文档库 最新最全的文档下载
当前位置:文档库 › 212 中考压轴 因动点产生的相似三角形问题

212 中考压轴 因动点产生的相似三角形问题

212  中考压轴 因动点产生的相似三角形问题
212  中考压轴 因动点产生的相似三角形问题

1.1 因动点产生的相似三角形问题

例1 2012年苏州市中考第29题

如图1,已知抛物线211(1)444

b

y x b x =

-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .

(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;

(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.

思路点拨

1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.

2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.

3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.

满分解答

(1)B 的坐标为(b , 0),点C 的坐标为(0,

4

b ).

(2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .

所以S 四边形PCOB =S △PCO +S △PBO =115

2428

b x b x bx ??+??==2b .

解得165x =.所以点P 的坐标为(1616

,55

).

图2 图3

(3)由2111

(1)(1)()4444

b y x b x x x b =

-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA

=,即2QA BA OA =?时,△BQA ∽△QOA . 所以2()14

b

b =-.解得843b =±.所以符合题意的点Q 为(1,23+).

②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。 因此△OCQ ∽△QOA . 当BA QA QA OA

=时,△BQA ∽△QOA .此时∠OQB =90°. 所以C 、Q 、B 三点共线.因此

BO QA

CO OA =

,即14

b QA b =.解得4QA =.此时Q (1,4).

图4 图5

考点伸展

第(3)题的思路是,A 、C 、O 三点是确定的,B 是x 轴正半轴上待定的点,而∠QOA 与∠QOC 是互余的,那么我们自然想到三个三角形都是直角三角形的情况.

这样,先根据△QOA 与△QOC 相似把点Q 的位置确定下来,再根据两直角边对应成比例确定点B 的位置.

如图中,圆与直线x =1的另一个交点会不会是符合题意的点Q 呢?

如果符合题意的话,那么点B 的位置距离点A 很近,这与OB =4OC 矛盾.

例2 2012年黄冈市中考模拟第25题

如图1,已知抛物线的方程C1:

1

(2)()

y x x m

m

=-+-(m>0)与x轴交于点B、C,与

y轴交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2, 2),求实数m的值;

(2)在(1)的条件下,求△BCE的面积;

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H 的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC与BF保持平行,但是∠BFC在无限远处也不等于45°.观察右图,可以体

验到,∠CBF 保持45°,存在∠BFC =∠BCE 的时刻.

思路点拨

1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小. 2.第(4)题的解题策略是:先分两种情况画直线BF ,作∠CBF =∠EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程.

满分解答

(1)将M (2, 2)代入1(2)()y x x m m =-

+-,得1

24(2)m m =-?-.解得m =4. (2)当m =4时,2111

(2)(4)2442

y x x x x =-+-=-++.所以C (4, 0),E (0, 2).

所以S △BCE =11

62622

BC OE ?=??=.

(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.

设对称轴与x 轴的交点为P ,那么HP EO

CP CO

=

. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2

(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.

由于∠BCE =∠FBC ,所以当CE BC

CB BF

=

,即2BC CE BF =?时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1

(2)()

22x x m m x m

+-=+. 解得x =m +2.所以F ′(m +2, 0).

由'CO BF CE BF =,得24

4m m BF m +=

+.所以2(4)4m m BF m ++=. 由2

BC CE BF =?,得22

2

(4)4

(2)4m m m m m

+++=+?.

整理,得0=16.此方程无解.

图2 图3 图4

②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,

由于∠EBC=∠CBF,所以BE BC

BC BF

=,即2

BC BE BF

=?时,△BCE∽△BFC.

在Rt△BFF′中,由FF′=BF′,得1

(2)()2

x x m x

m

+-=+.

解得x=2m.所以F′(2,0)

m.所以BF′=2m+2,2(22)

BF m

=+.由2

BC BE BF

=?,得2

(2)222(22)

m m

+=?+.解得222

m=±.综合①、②,符合题意的m为222

+.

考点伸展

第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.

例3 2011年上海市闸北区中考模拟第25题

直线113

y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点. (1) 写出点A 、B 、C 、D 的坐标;

(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;

(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“11闸北25”, 拖动点Q 在直线BG 上运动, 可以体验到, △ABQ 的两条直角边的比为1∶3共有四种情况,点B 上、下各有两种.

思路点拨

1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角. 2.用待定系数法求抛物线的解析式,用配方法求顶点坐标. 3.第(3)题判断∠ABQ =90°是解题的前提.

4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.

满分解答

(1)A (3,0),B (0,1),C (0,3),D (-1,0).

(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=??=??-+=? 解得1,2,3.a b c =-??=??=?

所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4). (3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG . 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.

因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当

3BQ BA =时,10310x

±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --. ②当

13BQ BA =时,101310

x ±=.解得

13x =±.所以31(,2)3Q ,41(,0)3Q -.

