序的工作原理,了解UMAT 中的参数、变量的含义。为了便于读者快速了解和使用UMAT ,本例通过复合材料单层板的应力分析来介绍一个简单的UMAT 子程序。 读者可将本例中的单层板替换为层压板,进行对比分析。

钢丝绳(常见规格)破断拉力的计算方法

钢丝绳 ( 常见型号 ) 破断拉力计算公式 钢丝绳破断拉力数据在钢丝绳日常使用中起到很大的作用。 每种结构、每种规格的钢丝绳都有其规定的拉力系数,下表列出的就是常见的钢丝绳破断拉力计算方法。表中 KN为千牛,除以 9.8 为千牛换算成吨。 当然另外还要除以相应的安全系数才是正常使用中的安全破断拉力数据。 类别钢丝绳结构计算公式 1×7直径×直径×钢丝抗拉强度×0.54÷1000=kn ÷9.8= 吨单股(点接触)1× 19直径×直径×钢丝抗拉强度×0.53÷1000=kn ÷9.8= 吨 1× 37直径×直径×钢丝抗拉强度×0.49÷1000=kn ÷9.8= 吨 6×7+fc直径×直径×钢丝抗拉强度×0.33÷1000=kn ÷9.8= 吨 7×7直径×直径×钢丝抗拉强度×0.36÷1000=kn ÷9.8= 吨多股(点接触) 6×19+fc,6×19( 钢芯)0.3 (0.33 )÷ 1000=kn÷9.8= 吨 直径×直径×钢丝抗拉强度× 6×37+fc,6×37( 钢芯)直径×直径×钢丝抗拉强度×0.295( 0.319 )÷ 1000=kn÷ 9.8= 吨 18× 7、 18× 19s直径×直径×钢丝抗拉强度×0.31÷1000=kn ÷9.8= 吨多层股不旋转钢丝绳19× 7直径×直径×钢丝抗拉强度×0.328÷ 1000=kn÷ 9.8= 吨 35w×7直径×直径×钢丝抗拉强度×0.36÷1000=kn ÷9.8= 吨 6× 19s、 6× 19w 6× 25fi 、6× 29fi直径×直径×钢丝抗拉强度×0.33÷1000=kn ÷9.8= 吨线接触钢丝绳6× 36sw、6× 31sw 6× 19s(钢芯)、 6× 19w(钢芯) 6× 25fi (钢芯)、 6× 29fi (钢芯)直径×直径×钢丝抗拉强度×0.356÷ 1000=kn÷ 9.8= 吨 6× 36sw(钢芯)、 6× 31sw(钢芯) 打桩机、钻机钢丝绳35w×7k直径×直径×钢丝抗拉强度×0.41÷1000=kn ÷9.8= 吨 18× 7k、 19× 7k直径×直径×钢丝抗拉强度×0.35(0.37 )÷ 1000=kn ÷9.8= 吨 8×19s+fc 、8× 19w+fc直径×直径×钢丝抗拉强度×0.293÷ 1000=kn÷ 9.8= 吨电梯绳(线接触) 8× 19s(钢芯)、 8× 19w(钢芯)直径×直径×钢丝抗拉强度×0.346÷ 1000=kn÷ 9.8= 吨 8× 19s+8×7+pp直径×直径×钢丝抗拉强度×0.33÷1000=kn ÷9.8= 吨 高速电梯绳(线接触) 8×19s+8× 7+1×190.4 ÷1000=kn÷9.8= 吨 直径×直径×钢丝抗拉强度× 吊篮专用绳(线接触)4×31sw直径×直径×钢丝抗拉强度×0.36÷1000=kn ÷9.8= 吨 6×12+7fc直径×直径×钢丝抗拉强度×0.209÷ 1000=kn÷ 9.8= 吨 捆绑专用绳(点接触) 6×24+7fc0.280÷ 1000=kn÷ 9.8= 吨 直径×直径×钢丝抗拉强度× 涂塑钢丝绳按照内部钢丝绳结构计算,涂塑层可忽略不计 注: 此表中“直径×直径”表示钢丝绳的公称直径的平方,其单位是mm

