文档库 最新最全的文档下载
当前位置:文档库 › 三相短路和单相接地短路电流大小比较

三相短路和单相接地短路电流大小比较

三相短路和单相接地短路电流大小比较

三相短路和单相接地短路电流大小比较

(1)三相短路:根据边界条件对称分量法推算,三相短路时候,是不会产生负序和零序分量,只有正序电流。三相的电流幅值一样,I(3)K=E0/Z1,因为幅值一样,所以用此公式即可代表三相的情况。(2)单相接地短路:根据边界条件对称分量法推算,单相短路时候,正序分量=负序分量=零序分量,I(1)K=I(2)K=I(0)K=E0/2Z1+Z0

因为每一相电流是正负零序的叠加,即I(单)K=/I(1)K+I(2)K+I(0)K/= 3/I(1)K/=3X(E0/2Z1+Z0)=3E0/2Z1+Z0

(3)比较I(3)和I(1)K大小

I(3)K=E0/Z1,I(单)K=3E0/2Z1+Z0

I(3)K/I(单)K=E0/Z1./3E0/2Z1+Z0=2Z1+Z0/3Z1

设Z0/Z1=Δ,分子分母同除以Z1,即I(3)K/I(单)K=(2+z0/z1)/3=2/3+Δ/3看Z0/Z1的比值,决定俩者的大小。

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: ) 120sin()360240sin()240sin(); 120sin(); sin( t U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随着时间t 的流逝,当 t 值每增长360°(或2π)时,电压ua 就经过了一个周期的循环,如下图所示:

图 如上图,t代表时间, 代表t=0时刻的角度(例如上图中ua当t=0时位于原点, ), 表示角速度即每秒变化多少度。例如电网的频率为50Hz,每即代表0 秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算:

同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

短路电流的十个问题的总结

短路电流的十个问题的总结 一)为什么计算最大短路电流?为什么计算最小短路电流? 目的:测试对于短路计算意义的理解 答案:计算最大短路计算用以校验配电元件(如断路器)分段能力;计算最小短路计算用于校验配电设备(如断路器)灵敏度和继电保护计算整定。 0.38kV系统一般不需要进行设备动、热稳定的校验,因为元件制造时已经考虑好了。10KV 以上电力设备需要根据最大短路电流校验设备动、热稳定。 常见设计误区: 1、根本不考虑短路校验。不一定都算,但心里一定要有这根弦。 2、只注意计算最大短路校验开关分断能力,忽视考虑最小短路校验保护灵敏度。 拓展: 1、什么是三相短路?什么是两项短路?什么是单相短路? 2、回路上为什么有时装3个互感器?有时装2个互感器?装1个互感器?各用在什么场合? 二)对于一般10/0.4KV变电系统,最大短路电流通常发生在那里? 目的:测试对于系统短路点的认识。 答案:系统中最大短路电流的发生位置(短路点)在变压器出口侧,可以等效近似认为低压母线侧。所以一般最大短路点取低压母线侧。 常见设计误区: 1 不知道各个短路点意义,不知道应该计算几个或哪个短路点的短路电流。 拓展:什么是最大运行方式?什么是最小运行方式?运行方式对于最大、最小短路电流的选取与配电元件校验有什么影响? 三)在一条母线上应该校验哪条回路的断路器的分断能力? 目的:测试关于配电元件分断校验的问题 答案:低压母线上最小的断路器(假定断路器为同一系列)。同一条低压母线上的短路电流被认为是近似相等的,连接在上面的最小的断路器一般来讲分断能力最低。只要它满足了系统短路状态分断能力的要求,其他断路器就大致没有问题。 常见设计误区: 1、不校验断路器在短路状态的分断能力。 2、每个断路器都校验一遍。 拓展:当断路器分断能力不够时,举出3种解决方法。