图2 图3

考点伸展

第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.

我们换个思路解答第(3)题:

如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .

通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,1sin 110∠=,3cos 110

∠=.

①当

3BQ

BA

=时,310BQ =. 在Rt △BQN 中,sin 13QN BQ =?∠=,cos 19BN BQ =?∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13BQ BA =时,1103BQ =.同理得到31(,2)3Q ,41

(,0)3

Q -.

例4 2011年上海市杨浦区中考模拟第24题

Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k

y k x

=

≠在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.

(1)求m 与n 的数量关系;

(2)当tan ∠A =

1

2

时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.

图1

动感体验

请打开几何画板文件名“11杨浦24”,拖动点A在x轴上运动,可以体验到,直线AB 保持斜率不变,n始终等于m的2倍,双击按钮“面积BDE=2”,可以看到,点E正好在BD的垂直平分线上,FD//x轴.拖动点P在射线FD上运动,可以体验到,△AEO与△EFP 相似存在两种情况.

思路点拨

1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口.

2.第(2)题留给第(3)题的隐含条件是FD//x轴.

3.如果△AEO与△EFP相似,因为夹角相等,根据对应边成比例,分两种情况.

满分解答

(1)如图1,因为点D(4,m)、E(2,n)在反比例函数

k

y

x

=的图象上,所以

4,

2.

m k

n k

=

?

?

=

?

整理,得n=2m.

(2)如图2,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A=1

2

EH=2,所以BH=1.因此D(4,m),E(2,2m),B(4,2m+1).

已知△BDE的面积为2,所以11

(1)22

22

BD EH m

?=+?=.解得m=1.因此D(4,

1),E(2,2),B(4,3).

因为点D(4,1)在反比例函数

k

y

x

=的图象上,所以k=4.因此反比例函数的解析

式为

4

y

x =.

设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得

34,

22.

k b

k b

=+

?

?

=+

?

解得

1

2

k=,

1 b=.

因此直线AB的函数解析式为

1

1

2

y x

=+.

图2 图3 图4

(3)如图3,因为直线1

12

y x =

+与y 轴交于点F (0,1)

,点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:

①如图3,当

EA EF

AO FP

=

时,2552FP =.解得FP =1.此时点P 的坐标为(1,1). ②如图4,当EA FP

AO EF =

时,2525

FP =.解得FP =5.此时点P 的坐标为(5,1).

考点伸展

本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个

条件限制,保持其他条件不变,那么还有如图5的情况:

第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x

=-,直线AB 为1

72

y x =

-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.

图5

例5 2010年义乌市中考第24题

如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).

(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;

(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;

(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

图1 图2

动感体验

请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图象,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验

到,如果∠GAF =∠GQE ,那么△GAF 与△GQE 相似.

思路点拨

1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.

2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.

3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.

满分解答

(1)抛物线的对称轴为直线1x =,解析式为21184

y x x =-,顶点为M (1,1

8-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62

x x S x x -+-?3

=

=+-,由此得到

1223s x x +=+.由于213y y -=,所以222122111111

38484y y x x x x -=--+=.整理,得

21211

1()()384x x x x ??-+-=????

.因此得到2172x x S -=

. 当S =36时,212114,2.x x x x +=??

-=? 解得12

6,

8.x x =??=? 此时点A 1的坐标为(6,3).

(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x

轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .

在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.

在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .

由于3tan 4

GAF ∠=,tan 5DQ t PQD QP t ∠==

-,所以345t t =-.解得20

7t =.

图3 图4

考点伸展

第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.

例6 2010年上海市宝山区中考模拟第24题

如图1,已知点A (-2,4) 和点B (1,0)都在抛物线2

2y mx mx n =++上.

(1)求m 、n ;

(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;

(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.

图1

动感体验

请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.

思路点拨

1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.

2.抛物线左右平移,变化的是对称轴,开口和形状都不变.

3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.

满分解答

(1) 因为点 A (-2,4) 和点 B (1,0)都在抛物线2

2y mx mx n =++上,所以

444,

20.

m m n m m n -+=??

++=? 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所

以A A ′=B ′B = AB =5.因为438342+--

=x x y ()2

416133

x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.

因此平移后的抛物线的解析式为()3

16434

2,+--

=x y .

图2

(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=45. 如图2,由AM //CN ,可得

''''B N B C

B M B A

=

,即2'845B C =.解得'5B C =.所以35AC =.根据菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .

①如图3,当''AB B C

AC B D =

时,55'35B D

=,解得'3B D =.此时OD =3,点D 的坐标为(3,0).

②如图4,当

''AB B D AC B C =

时,5'355

B D =,解得5'3B D =.此时OD =13

3,点D 的坐标为(

13

3

,0).