灰铸铁的硬度与抗拉强度间的关系

灰铸铁的硬度与抗拉强度间的关系 发布时间:2010-7-25 来源:亚洲泵网浏览:267 编辑: 小唐 抗拉强度 强度是在外力作用下,材料抵抗塑性变形和破断的能力. 硬度是材料抵抗局部塑性变形的能力. 通常强度越高,硬度也越高. 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 一般来说,对于灰铸铁在其它条件相同时,冷却速度愈慢或讲冷却时间愈长,铸件凝固中越容易出现粗大石墨,在共析转变时则有转变铁素体的倾向。铸件的硬度就越低。相反,由于冷却速度相应加大,也可以说冷却时间越短,铸件可以形成较细小的石墨片,此时在共析转变时大多呈珠光体基体,铸件的硬度就越高。严格的讲不能用时间的长短来分析与硬度的关系,因为铸件的几何形状复杂,壁厚差别也较大,很难简单地进行分析比较。因根据传热学原理,在铸造工艺设计中提出了“铸件模数M”的概念,M=(V-铸件体积,S-铸件表面积)。M值表示单位面积占有的体积量,M值愈大,冷却速度愈小;反之冷却速度愈大。同时还要考虑浇注温度、铸型的导热能力等因素的综合影响来分析与硬度的关系 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。 金属材料的硬度是指金属表面抵抗其他更硬物体压人的能力,表示材料的坚硬程度。硬度值的大小在一定程度上可以反映材料的耐磨性,是零件或工具的一项重要的机械性能指标。●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。

复合材料的界面

复合材料习题 第四章 一、判断题:判断以下各论点的正误。 1、基体与增强体的界面在高温使用过程中不发生变化。(?) 2、比强度和比模量是材料的强度和模量与其密度之比。(√) 3、浸润性是基体与增强体间粘结的必要条件,但非充分条件。(√) 4、基体与增强体间界面的模量比增强体和基体高,则复合材料的弹性模量也越高。(?) 5、界面间粘结过强的复合材料易发生脆性断裂。(√) 6、脱粘是指纤维与基体完全发生分离的现象。(?) 7、混合法则可用于任何复合材料的性能估算。(?) 8、纤维长度lγsv时,易发生浸润。 C、接触角θ=0?时,不发生浸润。 D、是液体在固体上的铺展。 3、增强材料与基体的作用是(A、D) A、增强材料是承受载荷的主要组元。 B、基体是承受载荷的主要组元。 C、增强材料和基体都是承受载荷的主要组元。 D、基体起粘结作用并起传递应力和增韧作用。 4、混合定律(A) A、表示复合材料性能随组元材料体积含量呈线性变化。 B、表示复合材料性能随组元材料体积含量呈曲性变化。 C、表达了复合材料的性能与基体和增强体性能与含量的变化。 D、考虑了增强体的分布和取向。 5、剪切效应是指(A) A、短纤维与基体界面剪应力的变化。 B、在纤维中部界面剪应力最大。

