文档库 最新最全的文档下载
当前位置:文档库 › 数学奥林匹克题解E组合数学 E1存在性问题061-070

数学奥林匹克题解E组合数学 E1存在性问题061-070

数学奥林匹克题解E组合数学 E1存在性问题061-070
数学奥林匹克题解E组合数学 E1存在性问题061-070

E1-061为了统计到图书馆去的读者人数,挂了两块黑板.每一个读者必须在一块黑板上写上当他进入阅览室时他看见有多少读者,而在另一块黑板上写上当他离开图书馆时,阅览室还剩下多少读者.证明:在一天之内,两块黑板上出现同样的数(可能次序不同).

【题说】 1974年匈牙利数学奥林匹克题1.

【证】设A是最后入馆的读者,A进馆后第一个离馆的读者为B.那么A在“进馆板”上写的数与B在“出馆板”上写的数相同.

如果B就是A,那么将A及他写的数取消对于结论是否成立毫无影响.

如果B不是A,那么改为A离馆而B继续看书,直至原来A离馆时离馆.这对于两块板上写的数毫无影响,因而化为前一种情况.

于是,人数可以逐一减少,两块板上的数随之逐对抵消,直至只剩一个人时,结论显然成立.

E1-062九位数学家在一次国际会议上相遇,其中任意三人中,至少有二人会说同一种语言.如果每位数学家最多只能说三种语言,试证明:至少有三位数学家能用同一种语言交谈.

【题说】第七届(1978年)美国数学奥林匹克题5.

【证】假设没有三人能讲同一种语言,即每种语言最多只两人能讲.用A1,A2,…,A9表示这九人.因为A1最多只能说三种语言,A1至多与三个人通话,即至少与五个人语言不通,设为A5,A6,A7,A8,A9.同理A5至少与A6,A7,A8,A9中一人语言不通,设为A9于是A1,A5,A9彼此语言都不通.而这与已知矛盾.

E1-063一个国际社团的成员来自六个国家,共有成员1978人.用1,2,3,…,1977,1978编号,请证明,该社团至少有一个成员的编号数,与他的两个同胞的编号数之和相等,或是一个同胞的编号数的二倍.

【题说】第二十届(1978年)国际数学奥林匹克题6.本题由荷兰提供.

【证】用反证法,若命题不成立,则有性质S:同一国的两个成员的号码之差不是该国成员的号码.

设m1是A国成员的最大号码,用m1减去其余A国成员的号码,得到不少于329个数,根据性质S,它们都不是A国的号码,因而是其余五国

66个号码,记其中最大的为m2,用m2减去其余65个号码,所得的65个号码都不是B的号码,也不是A的号码(对a1、a2∈A,(m1-a1)-(m1-a2)=a1-a2不是A的号码).

这65个号码必属于其余四国,其中必有一国C含有其中至少17个号码,等等.如此下去,最后会找到一个国家F,其中有两个成员的号码之差不是任何一国成员的号码,这是不可能的,这个矛盾就说明题目的断言是正确的.

E1-064 任意一群人中,一定有两个人,他们在这群人中的朋友数一样多.

【题说】 1979年安徽省集训题.

【解】设这群人共有n个.如果每人至少有一位朋友,那么由于每人最多有n-1位朋友,由抽屉原则,一定有两个人,他们有相同数目的朋友.如果恰有一人没有朋友,那么其它n-1个人的朋友数,最少是1,最多是n-2,同样可知有两个人的朋友一样多.如果有两个或更多个人没有朋友,则这几个人的朋友数都是0.

E1-066 在3×3×3的立方体箱子中,用隔板分成27个1×1×1的单位立方体的小箱子,每一个小箱子中各放一个面包,现有一只老鼠从大箱子的一角开始吃起,然后咬通箱壁到相邻的未吃过的小箱子中吃面包(凡已吃过的小箱子就不再进去),试问它能够吃完所有小箱子中的面包、而在中心的一个小箱子中结束吗?

【题说】 1979年安徽省集训题.

【解】将小箱子染上黑白两色,使相邻两个小箱子的颜色不同,各个角都是黑色.黑色箱子14个,白色13个,并且中心的小箱子是白色.老鼠前进穿过的小箱子,黑色、白色相间,如果吃完27个,首尾都应当为黑色小箱子,所以最末一个不可能是中心的小箱子.

E1-066 某个团体有n个成员(n≥5),并且有n+1个三人委员会,其中没有两个委员会有完全相同的成员.证明:有两个委员会恰好有一个成员相同.

【题说】第八届(1979年)美国数学奥林匹克题5.

【证】用反证法.假设任两个(三人)委员会或者有两个成员相同,或者没有成员相同.

如果委员会A与B有公共成员,那么它们有两个公共成员a、b.如果委员会B又与C有(两个)公共成员,那么a、b中至少有一个属于C,从而C与A也有公共成员.因此可将有相同成员的委员会归为一组.这样同一组中每两个委员会有(两个)相同成员,不同组的委员会没有公共成员.

每一组中委员会的个数k必不超过这组中不同成员的人数h.显然h≥3.当h=3时,k=1.当h≥4时,k≥2.