图3 图4

考点伸展

在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.

我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.

例7 2009年临沂市中考第26题

如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.

(1)求此抛物线的解析式;

(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;

(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.

,

图1

动感体验

请打开几何画板文件名“09临沂26”,拖动点P 在抛物线上运动,可以体验到,△P AM 的形状在变化,分别双击按钮“P 在B 左侧”、“ P 在x 轴上方”和“P 在A 右侧”,可以显示△P AM 与△OAC 相似的三个情景.

双击按钮“第(3)题”, 拖动点D 在x 轴上方的抛物线上运动,观察△DCA 的形状和面积随D 变化的图象,可以体验到,E 是AC 的中点时,△DCA 的面积最大.

思路点拨

1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.

4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .

满分解答

(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为

)4)(1(--=x x a y ,代入点C 的 坐标(0,-2)

,解得2

1

-=a .所以抛物线的解析式为22

5

21)4)(1(212-+-=---=x x x x y .

(2)设点P 的坐标为))4)(1(2

1

,(---x x x .

①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(2

1

---=x x PM ,x AM -=4.

如果2==CO AO PM AM ,那么24)

4)(1(21

=----x

x x .解得5=x 不合题意.

如果21==CO AO PM AM ,那么2

14)

4)(1(21

=----x x x .解得2=x .

此时点P 的坐标为(2,1).

②如图3,当点P 在点A 的右侧时,x >4,)4)(1(2

1

--=

x x PM ,4-=x AM . 解方程24)4)(1(21

=---x x x ,得5=x .此时点P 的坐标为)2,5(-.

解方程2

1

4)

4)(1(21

=---x x x ,得2=x 不合题意.

③如图4,当点P 在点B 的左侧时,x <1,)4)(1(2

1

--=x x PM ,x AM -=4.

解方程24)4)(1(21

=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.

解方程2

1

4)

4)(1(21

=---x x x ,得0=x .此时点P 与点O 重合,不合题意.

综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.

图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为22

1

-=x y . 设点D 的横坐标为m )41(<

5

21,(2-+-

m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 22

12

+-=.

因此4)22

1(212?+-=?m m S DAC m m 42

+-=4)2(2+--=m .

当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).

图5 图6

考点伸展

第(3)题也可以这样解:

如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.

设点D 的横坐标为(m ,n ))41(<

42)4(21

)2(214)22(21++-=--+-?+=

n m m n n m n S . 由于22

5212-+-=m m n ,所以m m S 42

+-=.

例8 2009年上海市闸北区中考模拟第25题

如图1,△ABC中,AB=5,AC=3,cos A=

3

10

.D为射线BA上的点(点D不与点B

重合),作DE//BC交射线CA于点E..

(1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域;

(2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度;

(3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.

图1 备用图备用图

动感体验

请打开几何画板文件名“09闸北25”,拖动点D可以在射线BA上运动.双击按钮“第(2)题”,拖动点D可以体验到两圆可以外切一次,内切两次.

双击按钮“第(3)题”,再分别双击按钮“DE为腰”和“DE为底边”,可以体验到,△DEF为等腰三角形.

中考数学(相似提高练习题)压轴题训练附详细答案

一、相似真题与模拟题分类汇编(难题易错题) 1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I. (1)求证:AF⊥BE; (2)求证:AD=3DI. 【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点, ∴AD=BD=CD,∠ACB=45°, ∵在△ADC中,AD=DC,DE⊥AC, ∴AE=CE, ∵△CDE沿直线BC翻折到△CDF, ∴△CDE≌△CDF, ∴CF=CE,∠DCF=∠ACB=45°, ∴CF=AE,∠ACF=∠DCF+∠ACB=90°, 在△ABE与△ACF中,, ∴△ABE≌△ACF(SAS), ∴∠ABE=∠FAC, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE (2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°

∴四边形DECF是正方形, ∴EC∥DF,EC=DF, ∴∠EAH=∠HFD,AE=DF, 在△AEH与△FDH中, ∴△AEH≌△FDH(AAS), ∴EH=DH, ∵∠BAG+∠CAF=90°, ∴∠BAG+∠ABE=90°, ∴∠AGB=90°, ∴AF⊥BE, ∵M是IC的中点,E是AC的中点, ∴EM∥AI, ∴, ∴DI=IM, ∴CD=DI+IM+MC=3DI, ∴AD=3DI 【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。 (2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。 2.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.