常用钢丝绳破断拉力计算公式.doc

钢丝绳破断拉力,钢丝绳破断拉力计算公式 类别钢丝绳结构计算公式 1× 7 直径×直径×钢丝抗拉强度×÷1000=kn 单股(点接触) 1×19 直径×直径×钢丝抗拉强度×÷1000=kn 1×37 直径×直径×钢丝抗拉强度×÷1000=kn 6×7+fc 直径×直径×钢丝抗拉强度×÷1000=kn 7× 7 直径×直径×钢丝抗拉强度×÷1000=kn 多股(点接触) 6× 19+fc,6× 19(钢芯 ) 直径×直径×钢丝抗拉强度×()÷1000=kn 6× 37+fc,6× 37(钢芯 ) 直径×直径×钢丝抗拉强度×()÷1000=kn 18×7、 18× 19s 直径×直径×钢丝抗拉强度×÷1000=kn 多层股不旋转钢丝绳19×7 直径×直径×钢丝抗拉强度×÷1000=kn 35w ×7 直径×直径×钢丝抗拉强度×÷1000=kn 6×19s、6× 19w 6×25fi、 6×29fi 直径×直径×钢丝抗拉强度×÷1000=kn 6× 36sw、 6×31sw 线接触钢丝绳 6× 19s(钢芯)、 6×19w (钢 芯) 6× 25fi(钢芯)、 6× 29fi(钢 直径×直径×钢丝抗拉强度×÷1000=kn 芯) 6× 36sw(钢芯)、6×31sw(钢 芯) 打桩机、钻机钢丝绳 35w× 7k 直径×直径×钢丝抗拉强度×÷1000=kn 18×7k、 19× 7k 直径×直径×钢丝抗拉强度×()÷1000=kn 8×19s+fc、8× 19w+fc 直径×直径×钢丝抗拉强度×÷1000=kn 电梯绳(线接触)8× 19s(钢芯)、 8×19w (钢 直径×直径×钢丝抗拉强度×÷1000=kn 芯) 8×19s+8×7+pp 直径×直径×钢丝抗拉强度×÷1000=kn 高速电梯绳(线接触) 8×19s+8×7+1×19 直径×直径×钢丝抗拉强度×÷1000=kn 吊篮专用绳(线接触)4× 31sw 直径×直径×钢丝抗拉强度×÷1000=kn

一个8.8级M20螺栓的最大承受拉力计算方法

一、螺栓的分类 普通螺栓一般为 4.4级、 4.8级、 5.6级和 8.8级。高强螺栓一般为 8.8级和 10.9级,其中 10.9级居多。 二、高强度螺栓的概念 根据高强度螺栓的性能等级分为: 8.8级和 10.9级。其中 8.8级仅有大六角型高强度螺栓,在标示方法上,性能等级小数点前的数字代表材料公称抗拉强度σb的1%,小数点后的数字代表材料的屈服强度σs与公称抗拉强度之比的10倍。M20螺栓 8.8性能等级公称抗拉强度σb=800MPa,最小抗拉强度σb=830MPa。 公称屈服强度σs=640,最小屈服强度σs=660。 (另外一种解释: 小数点前数字表示热处理后的抗拉强度;小数点后的数字表示屈强比即屈服强度实测值与极限抗拉强度实测值之比。 8.8级的意思就是螺栓杆的抗拉强度不小于800MPa,屈强比为

0.8; 10.9级的意思就是螺栓杆的抗拉强度不小于1000MPa,屈强比为 0.9。) 抗拉强度也叫强度极限指材料在拉断前承受最大应力值,当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。 三、计算方法 钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 F=σs*A, 其中F为拉力(许用载荷),σs为材料抗拉强度,A为有效面积,有效面积为螺栓有效长度上直径最小处的横截面积。 M20的有效直径为Φ17,M20的有效横截面积为227mm^2。 8.8级M20最小抗拉强度σb=830MPa F=830*227=188410N= 188.41KN 所以M20螺栓 8.8性能等级最小抗拉力为 188.41KN。