继续修正-注册电气师公式计算总结

标准一 110kV-750kV架空输电线路设计规范公式一导、地线在弧垂最低点的最大张力: max ,p p c c T T T K K ≤:导、地线的拉断力;:导、地线的设计安全系数。 1)导、地线在弧垂最低点的设计安全系数不应小于2.5,悬挂点的设计安全系数不应小于2.25.地线的设计安全系数不应小于导线的设计安全系数。 2)导、地线在稀有风速或稀有覆冰气象条件时,弧垂最低点的最大张力不应超过其导、地线拉断力的70%。悬挂点的最大张力不应超过导、地线拉断力的77%。(按上述公式,取2.5或2.25时只有40%或44%,在这种稀有条件下,相当于条件放宽了) 公式二绝缘子机械强度的安全系数: 1 T R R T K T T =,:绝缘子的额定机械破坏负荷(kN); :分别取绝缘子承受的最大使用荷载、断线荷载、断联荷载、验算荷载或常年荷载(kN)。 1)常年荷载指年平均气温条件下绝缘子所受的荷载。验算荷载是验算条件下 绝缘子所受荷载。断线的气象条件是无风、有冰、—5℃,断联络的气象条件是 无风、无冰、—5℃。设计悬垂串时导、地线张力可按本规范第10.1节的规定取 值。 2)安全系数应符合表6.0.1规定(P15)。双联及多联绝缘子串应验算断一联后 的机械强度,其荷载应按断联情况考虑(K=1.5)。 3)金具强度的安全系数:最大使用荷载不应小于2.5。断线、断联、验算情况 不应小于1.5。 公式三绝缘子串片数选择: 操作及雷电过电压要求的悬垂绝缘子最小片数 1)耐张绝缘子串的片数,在上表基础上,110-330kV加1片,500kV加2片,

750kV 不增加。 2) 全高超过40m 有地线的杆塔,高度每增加10m ,应比本规范表增加1片相 当于高度146mm 的绝缘子,全高超过100m 的杆塔,片数应根据运行经验结合计算确定。750kV 超过40m ,应根据实际情况验算。 3) 采用爬电比距法时,绝缘子片数计算: 01 1000/145220kV 1.39I 11e U n n m K L λλ≥ ,:海拔时每联绝缘子所需片数; :爬电比距(cm kV ),330kV 以上为 .,及以下为 ; 变电所爬电比距,对级污秽区取同级线路的.倍。 U :系统标称电压(kV );L01:单片绝缘子的几何爬电距离(cm ); Ke :绝缘子爬电距离的有效系数。XP-70、XP-160型绝缘子为1。 注:轻、中污秽区复合绝缘子爬电距离不宜小于盘型绝缘子;在重污秽区,其爬电距离不应小于盘型绝缘子最小值的3/4且不应小于2.8cm/kV ;用于220kV 以上输电线路复合绝缘子两段都应加均压环,其有效绝缘长度需满足雷电过电压的要求。 4) 高海拔地区悬垂绝缘子串的片数,宜按下式计算: 10.1215(-1000)/1000=m H H n ne m 1:特征指数,取值见附录C 。 耐张绝缘子片数: =[1+0.1(-1)]H N N H ,H :海拔高度,km 。(导体选择) 公式四 空气放电电压海拔修正系数: /8150=mH a K e m :海拔修正因子,工频、雷电电压m=1;操作过电压见P20图7.0.12。 公式五 杆塔上两根地线间的距离:不应超过地线与导线间垂直距离的5倍。 在一般档距中央,导线与地线间的距离: 0.012+1S L ≥ S :导线与地线间距离(m);L :档距(m )。注:气象条件:15℃,无风、无冰。 注:对于大档距导线,在档距>'t l v τ(v ’:波的传播相速,取225m/us ;t τ:波头长度)时,20.1S I ≈。

单相三相交流电路计算公式归纳

《单相、三相交流电路》功率计算公式 1 / 8

三相电源一般都是对称的,多用三相四线制 三相负载包括:星型负载和三角形负载 不对称时:各相电压、电流单独计算,对称时:只需计算一相。 千瓦电流值:220v阻性: 1000w/220v=4.5A 220v感性:1000w/(220*0.8)=5.5A 380v阻性:1000w/3/220v=1.5A 380v感性:I线=1000w/(380*1.7*0.8)=1.9A 三相四线制中的零线截面通常选为相线截面的1/2左右。在单相线路中,零线与相线截面相同。 U相220v×√3=U线380v U相380v×√3=U线660v 220v×3=660v (三角:线电压=相电压=380v) 相电流:(负载上的电流),用Iab、Ibc、Iac表示。相电压:任一火线对零线的电压U A、U B、U C 线电流:(火线上的电流),用I A、I B、I C表示。线电压:任意两火线间的电压U AB、U BC、U CA 星形:I线(IA、IB、IC)=I相(Iab、Ibc、Iac),U线=380V(UAB、UBC、UCA)=√3×U相(UA、UB、UC=220V), P相=U相×I相, P总=3P相=√3×U线×I相=√3×U线×I线; 三角:I线(IA、IB、IC)=√3×I相(Iab、Ibc、Iac),U线=380V(UAB、UBC、UCA)=U相(UA、UB、UC), 2 / 8