2019年中考几何相似三角形怎么证明

2019年中考几何相似三角形怎么证明 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 初中几何相似三角形怎么证明?很多同学一接触证明题就不会,教育网针对这个问题,给大家具体解答一下。 数学:相似三角形怎么证明 相似三角形定理 :平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 相似三角形判定定理1:两角对应相等,两三角形相似 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2:两边对应成比例且夹角相等,两三角形相似 判定定理3:三边对应成比例,两三角形相似

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2:相似三角形周长的比等于相似比 性质定理3:相似三角形面积的比等于相似比的平方 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DE F”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角

形相似。 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1.两个全等的三角形

2018年中考专题相似三角形

2018中考数学专题相似形 (共40题) 1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点. (1)求证:BD=CE; (2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长; 2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F. (1)如图1,若BD=BA,求证:△ABE≌△DBE; (2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF?AC. 3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; (2)若AD=3,AB=5,求的值. 4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G. (1)求证:BG=DE; (2)若点G为CD的中点,求的值.

5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论. 6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC; (2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长. 7.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q. (1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE; (2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.

2017年中考数学相似三角形压轴题(20200706220513)

相似三角形中考压轴试题 、选择题 1. (2014 年江苏宿迁 3 分)如图,在直角梯形 ABCD 中,AD // BC , / ABC=90 °, AB=8 , AD=3 , BC=4 , 、填空题 1. (2015贺州)如图,在△ ABC 中,AB =AC =15,点D 是BC 边上的一动点(不与 B 、C 重合),/ ADE = / B = Za, DE 交 AB 于点 E ,且 tan Za = 3 ?有以下的结论:①△ ADEACD ;②当CD =9时,△ ACD 4 与厶DBE 全等;③厶BDE 为直角三角形时, 21 24 BD 为12或 :④0 v BE < ,其中正确的结论是 (填 4 5 入正确结论的序号) 三、解答题 1. (2014年福建三明14分)如图,在平面直角坐标系中, 抛物线y=ax 2+bx+4与x 轴的一个交点为 A ( 2 , 0),与y 轴的交点为C ,对称轴是x=3,对称轴与x 轴交于点B . (1) 求抛物线的函数表达式; (2) 经过B , C 的直线I 平移后与抛物线交于点 M ,与x 轴交于点 N ,当以B , C , M , N 为顶点的四边形 是平行四边形时,求出点 M 的坐标; (3) 若点D 在x 轴上,在抛物线上是否存在点 P ,使得△ PBD ◎△ PBC ?若存在,直接写出点P 的坐标; 若不存在,请说明理由. 点P 为AB 边上一动点,若△ PA ^ PBC 是相似三角形,则满足条件的点 P 的个数是【 A. 1个 B. 2个 D. 4个 C. 3个 C

2 2. (2014年湖北十堰12分)已知抛物线C i: y=a(x+1)—2的顶点为A,且经过点B (- 2 , - 1). (1 )求A点的坐标和抛物线C i的解析式; (2)如图1,将抛物线 6向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C , D两点,求S A OAC : S A OAD 的值; (3)如图2,若过P (-4 , 0), Q (0 , 2 )的直线为I,点E在(2)中抛物线C?对称轴右侧部分(含顶 点)运动,直线m过点C和点E.问:是否存在直线m,使直线I, m与x轴围成的三角形和直线I, m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由. 3. (2014 年湖南郴州10 分)如图,在Rt △ ABC中,/ BAC=90。,/ B=60 °C=16cm , AD 是斜边 BC上的高,垂足为D, BE=1cm .点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH .点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t (s). (1 )当t为何值时,点G刚好落在线段AD 上? (2)设 正方形MNGH与Rt △ ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD等腰

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

相似三角形中考复习知识点题型分类练习

相似三角形 一、知识概述 1.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。 2.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例。 3.相似三角形的定义 对应边成比例、对应角相等的两个三角形叫做相似三角形. 4.相似三角形的基本性质 ①相似三角形的对应边成比例、对应角相等. ②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 ③相似三角形的周长比等于相似比 ④面积比等于相似比的平方 温馨提示: ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC 的相似比,当且仅当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 5. 相似三角形的判定定理 ①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似; ②三边对应成比例的两个三角形相似; ③两角对应相等的两个三角形相似; ④两边对应成比例且夹角相等的两个三角形相似。 温馨提示: (1)判定三角形相似的几条思路: ①条件中若有平行,可采用判定定理1; ②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例; ③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必

中考数学压轴题常见辅助线

一、添辅助线有二种情况: 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形:

当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

相似三角形中考试题选编(含答案)

年 级: 九年级 授课时间: 授课主题: 第 次课 学生姓名: 授课科目: 数学 教学内容 《相似三角形的识别、性质》 第1题. 某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米, 则这棵树的高度为( ) A.5.3米 B.4.8米 C.4.0米 D.2.7米 答案:B 第2题. 如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为 CD AB CD ,∥,2m AB =,5m CD =,点P 到CD 的距离是3m ,则 点P 到AB 的距离是( ) A. 5 6 m B.6m 7 C.6m 5 D. 10m 3 答案:C 第3题. 如图,D E ,分别是ABC △的边AB AC ,上的点,请你添加一个条件,使 ABC △与AED △相似,你添加的条件是 . 答案:AED B =∠∠或ADE C =∠∠或 AD AE AC AB = 第4题. 如图,已知ABC DBE △∽△,68AB DB ==,, 则 :ABC DBE S S =△△ . 答案:9:16 第5题.如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点 F ,下列各式中错误的是( ) A B P C D A B D C E