钢管承受压力计算公式

钢管承受压力计算公式方法 一:以知方矩管、螺旋管无缝管无缝钢管外径规格壁厚求能承受压力计算方法(钢管不同材质抗拉强度不同) 压力=(壁厚*2*钢管材质抗拉强度)/(外径*系数) 二:以知无缝管无缝钢管外径和承受压力求壁厚计算方法: 壁厚=(压力*外径*系数)/(2*钢管材质抗拉强度) 三:方矩管、螺旋管钢管压力系数表示方法: 压力P<7Mpa 系数S=8 7<钢管压力P<17.5 系数S=6 压力P>17.5 系数S=4 不锈钢管承受压力计算公式 不锈钢管所承受的压力如何计算: 1、计算公式:2X壁厚X(抗拉强度X40%)*外径 2、316、316L、TP316、TP316L——抗拉强度:485MA 3、321、30 4、304L——抗拉强度:520MA 304不锈钢管的抗拉强度是520MPA 316不锈钢管的抗拉强度是485MPA 而不锈钢管能承受的水压除了材质不同能承受压力值大小不一样之外;外径和壁厚也是非常重要的因素,壁厚越厚,能承受的压力值越大,比如同样外径,10个厚的不锈钢管就比5个厚的不锈钢管能承受的水压要高的多;另外,还与外径有关,外径越大,能承受的压力值越小,比如同样的壁厚,外径越大能承受的压力值越小; 不锈钢管承受压力的计算公式: 水压试验压力:P=2SR/D S是指壁厚,r指抗拉强度的40%,D指外径; 下面举例说明: 304不锈钢管规格:159*3 P=2*520*0.4*3/159=7.84MPA 316不锈钢管规格:159*3 P=2*485*0.4*3/159=7.32MPA 不锈钢无缝管按要求不同分类如下: 按生产工艺分为:不锈钢冷拔管、不锈钢精密管。 按截面分为:不锈钢圆管、不锈钢方管、不锈钢矩管、不锈钢异型管(有三角管、六角管等) 按壁厚可分为:厚壁不锈钢管、薄壁不锈钢管 按口径可分为:大口径不锈钢管、小口径不锈钢管、不锈钢毛细管 按搜索习惯可分为:不锈钢无缝管、无缝不锈钢管、不锈钢管、不锈钢钢管、不锈钢无缝钢管 按地区可分为:戴南不锈钢管、江苏不锈钢管、泰州不锈钢管、温州不锈钢管、浙江不锈钢管、佛山不锈钢管、上海不锈钢管、北京不锈钢管、山东不锈钢管 按材质分为:201不锈钢无缝管、202不锈钢无缝管、301不锈钢无缝管、304不锈钢无缝管、316L不锈钢无缝管、310S不锈钢无缝管

抗拉强度

抗拉强度: 高强度混凝土的抗拉强度分为轴拉强度、劈拉强度和弯折强度三种。因轴拉试验比较复杂而做的很少;劈拉强度的试件在我国采用立方体,其他国家常采用圆柱体;弯折试验常采用三分点加载的矩形截面简支梁,梁的尺寸为150mm*150mm,跨度为梁的3倍,其他国家也用102mm*102mm矩形截面的梁,弯折强度与截面尺寸和养护条件的关系很大。 高强混凝土的抗拉强度随抗压强度的颐高而提高,但它们的比值却随抗压强度的提高而降低,但三种抗拉强度之间的比值关系却与混凝土强度没有明显的关系。 下面我们给出三种抗拉强度的经验公式,以供读者参考 1)劈拉强度 中国建筑科学研究院给出的高强度混凝土劈拉强度f(t,s)的经验公式 F(t,s)=0.3f(cu)^(2/3); 欧洲规范CEB-FIP建议的高强度混凝土劈拉强度的经验公式 f(t,s)=0.3(f1)(c)^(2/3); 美国ACI高强度混凝土委员会建议的高强度混凝土劈拉强度的经验公式; f(t,s)=0.6(f1c)^(1/2); 混凝土碳化的研究 影响结构耐久性的因素很多,其中混凝土碳化是一个重要的因素。通常情况下,早期混凝土具有很高的碱性,其pH值一般大于12.5,在这样高的碱性环境中埋置的钢筋容易发生钝化作用,使得钢筋表面产生一层钝化膜,能够阻止混凝土中钢筋的锈蚀。但当有二氧化碳和水汽从混凝土表面通过孔隙进入混凝土内部时,和混凝土中的碱性物质中和,会导致混凝土的pH值降低。当混凝土完全碳化后,就出现pH<9的情况,在这种环境下,混凝土中埋置的钢筋表面钝化膜被逐渐破坏,在其他条件具备的情况下,钢筋就会发生锈蚀。钢筋锈蚀又将导致混凝土保护层开裂、钢筋与混凝土之间粘结力破坏、钢筋受力截面减小、结构耐久性能降低等一系列不良后果。 由此可见,分析混凝土的碳化规律,研究由碳化引起的混凝土化学成分的变化以及混凝土内部碳化的状态,对于混凝土结构的耐久性研究具有重要意义。 1)混凝土碳化机理 混凝土的基本组成是水泥、水、砂和石子,其中的水泥与水发生水化反应,生成的水化物自身具有强度(称为水泥石),同时将散粒状砂和石子粘结起来,成为一个坚硬的整体。在混凝土的硬化过程中,约占水泥用量的三分之一将生成氢氧化钙[Ca(OH)2],此氢氧化钙在硬化水泥浆体中结晶,或者在其空隙中以饱和水溶液的形式存在。因为氢氧化钙的饱和水溶液pH值为12.6的碱性物质,所以新鲜的混凝土呈碱性[2,3]。 然而,大气中的二氧化碳却时刻在向混凝土的内部扩散,与混凝土中的氢氧化钙发生作用,生成碳酸盐或者其他物质,从而使水泥石原有的强碱性降低,pH值下降到8.5左右,这种现象就称为混凝土碳化。这是混凝土中性化最常见的一种形式。 混凝土碳化的主要化学反应式为[2,4] CO2+H2O→H2CO3 Ca(OH)2+H2CO3→CaCO3+2H2O 影响混凝土碳化的因素 混凝土的碳化是伴随着CO2气体向混凝土内部扩散,溶解于混凝土孔隙内的水,再与各水化产物发生碳化反应这样一个复杂的物理化学过程。研究表明,混凝土的碳化速度取决于CO2气体的扩散速度及CO2与混凝土成分的反应性。而CO2气体的扩散速度又受混凝土本身的组织密实性、CO2气体的浓度、环境湿度、试件的含水率等因素的影响。所以碳化反