设{x,y,a}、{x,y,b}}是其中的两个委员会,则其它的委员会只能是{x,a,b}、{y,a,b}或{x,y,d}的形式,这里d至多有h-4种选择,所以k≤4+(h-4)=h.

于是委员会的总数n+1≤人数n,矛盾.这表明,至少有两个委员会恰有一个成员相同.

E1-067有一个十人的会,在他们当中任何三人至少有两人互不相识.证明在这会中有四人,他们没一人认识四人中的其他人.

【题说】 1980年英国数学奥林匹克题5.

【证】将十个人表示为十个点,视对应的人相识或不相识而用红或蓝线段连结每对点.

已知所得的图中没有红色三角形,要证明图中有4个点,每两点之间的连线为蓝色.

第一种情况:至少有4条红线由A点引出.

设AB、AC、AD、AE为红线.由已知B、C、D、E中没有两点是用红线连结的,故B、C、D、E即为所求.

第二种情况:至多有3条红线由A点引出.

即A至少与6个点用蓝线相连,设为B、C、D、E、F、G.若B 用红线连接C、D、E、F、G中3个点,不妨设为C、D、E,则A、C.D、E即为所求.若B至多与C、D、E、F、G中2点用红线相连,则B 至少与其中3点用蓝线相连,不妨设BC、BD、BE为蓝线.C、D、E 中至少一对用蓝线相连,例如CD是蓝线,则A、B、C、D即为所求.

E1-068在由18个队参加的足球循环赛中,彼此之间已赛过8轮,即每个队都与8个不同的队进行过比赛.证明:一定能找出三个队彼此之间至今还没有进行过一次比赛.

【题说】第十五届(1981年)全苏数学奥林匹克八年级题7.

【证】从某队A开始考虑,由已知在前八轮比赛中它与8

个队比赛,与9个队未赛过.而在这未赛的9个队中一定有两个队彼此没有赛

间的比赛最多只能安排4场(一个队轮空),故在前8轮中,最多只赛32场.所以一定有两队彼此没有赛过,设为B、C.那么,A、B、C三队在前8轮中彼此没有赛过一场.

E1-069 在正n边形中,要求其每条边及每条对角线都染上任一种颜色,使得这些线段中任意两条有公共点的染不同颜色.为此,至少要有几种颜色?

【题说】第十九届(1985年)全苏数学奥林匹克八年级题4.

【解】如图a,考察正n边形的边AB、AC,对角线BC以及由A引出的所有对角线,共有n条线段,其中每两条都有公共点.于是,它们必须染上不同的颜色,所以需要的颜色不少于n种.

n=3时,三种色显然足够.n>3时,作正n边形的外接圆W,如图b,设MN是另外一条边或对角线.若MN∥BC,则将MN染上与

BC相同的颜色,若MN BC,过A引直线t平行于MN,交圆W于点

K(t不平行BC,所以t不是切线),则,所以K也是正

n边形的顶点,即AK是由A出发的边或对角线,将MN染上与AK 相同的颜色.因此,n种颜色足够.

E1-070某足球邀请赛有十六个城市参加,每市派出甲、乙两个队.根据比赛规则,每两队之间至多赛一场,并且同一城市的两队之间不进行比赛.比赛若干天后进行统计,发现除A市甲队外,其它各队已比赛过的场数各不相同.问A市乙队已赛过多少场?请证明你的结论.

【题说】 1985年全国联赛二试题3.

【解】 32个队参加比赛,根据规则,每队至多赛30场.除A市甲队外,31个队比赛过的场数各不相同,因此这些队比赛场数分别为0,1.2, (30)

设赛过k场的队为T(k)(k=0,1,2,…,30).首先考察T(30).由于它已赛完30场,所以其它各市的每一个队都和它比赛过,只有T(0)队未和T(30)队比赛过.于是T(30)队和T (0)队必为同一城市的队.

再考察T(29)队.除T(0)队及T(29)队同一城市的另一队外,T(29)队显然与其它各队都比赛过. T(1)队只和T(30)队比赛过,所以T(29)队和T(1)队必为同一城市的队.

同理,T(28)队和T(2)队,T(27)队和T(3)队,…,T (16)队和T(14)队各为同一城市的两队.所以A市乙队只能是T(15)队.即:A市乙队已赛过15场.

1995全国小学数学奥林匹克

3.下面算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字。 数数×科学=学数学 那么“数学”两字代表的两位数是 4.我们规定,符号“ °”代表选择两数中较大数的运算,例如: 3.5 2.9=2.9 3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9。请计算 5.在如图的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这三个差数之和。那么这个差数之和的最小值是 。 6.在下面的方框中各填人一个数字,使六位数11□□11能被17和19整除,那么方框中的两位数是 。 7.在下表中 第n 行有一个数A ,在它的下一行(第n+l 行)有一个数B ,并且A 和B 在同一竖列。如果A+B=391,那么n= 。 8.2个蟹将和4个虾兵能打扫龙宫的 10 3 ,8个蟹将和10个虾兵就能打扫完全部龙宫。如果单让蟹将去打扫,与单让虾兵去打扫进行比较,那么要打扫完全部龙宫,虾兵比蟹将要多 个。 9.某中学初中学生共780人,该校去数学奥校学习的学生中,没进奥校学习的有 人。 10.一张长方形纸片,把它的右上角往下折叠如下页甲图,阴影部分面积占原纸片面积的 7 2 ;再把左下角往上折叠如乙图,乙图中阴影部分面积占原纸片面积的 (答案用分数表示)。