A .AE EF AB CF = B . CD CF BE EC = C .AE AF AB DF = D .A E A F AB BC = 答案:D 第6题. 如图,90C E ∠=∠=o ,3AC =,4BC =,2AE =,则AD = . 答案: 103 第7题.如图,A B C D E G H M N ,,,,,,,,都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G H M N ,,,四点中的( ) A .H 或N B .G 或H C .M 或N D .G 或M 答案:C 第8题. 图中_______x =. 答案:2 第9题 已知111ABC A B C △∽△,11:2:3AB A B =,则ABC S △与111A B C S △之比为 . 答案:4:9 第10.题 如图,在正方形ABCD 中,点E 是BC 边上一点,且:2:1BE EC =,AE 与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是_________. 答案:9:11 第11题 由三角形三条中位线所围成的三角形的面积是原三角形面积的 . 答案:1 4 D E C N M G H 30o 45o 30o 105o 1 2 4 x A D F B E C

北师大版-数学-九年级上册-4.5 相似三角形判定定理的证明 教案

相似三角形判定定理的证明 预习导学: 1.相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似. 2.证明相似三角形判定定理时,先作辅助线,再根据条件选择适当的判定定理。 教学目标: 1.了解相似三角形判定定理,会证明相似三角形判定定理 2.掌握推理证明的方法,发展演绎推理能力 教学重点:会证明相似三角形判定定理 教学难点:掌握推理证明的方法,并提供应用能力 教学过程: 判定定理的证明: 定理1:两角分别相等的两个三角形相似 如果∠A =∠A ′,∠B =∠B ′, 那么,△ABC ∽△A′B′C′. 证明:在△ABC 的边AB (或延长线)上截取AD=A’B’,过点D 作BC 的平行线, 交AC 于点E,则∠ADE=∠B, ∠AED=∠C, AD AE AB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). 过点D 作AC 的平行线,交BC 于点F,则 AD CF AB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴ AE CF AC CB =

∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是平行四边形. ∴DE=CF ∴AE DE AC CB = ∴AD AE DE AB AC BC == 而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C, ∴△ADE ∽△ABC. ∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’, ∴△ADE ≌△A’B’C’ ∴△ABC ∽△A’B’C’. 定理2:两边对应成比例且夹角相等,两三角形相似. 探究2 如果∠B =∠B1, 那么,△ABC ∽△A1B1C1. 自己思考,与同学交流 定理3:三边对应成比例,两三角形相似. 如果 1111 ,AB BC k A B B C ==, AB BC AC A B B C A C ==''''''

相似三角形选择压轴题精选

2014年1月发哥的初中数学组卷.选择题(共30小题) 1. (2013?南通)如图.Rt△ ABC内接于O O BC为直径,AB=4, AC=3 D是忑的中点,CD与AB的交点为E,贝偿等 DE 2. (2013?黑龙江)如图,在直角梯形ABCD中, AD// BC / BCD=90,/ ABC=45 , AD=CD CE平分/ ACB交AB于点E,在BC上截取BF=AE连接AF交CE于点G 连接DG交AC于点H,过点A作AN L BC垂足为N, AN交CE于点 M则下列结论;①CM=AF②CELAF;3A ABF^A DAH④GD 平分/ AGC其中正确的个数是() J k\ C X F A. 1 B. 2 C. 3 D. 4 3. (2013?海南)直线I1//I2//I,且l 1与l 2的距离为1, 12与l 3的距离为3,把一块含有45°角的直角三角形如图 4. (2013?德阳)如图,在OO 上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q, 已知:OO半径为-,tan / ABC』,则CQ的最大值是() 2 4 B. C. 3 D. AC与直线丨2交于点D,则线段BD的长度为() C.- D.- rr4 于() A. 4

OD=AD=3寸,这两个二次函数的最大值之和等于( ) 5. (2012?宁德)如图,在矩形 ABCD 中, AB=2 BC=3 点 E 、F 、G H 分别在矩形 ABCD 的各边上,EF// AC// HQ EH// BD// FQ A . (1) ( 2) (3) B. ( 1) (3) C. (1) (2) D. (2) (3) A (4, 0), O 为坐标原点,P 是线段OA 上任意一点(不含端点 O, A ),过P 、O 两点 的二次函数y 1和过P 、A 两点的二次函数 y 的图象开口均向下,它们的顶点分别为 BC,射线OB 与 AC 相交于点D.当B.丄 D. 20 T C. 2 ii D. 2. | ; 6. (2012?泸州)如图,矩形 ABCD 中, E 是BC 的中点,连接 AE ,过点E 作EF 丄AE 交DC 于点F ,连接AF.设一^ =k , F 列结论:(ABE^A ECF (2) AE 平分/ BAF ( 3)当 k=1时,△ ABE^A ADF 其中结论正确的是( 7. (2012?湖州)如图,已知点 A . 5 A. . I