P相=U相×I相,P总=3P相=√3×I线×U相=√3×I线×U线。 单相电有功功率:P= U相I相cosφ 1千瓦=4.5-5.5A 三相电有功功率: P总=3U相I相cosφ=3x220xI相cosφ P总=√3U线I线cosφ=1.732x380xI线cosφ三相电1千瓦线电流:IA、IB、IC:=P总/√3U线cosφ=1000kw/(380x√3x0.8)=2A 铜线的安全截流量为5-8A/平方毫米,铝线的安全截流量为3-5A/平方毫米。 在单相电路中,每1平方毫米的铜导线可以承受1KW功率负载; 三相平衡电路,每1平方毫米的铜导线可以承受2-2.5KW的功率。 相电压:三根火线中任意相线与零线之间的电压叫相电压Ua.Ub,Uc 线电压:三相电路中A、B、C三相引出线相互之间的电压,又称线电压。 不论星形接线还是三角形接线,三个线电压分别是UAB、UBC和UCA, 3 / 8

工厂供电短路电流及其计算

短路电流及其计算总结 第一节短路的原因、后果及其形式 一、短路的原因 1、电气设备载流部分绝缘损坏 2、运行人员误操作 3、鸟兽为害事故 二、短路的后果 电流剧烈增加,系统中的电压大幅度下降产生严重后果: 1、短路电流的热效应会使设备发热急剧增加,可能导致设 备过热而损坏甚至烧毁; 2、短路电流产生很大的电动力,可引起设备机械变形、扭 曲甚至损坏; 3、短路时系统电压大幅度下降,严重影响电气设备的正常 工作; 4、严重的短路可导致并列运行的发电厂失去同步而解列, 破坏系统的稳定性; 5、不对称短路产生的不平衡磁场,会对附近的通讯系统及 弱电设备产生电磁干扰,影响其正常工作; 三、短路的形式 三相短路、两相短路、单相短路、两相接地短路。 第二节无限大容量电力系统发生三相短路时的物

理过程和物理量 一、无限大容量电力系统发生三相短路时的物理过程: 无限大容量电力系统,是指供电容量相对于用户供电系统容量大得多的电力系统。 二、短路有关的物理量 1、短路电流周期分量 2、短路电流非周期分量 3、短路全电流 4、短路冲击电流 ) 高压电路发生三相短路时,一般可取,因此 在及以下的电力变压器和低压电路发生三相短路时,一般可取,因此 5、短路稳态电流 短路稳态电流是短路电流非周期分量衰减完毕以后的短路全电

流,其有效值用表示。 第三节无限大容量电力系统中短路电流的计算 1、概述 短路电流的计算方法,常用的有欧姆法和标幺制法。 2、采用欧姆法进行三相短路计算 在无限大容量系统中发生三相短路时,其三相短路电流周期分量有效值如下: 如果不计电阻,则三相短路电流周期分量有效值为 三相短路容量为 = 1、电力系统的阻抗计算 电力系统的电抗 2、电力变压器的阻抗计算 3、电力线路的阻抗计算 4、阻抗换算公式 3、采用标幺制法进行三相短路计算 电力系统电抗标幺制 电力变压器的电抗标幺值

三相电机的电流计算公式

三相电机的电流计算公式 如果一台排风扇是三相电机,它的标签上只写了电压380V,功率是4KW,还有转速,那么怎么计算它的电流呢? 公式是什么呢 A=KW/(1.732*0.38*COS) COS=功率因数 第 2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经

常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源:

[电气工程师]短路电流计算公式归纳

3U B 3U B S T U U S 短路电流计算 在电力系统短路电流计算中,假设各元件的磁路不饱和的目的 :可以应用叠加原理, 在短路的实用计算中,通常只用周期分量电流的有效值来计算短路功率 标么值:任意一个物理量对基准值的比值。U I Z , S U I S U 2 基准值 S B 3U B I B , I B B , Z B B S B 发电机标么值电抗: X X G % ( U GN )2 B G 100 U B S 变压器标么值电抗: X U k % ( U N ) 2 S B 线路标么值电抗: X L X 100 U B B L 2 B X % U S 电抗器标么值电抗: X R B R 100 2 B 不同基准值的标幺值之间的换算: X X ( U N )2 S B B N U B S N 三相短路:短路点电压为零,各相短路电流相等,短路电流只包含正序分量。 无限大系统供电网络短路时,电源电压保持不变,U 1,短路容量的标么值和短路电 流的标么值相等,短路电流周期分量标么值 I f U X f 1 X f S f ,短路电流: I f I f B ,短路容量:S f S f S B ,S f 3U av I f 短路容量用来校验开关的切断 能力。 转移阻抗:任意两个接点之间的等值电抗。 无限大功率电源供电电路的短路电流在暂态过程中包含交流分量和直流分量。 短路冲击电流:短路电流最大瞬时值,在短路发生后约半个周期出现,短路后 0.01s 的 瞬时值, i m 2K m I f 用于校验设备的动稳定。K m 为冲击系数,当短路发生在发电机 电压母线时, K m 1.9 ,当短路发生在发电厂高压母线时, K m 1.85 ,当短路发生在其他地点, K m 1.8 。 非周期电流的初值越大,暂态过程中短路电流最大瞬时值越大。它与短路发生时刻有关, 与短路发生时电源电势的初始相角(合闸角) 有关。短路电流冲击值在短路前空载, 电压初相位为0的情况下最大。 序阻抗:静止磁耦合元件(线路、电抗器、变压器)正序阻抗和负序阻抗相等 Z 1 Z 2 ; 零序电抗比正序电抗大。变压器零序等值电路与外电路的连接,取决于零序电流的流通 S GN S N