(甲图) (乙图) 11.130克含盐5 %的盐水,与含盐9%的盐水混合,配成含盐6.4%的盐水,这样配成的6.4%的盐水有克。 12.小张、小王、小李同时从湖边同一地点出发,绕湖行走。小张速度是5.4千米每小时,小王速度是 4.2千米每小时,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一周的行程是千米。 3.下面算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字。 数学×科学=学数学 那么“数学”两字代表的两位数是。 4.我们规定,符号“ °”代表选择两数中较大数的运算,例如: 3.5 2.9=2.9 3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9。请计算 5.在如图的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这三个差数之和。那么这个差数之和的最小值是。 6.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人分4块就少2块。这些糖共有块。 7. 在下面的方框中各填人一个数字,使六位数11□□11能被17和19整除,那么方框中的两位数是。 8.每次考试满分是100分。小明4次考试的平均成绩是89分,为了使平均成绩尽快达到94分(或更多),他至少再要考次。 9.在下表中

2007年中国西部数学奥林匹克试题及答案

2007年中国西部数学奥林匹克 第一天 11月10日 上午8:00-12:00 每题15分 一、已知{}1,2,3,4,5,6,7,8T =,对于,定义为A 中所有元素之和,问:T 有多少个非空子集A ,使得为3的倍数,但不是5的倍数? ,A T A ?≠?()S A ()S A 二、如图,⊙与⊙相交于点C ,D ,过点D 的一条直线分别与⊙,⊙相交于点A ,B ,点P 在⊙的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在 ⊙的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心.求证: 的充要条件为P ,Q ,M ,N 四点共圆. 1O 2O 1O 2O 1O 2O OD MN ⊥ 三、设实数a ,b ,c 满足3a b c ++=.求证: 2221115411541154114 a a b b c c ++?+?+?+1≤. 四、设O 是△ABC 内部一点.证明:存在正整数p ,q ,r ,使得 12007 p OA q OB r OC ?+?+?

广西 南宁 第二天 11月11日 上午8:00-12:00 每题15分 五、是否存在三边长都为整数的三角形,满足以下条件:最短边长为2007,且最大的角等于最小角的两倍? 六、求所有的正整数n ,使得存在非零整数12,,,n x x x y ,L 2,n ,满足 ???=++=++. ,022211ny x x x x n n L L 七、设P 是锐角三角形ABC 内一点,AP ,BP ,CP 分别交边BC ,CA ,AB 于点D ,E ,F ,已知△DEF ∽△ABC ,求证:P 是△ABC 的重心. 八、将n 个白子与n 个黑子任意地放在一个圆周上.从某个白子起,按顺时针方向依次将白子标以1,.再从某个黑子起,按逆时针方向依次将黑子标以1,. 证明:存在连续个棋子(不计黑白), 它们的标号所成的集合为{,L 2,,n L n }1,2,,n L .

小学数学奥林匹克试题

小学数学奥林匹克试题 预赛(A)卷 1.计算: 12-22+32-42+52-62+…-1002+1012=________. 2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________. 3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________. 4.有红、白球若干个.若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个 红球和 3个白球,则拿到没有白球时,红球还剩下50个.那么这堆红球、白球共有________个. 5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________. 6.如下图, ABCD是平行四边形,面积为 72平方厘米,E,F分别为AB,BC的中 点,则图中阴影部分的面积为_____平 方厘米. 7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________. 8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小 是____. 9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过 20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费.某月甲用户比乙用户多交电费7.10元 ,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费). 10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行.已知小汽车的速度是大 卡车的速度的3倍,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需倒车的路程的4倍.如果 小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时. 11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组.已知参加语文小组的 有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63 人,只参加数学小组的有21人.那么三组都参加的有________人.

第二届华博士小学数学奥林匹克网上竞赛试题及答案

第二届华博士小学数学奥林匹克网上竞赛试题及答案 选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是()。 7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90 (2)已知三角形的内角和是180度.一个五边形的内角和应是( )度. A 500 B 540 C 360 D 480 (3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95 (4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元,顾客应退回的瓶钱是( )元. A 0.8 B 0.4 C 0.6 D 1.2 (5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40 (6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ). A 17 B38 C 71 D 91 (8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段. A 13 B 12 C 14 D 15 (9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11 (10)一昼夜钟面上的时针和分针重叠( )次. A 23 B 12 C 20 D13 (11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器? A 16 B 8 C 10 D 12 (12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 (13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米 A 9 B 7 C 8 D 6 (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条? A 48 B 50 C 52 D 58 (15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个? A 10 B 100 C 20 D 160 2006年“希望杯”全国数学大赛 (时间:90分钟满分:120分)