相似三角形的比例关系及相似三角形证明的变式

相似三角形的比例关系及相似三角形证明的变式 【知识疏理】 一, 相似三角形边长比,和周长比以及面积比的关系! 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。 二, 相似三角形证明的变式 1,相似三角形当中常以乘积的形式出现,如: 例1、 已知:如图1,BE 、DC 交于点A ,∠E=∠C 。求证:DA ·AC=BA ·AE 图2 题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。 2,对特殊图形的认识 例2、已知:如图3,Rt △ABC 中,∠ABC=90o,BD ⊥AC 于点D 。 图3 (1) 图中有几个直角三角形?它们相似吗?为什么? (2) 用语言叙述第(1)题的结论。 (3) 写出相似三角形对应边成比例的表达式。 总结: (1) 有一对锐角相等的两个直角三角形相似; (2) 本题找对应角的方法是公共角及同角的余角相等; A B C A'B'C'图(4)图1 B A C

双垂直图形中的BD 2=AD ·CD ,AB 2=AD ·AC ,BC 2=CD ·CA ,BC ·AB=AC ·BD 等结论很重要,它们在计算、证明中应用很普遍,但需先证明两个三角形相似得到结论,再加以应用。在此基础上,将双垂直图形转化 为“公边共角”,讨论、探究, A B C 得到结论:由公边共角的两个相似三角形中,公边是两个三角形中落在一条直线上的两边的比例中项,即若△ABD ∽△ACB ,则AB 2=AD ·AC 。 【课堂检测】 一选择题 1、一个三角形的三边长为5,5,6,与它相似的三角形最长边为10,则后一个三角形的面积为( ) A 、3100 B 、20 C 、54 D 、25 108 2、如图,梯形ABCD 中,AB ∥CD ,如果S △ODC :S △BDC =1:3,那么S △ODC :S △ABC 的值是( ) A 、 51 B 、61 C 、71 D 、9 1 D C A D O P A B B C (第2题图) (第4题图) 3、已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比是1:4,则两底的比是( ) A 、1:2 B 、1:4 C 、1:8 D 、1:16 4、已知,梯形ABCD 中,AD ∥BC ,∠ABC=900,对角线AC ⊥BD ,垂足为P ,已知AD :BC=3:4,则BD :AC 的值是 ( ) A、3:2 B、2:3 C、3:3 D、3:4 5、如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC =

相似三角形中考试题选编(含答案)

1文档来源为:从网络收集整理.word 版本可编辑. 年 级: 九年级 授课时间: 授课主题: 第 次课 学生姓名: 授课科目: 数学 教学内容 《相似三角形的识别、性质》 第1题. 某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米, 则这棵树的高度为( ) A.5.3米 B.4.8米 C.4.0米 D.2.7米 答案:B 第2题. 如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD AB CD ,∥,2m AB =,5m CD =, 点P 到CD 的距离是3m ,则点P 到AB 的距离是( ) A. 5 6 m B.6m 7 C.6m 5 D.10m 3 答案:C 第3题. 如图,D E ,分别是ABC △的边AB AC ,上的点,请你添加一个条件,使 ABC △与AED △相似,你添加的条件是 . 答案:AED B =∠∠或ADE C =∠∠或AD AE AC AB = 第4题. 如图,已知ABC DBE △∽△,68AB DB ==,, 则:ABC DBE S S =△△ . 答案:9:16 第5题.如图,E 是平行四边形ABCD 的边BA 延长线上的一点,CE 交AD 于点 F ,下列各式中错误的是( ) A .AE EF A B CF = B .CD CF BE E C = C .AE AF AB DF = D .A E A F AB BC = 答案:D 第6题. 如图,90C E ∠=∠=,3AC =,4BC =,2AE =,则AD = . 答案: 103 第7题.如图,A B C D E G H M N ,,,,,,,,都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G H M N ,,,四点中的( ) A .H 或N B .G 或H C .M 或N D .G 或M 答案:C 第8题. 图中_______x =. 答案:2

相似三角形的判定及证明技巧讲义

- 1 - / 4 相似三角形(三) 知识点(一):相似三角形的证明技巧 1.相似三角形的基本图形 2.相似三角形判定定理(3条) 3.相似三角形的具体解题方法 1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE?AB=AC?AF.(判断“横定”还是“竖定”?) 例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DE·DF。