复合材料的复合原则及界面

复合材料的复合原则及界面 第一节复合原则 要想制备一种好的复合材料,首先应根据所要求的性能进行设计,这样才能成功地制备出性能理想的复合材料。 复合材料的设计应遵循的原则如下: 一、材料组元的选择 挑选最合适的材料组元尤为重要。 在选择材料组元时,首先应明确各组元在使用中所应承担的功能,也就是说,必须明确对材料性能的要求。 对材料组元进行复合,即要求复合后材料达到如下性能,如高强度、高刚度、高耐蚀、耐磨、耐热或其它的导电、传热等性能或者某些综合性能如既高强又耐蚀、耐热。 因此,必须根据复合材料所需的性能来选择组成复合材料的基体材料和增强材料。 例如,若所设计的复合材料是用作结构件,则复合的目的就是要使复合后材料具有最佳的强度、刚度和韧性等. 因此,设计结构件复合材料时,首先必须明确其中一种组元主要起承受载荷的作用,它必须具有高强度和高模量。这种组元就是所要选择的增强材料; 而其它组元应起传递载荷及协同的作用,而且要把增强材料粘结在一起,这类组元就是要选的基体材料。 其次,除考虑性能要求外,还应考虑组成复合材料的各组元之间的相容性,这包括物理、化学、力学等性能的相容,使材料各组元彼此和谐地共同发挥作用。 在任何使用环境中,复合材料的各组元之间的伸长、弯曲、应变等都应相互或彼此协调一致。 第三,要考虑复合材料各组元之间的浸润性,使增强材料与基体之间达到比较理想的具有一定结合强度的界面。 适当的界面结合强度不仅有利于提高材料的整体强度,更重要的是便于将基体所承受的载荷通过界面传递给增强材料,以充分发挥其增强作用。 若结合强度太低,界面很难传递载荷,不能起潜在材料的作用,影响复合材料的整体强度; 但结合强度太高也不利,它遏制复合材料断裂对能量的吸收,易发生脆性断裂。 除此之外,还应联系到整个复合材料的结构来考虑。 具体到颗粒和纤维增强复合材料来说,增强效果与颗粒或纤维的体积含量、直径、分布间距及分布状态有关。 颗粒和纤维增强复合材料的设计原则如下: 1. 颗粒增强复合材料的原则 (1)颗粒应高度弥散均匀地分散在基体中,使其阻碍导致塑性变形的位错运动(金属、陶瓷基体)或分子链的运动(聚合物基体)。 (2)颗粒直径的大小要合适。 因为颗粒直径过大,会引起应力集中或本身破碎,从而导致材料强度降低; 颗粒直径太小,则起不到大的强化作用。因此,一般粒径为几微米到几十微米。 (3)颗粒的数量一般大于20%。数量太少,达不到最佳的强化效果。 (4)颗粒与基体之间应有一定的粘结作用。 2.纤维增强复合材料的原则 (1)纤维的强度和模量都要高于基体,即纤维应具有高模量和高强度,因为除个别情况外,在多数情况下承载主要是靠增强纤维。