最新第36届国际数学奥林匹克试题合集

第36届国际数学奥林匹克试题 1.(保加利亚) 设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。试证:AM 、DN 和XY 三线共点。 证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。须证:Q 与Q ′重合。 由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90° 进而,Q ,M ,Z ,B 四点共圆。 同理Q ′,N ,Z ,B 四点共圆。 这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。 所以,QP= Q ′P 。而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。命题获证。 分析二* 如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。 证法二:设X (0,m ),P (0,y 0), ∠PCA=α, m 、y 0是定值。有2 0.yx x x ctg y x C A c =?-=但α, 则.0 2 αtg y m x A -= 因此,AM 的方程为 ).(0 2 ααtg y m x ctg y ?+=

令0 2,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。 2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。试证: .2 3)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a , 有.0=++γβα于是, ) (4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c a b c a c b a b c c b a a b c +++++= 112 111121111211)()()(------------+++++++++++=b a b a c c b c b c b γαβα 21112 1112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a .6132)111(23=?≥++≥abc c b a ∴原不等式成立。 背景资料:陕西省永寿县中学安振平老师在《证明不等式的若干代换技巧》一文中运用“增量代换”给出证法一,还用增量代换法给出第 6届IMO 试题的证明。什么是增量代换法?—— 由α≤+=≥0,,其中令a b a b a 称为增量。运用这种方法来论证问题,我们称为增量代换法。 题1 设c b a ,,是某一三角形三边长。求证: .3)()()(222abc c b a c b a c b a c b a ≤-++-++-+ (第6届IMO 试题) 证明 不失一般性,设.,0,0,0,,,y x z y x z y x c y x b x a >≥≥>++=+==且 abc c b a c b a c b a c b a 3)()()(222--++-++-+则 + ++++-+++++-++++=x z y x y x x z y x y x x z y x y x x [)()]()[()(])()[(222

1998小学数学奥林匹克试题

1998小学数学奥林匹克试题

1998小学数学奥林匹克试题 预赛(A)卷 1.计算: =________。 2.在左下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是________。 3.在右上图中,已知矩形GHCD的面积是矩形ABCD面积的,矩形MHCF的面积 是矩形ABCD面积的,矩形BCFE的面积等于3平方米。矩形AEMG的面积等于________平方米。 4.三个连续的自然数的最小公倍数是9828,这三个自然数的和等于________。 5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a+b的最大可能值是________。 6.某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是________。 7.一个长方体,表面全涂上红色后,被分割成若干个体积都等于1立方厘米的小正方体。如果在这些小正方体中,不带红色的小正方体的个数等于7,那么两面带红色的小正方体的个数等于________。 8.甲、乙两个车间共有94个工人,每天共生产1998把竹椅。由于设备和技术的不同,甲车间平均每个工人每天只生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。甲车间每天竹椅的产量比乙车间多________把。 9.一个运输队包运1998套玻璃茶具。运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元。结果这个队实际得运费3059.6元。在运输过程中被损坏的茶具套数是________。

10.买来一批苹果,分给幼儿园大班的小朋友。如果每人分5个苹果,那么还剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果。这批苹果的个数是________。 11.某司机开车从A城到B城。如果按原定速度前进,可准时到达。当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的。现在 司机想准时到达B城,在后一半的行程中,实际平均速度与原速度的比是 _______。 12.某店原来将一批苹果按100%的利润定价出售,由于定价过高,无人购买,不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原定价格的______%。(注:“按100%的利润定价”指的是“利润=成本×100%”) 预赛(B)卷 1.计算:=________。 2.在下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是 ________。 3.右上图中有六个正方形,较小的正方形都由较大的正方形的四边中点连接而成。已知最大的正方形的边长为10cm,那么最小的正方形的面积等于 ________cm2。 4.三个连续的自然数的最小公倍数168,那么这三个自然数的和等于________。 5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a+b的最小可能值是________。 6.一个小于200的数,它除以11余8,除以13余10,那么这个数是________。 7.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是________厘米。

2017中国西部数学邀请赛试题及解析

2017中国西部数学邀请赛 1.设素数p 、正整数n 满足()2 2 1 1n k p k =+∏.证明:2p n <. 1.按照 ()2 1 1n k k =+∏中的因子所含p 的幂次分情形讨论. (1)若存在()1k k n ≤≤,使得()2 2 1p k +,则221p n ≤+. 于是,2p n ≤ <. (2)若对任意的()1k k n ≤≤,( ) 2 2 1p k +?,由条件,知存在1j k n ≤≠≤,使得()21p j +且() 2 1p k +. 则( )22 p k j -. 于是,|()()p k j k j -+. 当|()p k j -,则12p k j n n ≤-≤-<;当|()p k j +,则1212p k j n n n n ≤+≤+-=-<, 综上,2p n <. 2、已知n 为正整数,使得存在正整数12,,,n x x x 满足:()12 12100n n x x x x x x n +++=,求n 的最 大可能值. 2、n 的最大可能值为9702, 显然:由已知等式得 1n i i x n =≥∑,所以:1 100n i i x =≤∏ 又等号无法成立,则 1 99n i i x =≤∏ 而 ()()()1 1 1111111n n n n i i i i i i i i x x x x n =====-+≥-+=-+∑∑∏∏ 则 1 1 198n n i i i i x x n n ==≤+-≤+∑∏99(98)10099989702n n n ?+?≤?=… 取123970299,1x x x x =====,可使上式等号成立