A D E F B C

2.过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. (1)等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的 延长线于E.求证:DE2=BE·CE. - 2 - / 4 (2)等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代

2020-2021 中考数学(相似提高练习题)压轴题训练及详细答案

2020-2021 中考数学(相似提高练习题)压轴题训练及详细答案 一、相似 1.如图,在矩形ABCD中,AB=18cm,AD=9cm,点M沿AB边从A点开始向B以2cm/s 的速度移动,点N沿DA边从D点开始向A以1cm/s的速度移动.如果点M、N同时出 发,用t(s)表示移动时间(0≤t≤9),求: (1)当t为何值时,∠ANM=45°? (2)计算四边形AMCN的面积,根据计算结果提出一个你认为合理的结论; (3)当t为何值时,以点M、N、A为顶点的三角形与△BCD相似? 【答案】(1)解:对于任何时刻t,AM=2t,DN=t,NA=9-t,当AN=AM时,△MAN为等腰直角三角形,即:9-t=2t, 解得:t=3(s), 所以,当t=3s时,△MAN为等腰直角三角形 (2)解:在△NAC中,NA=9-t,NA边上的高DC=12,∴S△NAC= NA?DC= (9-t)?18=81-9t. 在△AMC中,AM=2t,BC=9, ∴S△AMC= AM?BC= ?2t?9=9t. ∴S四边形NAMC=S△NAC+S△AMC=81(cm2). 由计算结果发现: 在M、N两点移动的过程中,四边形NAMC的面积始终保持不变.(也可提出:M、N两点到对角线AC的距离之和保持不变) (3)解:根据题意,可分为两种情况来研究,在矩形ABCD中:①当NA:AB=AM:BC 时,△NAP∽△ABC,那么有: ( 9-t):18=2t:9,解得t=1.8(s), 即当t=1.8s时,△NAP∽△ABC; ②当 NA:BC=AM:AB时,△MAN∽△ABC,那么有: ( 9-t):9=2t:18,解得t=4.5(s), 即当t=4.5s时,△MAN∽△ABC; 所以,当t=1.8s或4.5s时,以点N、A、M为顶点的三角形与△ABC相似

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

新课标人教版中考数学相似三角形中考题及答案

第4章《相似三角形》中考题集: 4.2 相似三角形 选择题 1.(2006?北京)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=1,AB=,BC=2,P 是BC边上的一个动点(点P与点B不重合),DE⊥AP于点E.设AP=x,DE=y.在下列图象中,能正确反映y与x的函数关系的是() A.B.C.D. 2.(2005?连云港)如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角() A.都扩大为原来的5倍B.都扩大为原来的10倍 C.都扩大为原来 的25倍 D.都与原来相等 3.(2010?烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是() A.A B2=BC?BD B.A B2=AC?BD C.A B?AD=BD?BC D.A B?AD=AD?C D 4.(2010?铜仁地区)如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()

A.B.C.D. 5.(2010?桂林)如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为() A.1:2 B.1:4 C.2:1 D.4:1 6.(2010?百色)下列命题中,是假命题的是() A.全等三角形的 对应边相等 B.两角和一边分 别对应相等的 两个三角形全 等 C.对应角相等的 两个三角形全 等 D.相似三角形的 面积比等于相 似比的平方 7.(2009?芜湖)下列命题中不成立的是() A.矩形的对角线 相等 B.三边对应相等 的两个三角形 全等 C.两个相似三角 形面积的比等 于其相似比的 平方

2017年挑战中考数学压轴题(全套)

第一部分函数图象中点的存在性问题 §1.1 因动点产生的相似三角形问题§1.2 因动点产生的等腰三角形问题§1.3 因动点产生的直角三角形问题§1.4 因动点产生的平行四边形问题§1.5 因动点产生的面积问题§1.6因动点产生的相切问题§1.7因动点产生的线段和差问题 第二部分图形运动中的函数关系问题 §2.1 由比例线段产生的函数关系问题 第三部分图形运动中的计算说理问题 §3.1 代数计算及通过代数计算进行说理问题 §3.2 几何证明及通过几何计算进行说理问题 第四部分图形的平移、翻折与旋转 §4.1 图形的平移§4.2 图形的翻折§4.3 图形的旋转§4.4三角形§4.5 四边形§4.6 圆§4.7函数的图象及性质§1.1 因动点产生的相似三角形问题 课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两 边表示出来,按照对应边成比例,分AB DE AC DF =和 AB DF AC DE =两种情况列方程. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好. 如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢? 我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减. 图1 图1 图2 例 1 湖南省衡阳市中考第28题 二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示); (2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值; (3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?