大型复合材料结构强度有限元分析.

大型复合材料结构强度有限元分析 Massive composite structures Intension Finite Element Analysis 王娟吴文科 (中国直升机设计研究所 摘要:本文选取一典型复合材料梯形梁结构,采用有限元计算程序MSC.Nastran,结合与理论分析相比拟的工程简化方法,对结构强度作简便、快捷地评估,用于指导结构的初步设计。通过对计算结果分析,突现出大型复合材料结构在静强度设计过程中的问题。 关键词:复合材料梯形梁有限元 MSC.Nastran 静强度 Abstract In the paper, We take the process of analyzing a typical massive composite structure for example to show the problems in analyzing massive composite structures’ static intension . When analyzing, we use the calculating software MSC.Nastran which base on the theory of finite element analysis. Key words:massive composite structure, static intension, MSC.Nastran, finite element analysis 1 概述 随着航空工业的发展,人们对航空器的要求越来越高。为了增强市场竞争力,需要不断地提高航空器的性能,设法减轻结构重量,并提高结构的可靠性、维修性。在这种迫切的需求下,复合材料的出现日益显示出其得天独厚的优势和无穷的潜力。目前,复合材料在航空结构中的应用已逐渐从次结构过渡到了主结构,并进入主承力结构的设计。能否灵活准确地应用复合材料成为设计过程中的一个关键问题。在这个新兴的科目上,专家们已经作了大量的研究并取得了丰硕的成果,基础的复合材料

抗拉强度与硬度对照表_图文.

抗拉强度与硬度上海国华公司专营宝钢产品:冷板、热板、镀锌板. 电话:021-5678 9999 宝钢资源

所谓的各种硬度,是根据硬度的等级,采用不同的测量办法测到的数值,根据一些标准的整理,供参考,详细请读标准 ⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2。 ⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: 洛氏硬度的测量方法有三种: 1HRA,用带金刚石的压头,负荷60公斤的测量值; 2HRC,负荷150公斤的测量值; 3HRB,用带1/16寸钢球压头,负荷100公斤的测量值. ⑶维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV) 洛氏硬度中HRA、HRB、HRC的区别 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf,最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf;标尺B使用的是直径为1.588mm(1/16英寸的钢球作为压头,然后加压至980.7N(合100kgf;而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 但各种材料的换算关系并不一致硬度換算公式: 1.肖氏硬度(HS=勃式硬度(BHN/10+12 2.肖式硬度(HS=洛式硬度(HRC+15 3.勃式硬度(BHN= 洛克式硬度(HV 4.洛式硬度(HRC= 勃式硬度(BHN/10-3 硬度測定範圍:

硬度-强度换算关系

硬度对照表 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg 载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 根据德国标准DIN50150,以下是常用范围的钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。

硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 下面是本站根据由实验得到的经验公式制作的快速计算器,有一定的实用价值,但在要求数据比较精确时,仍需要通过试验测得。

相关文档
相关文档 最新文档