全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集 目录 2006年小学数学奥林匹克预赛试卷及答案 (1) 2006年小学数学奥林匹克决赛试题 (4) 2007年全国小学数学奥林匹克预赛试卷 (7) 2008年小学数学奥林匹克决赛试题 (8) 2008年小学数学奥林匹克预赛试卷 (10) 2006年小学数学奥林匹克预赛试卷及答案 1、计算4567-3456+1456-1567=__________。 2、计算5×4+3÷4=__________。 3、计算12345×12346-12344×12343=__________。 4、三个连续奇数的乘积为1287,则这三个数之和为__________。 5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。 计算(4※5)※(5※6)=__________。 6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、 F六个字母,其中A与D,B与E,C与F相对。将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。 7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方 厘米,则三角形ABC面积为__________平方厘米。

8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。那么这个正整数最小是 __________。 9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例: 561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。 10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人, 那么该校现有男同学__________人。 11、小李、小王两人骑车同时从甲地出发,向同一方向行进。小李的速度比小王的速 度每小时快4千米,小李比小王早20分钟通过途中乙地。当小王到达乙地时,小李又前进了8千米,那么甲乙两地相距__________千米。 12、下列算式中,不同的汉字代表不同的数字,则:白+衣的可能值的平均数为 __________。 答案: 1、1000 2、22.3 3、49378 4、33 5、1259 6、E 7、2006 8、 7 9、889 10、170 11、40 12、12.25 1.【解】原式=(4567-1567)-(3456-1456)=3000-2000=1000 2.【解】原式==21.5+0.8=22.3 3.【解】原式=12345×(12345+1)-(12343+1)×12343 =+12345--12343 =(12345+12343)×(12345-12343)+2

国际数学奥林匹克IMO试题(官方版)2000_eng

41st IMO2000 Problem1.AB is tangent to the circles CAMN and NMBD.M lies between C and D on the line CD,and CD is parallel to AB.The chords NA and CM meet at P;the chords NB and MD meet at Q.The rays CA and DB meet at E.Prove that P E=QE. Problem2.A,B,C are positive reals with product1.Prove that(A?1+ 1 B )(B?1+1 C )(C?1+1 A )≤1. Problem3.k is a positive real.N is an integer greater than1.N points are placed on a line,not all coincident.A move is carried out as follows. Pick any two points A and B which are not coincident.Suppose that A lies to the right of B.Replace B by another point B to the right of A such that AB =kBA.For what values of k can we move the points arbitrarily far to the right by repeated moves? Problem4.100cards are numbered1to100(each card di?erent)and placed in3boxes(at least one card in each box).How many ways can this be done so that if two boxes are selected and a card is taken from each,then the knowledge of their sum alone is always su?cient to identify the third box? Problem5.Can we?nd N divisible by just2000di?erent primes,so that N divides2N+1?[N may be divisible by a prime power.] Problem6.A1A2A3is an acute-angled triangle.The foot of the altitude from A i is K i and the incircle touches the side opposite A i at L i.The line K1K2is re?ected in the line L1L2.Similarly,the line K2K3is re?ected in L2L3and K3K1is re?ected in L3L1.Show that the three new lines form a triangle with vertices on the incircle. 1

中国数学奥林匹克希望联盟夏令营第一天考试试卷

中国数学奥林匹克希望联盟夏令营 试卷(第一天) 一、填空题(每题7分,共70分) 1. 已知*N k ∈,且3≥k ,若一元二次方程2(1)20k x px k --+=的两个根都是正整数,则212()51()3p k p k +++-的值等于 . 2. 若等腰直角三角形的三个顶点均在边长为1的正方形的边上,且不与正方形的顶点重合,则该等腰直角三角形面积的取值范围为______________. 3. 2019年全国高中数学联赛一试试卷由8道填空题和3道解答题组成,其中填空题每小题7分;解答题分步给分,第一道解答题14分,分三步各自分数为4,4,6分;第二和第三道解答题均为15分,分三步每步5分,解答题中若第n 步不得分则第m 步(n m >)也不得分; 那么共有__________种得分方式恰好能够得到80分. (用数字作答) 4. 若关于x 的方程0)368lg()20lg(2=---+a x x x 有唯一解,则实数a 的取值范围是____________________. 5. 设集合{1,2,,}A n =,12,,,(2)t A A A t ≥是A 的不同子集,若12t A A A ???, 则称集合12{,, ,}t A A A 为A 的一条长度为t 的链;那么A 的所有长度为2的不同的链的条 数是___________.(两条链不同,当且仅当其中一条链所包含的子集与另一条链所包含的子集至少有一个不同) 6. 如图,在△ABC 中,2AB =,1AC =,120BAC ∠=, O 是△ABC 的外心,且AO AB AC λμ=+,则 λμ+=_________. 7. 已知四面体的6条棱长分别为2、2、2、2、a 、a ,且这样的四面体恰有两个,则a 的取值范围是___________________. O C B A

小学数学奥林匹克模拟试卷(答案)

模拟试卷 一、填空题: 2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______. 3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______. 4.将1至9这九个数分别填在下面九个方框中,使等式成立: 5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______. 6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______. 7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达. 8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.