相似三角形中考试题

填空题 相似三角形1、如图,D, E两点分别在△ ABC的边AB, AC 上, DE 与BC不平行,当满足 ______ 条件(写出一个即可)时,△ ADE ACB ? 2、如果两个相似三角形的相似比是1: 3,那么这两个三角 形面积的比是 D 图5 3、如图5,平行四边形ABCD中,E是边BC上的点,AE BE 交BD于点F,如果25 BC 那么聖 FD 4、在比例尺为 离为 1 : 2000的地图上测得AB两地间的图上距离为5cm,则AB两地间的实际距5在Rt△ ABC中,/ C为直角,CD£AB于点D, BC=3,AB=5,写出其中的一对相似三角形是 _ 和并写 出它的面积比 6已知/ A= 40°,则/ A的余角等于= 度. 7如图,点A, A2, A, A在射线OA上,点B,, B2,B3在射 线OB 上,且AB, // A2B2// A3B3, A2B1 // A3B2// 人B3?若△ A>^B2, △ A3B2B3的面 积分 8、别为i, 4,则图中三个阴影三角形面积之和 为_____________ ? 两个相似三角形周长的比为2:3,则其对应的面积比为 9 、 两个相似三角形的面积比S:S2与它们对应高之比h i:h 2之间的关系为 10 如图8, D、E分别是△ ABC的边AB AC上的点,则使△ AED △ ABC的条件 11、如图4,已知AB丄BD , ED丄BD , C是线段BD的中点,且AC丄CE, ED=1 , BD=4 , 那么AB= ________________

B ' C (第12题) 12 .如图,在 △ ABC 中,D , E 分别是AB , AC 的中点,若 DE =5 ,则BC 的长 是 . 13、如图3,要测量A 、B 两点间距离,在 0点打桩,取 OA 的中点C , OB 的中点D ,测 得 CD=30 米,贝U AB=_____________ 米. 14、 如图,一束光线从y 轴上点A (0, 1)发出,经过x 轴上点C 反射后,经过点B ( 6, 2), 则光线从A 点到B 点经过的路线的长度为 ___________ .(精确到0.01) 15、 如图,△ ABC 中,AB AC , D , E 两点分别在边 AC , AB 上,且DE 与BC 不平 行.请填上一个 你认为合适的条件: _____________________ ,使△ ADE ABC . (不再添加其他的字母和线段;只填一个条件,多填不给分! ) A.60 ° B.70 ° C.80 ° D.120 16、 如图5,若厶AB&A DEF 则/ D 的度数为 17、 如果两个相似三角形的相似比是 1: 3, 那 面积的比是 ____________ . ABCD 中,E BD 于点F ,如果 1: 3,那么这两个三角形 BE 2 BF ,那么 E 是边BC 上的点,AE 交 BC 3 FD 一、选择题 1、如图1,已知AD 与VC 相交于点 O,AB//CD,如果/ B=40° , / D=30° ,则/ AOC 的大小为( ) D.120 图3 E C

15相似三角形判定定理的证明知识讲解基础

相似三角形判定定理的证明(基础) 【学习目标】 1.熟记三个判定定理的内容. 2.三个判定定理的证明过程. 3.学选会用适当的方法证明结论的成立性. 【要点梳理】 要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′. 证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则 ∠ADE=∠B,∠AED=∠C, ADAE?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABAC过点D作AC的平行线,交BC与点F,则 ADCF?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABCBAECF?∴ACCB∵DE∥BC,DF∥AC, ∴四边形DFCE是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ADAEDE??. ∴ABACBC而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE∽△ABC. ∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE∽△A′B′C′. ∴△ABC∽△A′B′C′. 要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时辅助线的做法.

【典型例题】类型一、两角分别相等的两个三角形相似,求证:△ADE∽△ABC.D, CE⊥AB,垂足为E1、在△ABC中,∠A=60°,BD⊥AC,垂足为 断可判∠AEC=∠ADB=90°,利用∠EAC=∠DAB路点拨】由BD⊥AC,CE⊥AB得到【思 ,加上∠EAD=∠CAB,根据三角形相似的==,利用比例性质得△AEC∽△ADB,则判定方法即可得到结论.【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,而∠EAC= ∠DAB,∴△AEC∽△ADB,∴,=∴,= ∵∠EAD=∠CAB,∴△ADE∽△ABC.有两组有两组角对应相等的两三角形相似;【总结升华】考查了相似三角形的判定与性质:对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三°,ADE=60,且∠在BC、AC上,点是等边三角形D,E分别ABC【变式】如图,△CE. CD=AC?证求:BD? 【答案】证明:∵△ABC是等边三角形, ∴∠B=∠C=60°,AB=AC, ∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°, ∴∠BAD=∠CDE, ,DCE△∽ABD△∴.ABBDCC BCD=AC BCD=AC 2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延

相关文档
相关文档 最新文档