9.至少有一个数字是0,且能被4整除的四位数有______个. 10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______. 二、解答题: 2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日? 3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个? 已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米? 模拟试卷24 一、填空题:

第41届国际数学奥林匹克解答

第41届国际数学奥林匹克解答 问题 1.圆Γ1和圆Γ2 相交于点M和N.设L是圆Γ 1 和圆Γ2的两条公切线中距离 M较近的那条公切线.L与圆 Γ1相切于点A,与圆Γ2相切 于点 B.设经过点M且与L平 行的直线与圆Γ1还相交于点 C,与圆Γ2还相交于点 D.直 线C A和D B相交于点E;直线 A N和C D相交于点P;直线 B N 和C D相交于点Q. 证明:E P=E Q. 解答:令K为M N和A B的交点.根据圆幂定理,,换言之K是A B的中点.因为P Q∥A B,所以M是P Q的中点.故只需证明E M⊥P Q.因为C D∥A B,所以点A是Γ1的弧C M的中点,点B是Γ2的弧D M的中点.于是三角形A C M与B D M都是等腰三角形.从而有 , . 这意味着E M⊥A B.再由P Q∥A B即证E M⊥P Q. 问题 2.设a,b,c是正实数,且满足a b c=1.证明: . 解答:令,,,其中x,y,z为正实数,则原不等式变为(x-y+z)(y-z+x)(z-x+y)≤x y z.记u=x-y+z,v=y-z+x,w=z-x+y.因为这三个数中的任意两个之和都是正数,所以它们中间最多只有一个是负数.如果恰有一个是负数,则u v w≤0

小学数学奥林匹克竞赛试题及答案

小学数学奥林匹克竞赛试题及答案 (四年级) (红色为正确答案) 1、下面的△,○,□各代表一个数,在括号里填出得数: △+△+△=36 □×△=240 ○÷□=6 ○=( ) A 120 B 100 C 130 D 124 2、如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数就称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的数有()个. A 5 B 6 C 7 D 4 3、有100个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛()场. A 97 B98 C 99 D 50 4、七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了()棵. A 10 B 8 C 9 D 7 5、将一盒饼干平均分给三个小朋友,每人吃了八块后,这时三个小朋友共剩的饼干数正好和开始1个人分到的同样多,问每个小朋友分到()块。 A 24 B 20 C 12 D 16 6、每次考试满分是100分,小明4次考试的平均成绩是89分,为了使用权平均成绩尽快达到94分(或更多),他至少再要考( )次. A 5 B 6 C 3 D 4 7、甲乙丙丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜丁,并且甲乙丙胜的场数相同,那么丁胜的场数是()场。 A 0 B 1 C 2 D 3 8、有一位探险家,用6天时间徒步横穿沙漠。如果一个搬运工人只能运一个人四天的食物和水,那么这个探险家至少要雇用()名工人。 A 2 B 3 C 4 D 5 9、在右图的中间圆圈内填一个数,计算每一线段两 数之差(大减小),然后算出这三个数之和,那么这个 13 差数之和的最小值是( ). 32 41 13

第50届国际数学奥林匹克竞赛试题(中文版)与参考答案

2009年第50届IMO 解答 2009年7月15日 1、是一个正整数,是n 12,,...,(2)k a a a k ≥{}1,2,...,n 中的不同整数,并且1(1i i n a a +?)?)对于所有都成立,证明:1,2,...,1i k =1(1k a a ?不能被n 整除。 证明1:由于12(1n a a ?),令1(,)n a p =,n q p = 也是整数,则n pq =,并且1p a ,21q a ?。因此,由于2(,)1q a =23(1n pq a a )=?,故31q a ?;同理可得41q a ?,。。。, 因此对于任意都有2i ≥1i q a ?,特别的有1k q a ?,由于1p a ,故1(1k n pq a a )=?(*)。 若结论不成立,则1(1k n pq a a =)?,与(*)相减可得1(k n a a ?),矛盾。 综上所述,结论成立。 此题平均得分:4.804分

2、外接圆的圆心为O ,分别在线段上,ABC ?,P Q ,CA AB ,,K L M 分别是,,BP CQ PQ 的中点,圆过Γ,,K L M 并且与相切。证明:OP PQ OQ =。 证明:由已知MLK KMQ AQP ∠=∠=∠,MKL PML APQ ∠=∠=∠,因此 APQ MKL ??~。所以 AP MK BQ AQ ML CP == ,故AP CP AQ BQ ?=?(*)。 设圆O 的半径为R ,则由(*)有2 2 2 2 R OP R OQ ?=?,因此OP OQ =。 不难发现OP 也是圆Γ与相切的充分条件。 OQ =PQ 此题平均得分:3.710分

2008年全国小学数学奥林匹克决赛试题及详细解答

2008年小学数学奥林匹克决赛试题 1、计算: 2、计算:76×65-65×54+54×43-43×32+32×21-21×10= 。 3、自然数N=123456789101112…2008是一个位数。 4、人们常常喜欢使用自己的生日数码作为密码。例如,某人的生日是1997年3月24日,他的六位数生日数码就是970324,其中97是出生年号的十位数字和个位数字,老师说:这种数码很容易重复,因为它只占六位数字数码的很小一部分。那么,如果不计闰年二月的29日,六位数生日数码占六位数码总数的﹪。 5、如图,小张的家是一个建在10m×10m的正方形地面上的房子,房子正好 位于一个40m×40m的正方形草地的正中,他们家喂了一只羊,用15m长的绳子 拴在房子一边的中点处,取π=3,那么羊能吃到草的草地面积是平方米。 6、有两个2位数,它们的乘积是1924,如果它们的和是奇数,那么它们的和= 。 7、小王和小张玩拼图游戏,他们各用若干个边长为1的等边三角形拼成一个尽可能大的等边三角形,小王有1000个边长为1的等边三角形,但是无论怎样努力,小王拼成的大等边三角形的边长都比小张拼的等边三角形的边长小,那么,小张用的边长为1的等边三角形至少有个。 8、某工厂甲、乙二车间去年计划完成税利800万元,结果,甲车间超额20﹪完成任务,乙车间超额10﹪完成任务,两车间共完成税利925万元,那么,乙车间去年完成的税利是万元。 9、一只装了若干水的水桶,我们把它的水倒出一半,然后再加入一升水,这算一次操作,第二次操作是把经过第一次操作的水桶里的水倒出一半,然后再加入一升水,如果经过7次操作后,桶里还有3升水,那么,这只水桶原来有水升。 10、n正整数,D某个数字,如果n/810=0.9D59D5…,那么 n= 。 11、图一是由19个六边形组成的图形,在六边形内蚂蚁只可 以选图二中箭头所指的方向之一爬到相邻的六边形内。一只蚂 蚁从六边形A出发,选择不经过六边形C的路线到达六边形 B,那么这样的路线共有条。 12、科学考察队的一辆越野车需要穿越一片全程大于600千 米的沙漠,但这辆车每次装满汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点A,越野车装满油从起点S出发,到储油点A时从车中取出部分油放进A储油点,然后返回出发点,加满油后再开往A,到A储油点时取出储存的油放在车上,从A出发点到达终点E。用队长想出的方法,越野车不用其他车帮助就完成了任务,那么,这辆越野车穿越这片沙漠的最大行程是千米。

小学数学奥林匹克辅导及练习分数百分数应用题含答案

小学数学奥林匹克辅导及练习分数百分数应用 题含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-

分数、百分数应用题(二) 同学们好!上周我们重点研究了如何运用“对应法”和“转化法”解答分数、百分数应用题,并且留了5个题让同学们完成,同学们完成的怎么样呢第二部分合作交流是杨迪和韩军同学完成的,请你帮他们检查一下,是否全对为什么 1. 综合列式解:50012 5 1 2 2500 ÷-÷= ()() 千克————苹果 2500 2 5 1 2 2000 ?÷=() 千克——————香蕉 2. 综合列式解:750 3 4 1 2 2 3 5 6 6000 ÷-÷?= ()() 千克————苹果 6000 1 2 2 3 4500 ?÷=() 千克————————梨 3. 此题转化为部分量占总量的几分之几为好。 先求总人数8 4 45 2 23 180 ÷ + - + = ()() 人 再求乙车间人数18012 3 108 ÷+= ()() 人 第三部分巩固发展,独立完成: 1. 思路:先把余下的转化为相当总数的几分之几,再找对应关系。 列式:60011 2 120%)]6001000 ÷-÷--= [(() 个 2. 思路:把每班人数可等分三份,每份就是全年级总数的1 9 ,如图,所以女生占全 年级人数的4 9 (均转化为占总数几分之几)。 一班二班三班 男女女男男女 这一讲重点研究如何运用“假设法”和“逆推法”思考解答分数应用题。 一. 思路指导

例1. 有一位农妇有鸡和鸭共92只,当卖掉鸡的 14 和8只鸭后,剩下的鸡和鸭的只数正好相等,农妇原有鸡和鸭各多少只 分析与解:根据题目特点,可用假设法思考,可以这样想,假设8只鸭不卖,只卖掉鸡的14后,剩下的鸡和鸭的只数相等,于是可知鸭相当鸡的()114 -,鸡为“1”,找到这个关系后,再和实际条件相联系,问题得以解决。 列式:()()9281114 -÷+- =÷84134 =48()只 924844-=()只 答:农妇原来有鸡48只,有鸭44只。 例2. 某人从东站到西站,去时每小时行15千米,返回时每小时行10千米,求往返的平均速度。 分析与解:要求平均速度,必须知道路程和时间,根据题目特点可假设路程为任意一个具体数量,于是问题得以解决。 可以15和10的最小公倍数30为东城到西站的距离,这样设较简便。然后根据数量关系求出平均速度。 列式:()()303030153010+÷÷+÷ =÷=605 12()千米 答:往返平均速度为12千米。

2020年小学数学奥林匹克决赛试题(含答案)-

2020年小学数学奥林匹克决赛试题 1、计算: 4131313 360.250.625660.125 17171717 +?+?+?=____________. 2、计算:76×65-65×54+54×43-43×32+32×21-21×10=。 3、自然数N=123456789101112…2008是一个位数。 4、人们常常喜欢使用自己的生日数码作为密码。例如,某人的生日是1997年3月24日, 他的六位数生日数码就是970324,其中97是出生年号的十位数字和个位数字,老师说:这种数码很容易重复,因为它只占六位数字数码的很小一部分。那么,如果不计闰年二月的29日,六位数生日数码占六位数码总数的﹪。 5、如图,小张的家是一个建在10m×10m的正方形地面上的房子,房子正好位于一个嗯 40m×40m的正方形草地的正中,他们家喂了一只羊,用15m长的绳子拴在房子一边的中点处,取π=3,那么羊能吃到草的草地面积是平方米。 6、有两个2位数,它们的乘积是1924,如果它们的和是奇数,那么它们的和 = 。 7、小王和小张玩拼图游戏,他们各用若干个边长为1的等边三角形拼成一个尽可能大的 等边三角形,小王有1000个边长为1的等边三角形,但是无论怎样努力,小王拼成的大等边三角形的边长都比小张拼的等边三角形的边长小,那么,小张用的边长为1的等边三角形至少有个。

8、某工厂甲、乙二车间去年计划完成税利800万元,结果,甲车间超额20﹪完成任务, 乙车间超额10﹪完成任务,两车间共完成税利925万元,那么,乙车间去年完成的税利是万元。 9、一只装了若干水的水桶,我们把它的水倒出一半,然后再加入一升水,这算一次操作, 第二次操作是把经过第一次操作的水桶里的水倒出一半,然后再加入一升水,如果经过7次操作后,桶里还有3升水,那么,这只水桶原来有水升。 10、n正整数,D某个数字,如果n/810=0.9D5=0.9D59D5…,那么n= 。 11、图一是由19个六边形组成的图形,在六边形内蚂蚁只可以选图二中箭头所指的方向 之一爬到相邻的六边形内。 一只蚂蚁从六边形A出发,选择不经过六边形C的路线到达六边形B,那么这样的路线共有条。 12、科学考察队的一辆越野车需要穿越一片全程大于600千米的沙漠,但这辆车每次装满 汽油最多只能驶600千米,队长想出一个方法,在沙漠中设一个储油点A,越野车装满油从起点S出发,到储油点A时从车中取出部分油放进A储油点,然后返回出发点,加满油后再开往A,到A储油点时取出储存的油放在车上,从A出发点到达终点E。 用队长想出的方法,越野车不用其他车帮助就完成了任务,那么,这辆越野车穿越这片沙漠的最大行程是

2014年第55届国际数学奥林匹克(IMO)试题

岳志鹏(河北)整理 2014年第55届国际数学奥林匹克届国际数学奥林匹克(IMO)(IMO)(IMO)试题 试题第一天 2014年7月8日,星期二 第1题设01a a <<×××为一个无穷正整数列,证明:存在唯一的整数使得:n ≥1使得: n a ≤01n a a a n ++×××+≤1n a +.第2题设n ≥2为一个正整数,考虑由2n 个单位正方格构成的n n ′的正方形棋盘,一种放置n 个棋子“车”的方案被称为和平的,如果每一行每一列上正好有一个“车”.求最大的正整数k 使得对于任何一种和平放置n 个棋子“车”的方案,都存在一个k k ′的棋盘使得它的2k 个单位正方格中都没有“车”. 第3题在凸四边形ABCD 中90ABC CDA D=D=°,点H 是A 向BD 引的垂线的垂足,点S 和点T 分别在边AB 和AD 上,使得H 在△SCT 内部,且90CHS CSB D-D=°,90THC DTC D-D=°.证明:直线BD 和△TSH 外接圆相切.

岳志鹏(河北)整理 2014年第55届国际数学奥林匹克届国际数学奥林匹克(IMO)(IMO)(IMO)试题 试题第二天 2014年7月9日,星期三 第4题锐角△ABC 中,点P 和点Q 是在边BC 上满足 PAB BCA D=D和CAQ ABC D=D的两点。点M 和点N 分 别在直线,AP AQ 上满足:P 是AM 中点,Q 是AN 中点. 证明:,BM CN 的交点在△ABC 的外接圆上. 第5题对于任意正整数n ,开普敦银行提供面值为1n 的硬币,对于给定有限枚硬币他们面值的和不超过1992 +.证明:可以把这些硬币分成100组使得每组面值和至多为1.(空集也可以视为一组硬币) 第6题一个平面上的直线集被称为一般的,如果不存在两两平行或者三线共点.一组一般的直线集把平面切割成若干区域.若一个区域的面积是有限的则称为有限区间.证明:对所有 充分大的正整数n ,任意的有n 条直线构成的一般的直线集可以把至少条直线染为蓝色使得没有一个有限区间被蓝线包围. 说明:如果把题中的可以获得更多分值.

相关文档
相关文档 最新文档