三相电流计算公式1

三相电流计算公式 相电流计算公式 阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功= 1.732*线电压U*线电流I*功率因数COSΦ(星形接法) = 3*相电压U*相电流I... 相电流的计算公式: 额定电流计算公式发布者:admin 发布时间:2009-7-17 阅读:89次电力变压器变压器额定电流 I1N/I2N,单位为A、正常运行时所能承担的电流,在三相变压器中均代表线电流。信息来自:输配电设备网 I1N... 相电机功率计算公式里面的电流电压指的到底是什么? 流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压对于电动机而言一个绕组的电压就线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流当电机星接. 相四线电流计算公式 流相量计算公式: IN*=IA*+IB*+IC* =IA∠0+IB∠-120+IC∠120 =IA+IB(cos-120+jsin-120)+IC(cos120+jsin120) C)+j0.866... 相电电流计算公式 比较复杂。首先,电流分为相电流和线电流。其次,三相短路有多种接法,最常见的是星接(Y)和角接(D)。Y接时,相电,D接时,线电流等于相电流的1.732倍。所以,只要知道了接法,可以先求出相电流,再求出线电流。而相电流... 三相电电流计算公式。 的额定电流都是指线电流,额定电压都是指线电压。若已知电压U、负载视在功率S(三相电输出视在功率)和功率因可以先求出负载的有功功率P,然后在求电流I。其具体求法如下: 1、负载的有功功率P为:P=S×cosφ 2、线电流.

短路电流计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地<对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称。 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

3短路电流及其计算课后习题解析(精选、)

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(内部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

短路电流大小的限制方法

限制短路电流的方法 2008-06-14 20:18 目前在电力系统中,用得较多的限制短路电流的方法有以下几种:选择发电厂和电网的接线方式;采用分裂绕组变压器和分段电抗器;采用线路电抗器;采用微机保护及综合自动化装置等。 1 选择发电厂和电网的接线方式 通过选择发电厂和电网的电气主接线,可以达到限制短路电流的目的。 在发电厂内,可对部分机组采用长度为40km及以上的专用线路,并将这种发电机—变压器—线路单元连接到距其最近的枢纽变电所的母线上,这样可避免发电厂母线上容量过份集中,从而达到降低发电厂母线处短路电流的目的。 为了限制大电流接地系统的单相接地短路电流,可采用部分变压器中性点不接地的运行方式,还可采用星形—星形接线的同容量普通变压器来代替系统枢纽点的联络自耦变压器。 在降压变电所内,为了限制中压和低压配电装置中的短路电流,可采用变压器低压侧分列运行方式;在输电线路中,也可采用分列运行的方式。在这两种情况下,由于阻抗大,可以达到限制短路电流的目的,不过为了提高供电可靠性,应该加装备用电源自动投入装置。 对环形供电网,可将电网解列运行。电网解列可分为经常解列和事故自动解列两种。电网经常解列是将机组和线路分配在不同的母线系统或母线分段上,并将母线联络断路器或母线分段断路器断开运行,这样可显著减小短路电流。电网事故自动解列,是指在正常情况下发电厂的母线联络断路器或分段断路器闭合运行,当发生短路时由自动装置将母线(或分段) 断路器断开,从而达到限制短路电流的目的。 2 采用分裂绕组变压器和分段电抗器 在大容量发电厂中为限制短路电流可采用低压侧带分裂绕组的变压器,在水电厂扩大单元机组上也可采用分裂绕组变压器。为了限制6~10 kV配电装置中的短路电流,可以在母线上装设分段电抗器。分段电抗器只能限制发电机回路、变压器回路、母线上发生短路时的短路电流,当在配电网络中发生短路时则主要由线路电抗器来限制短路电流。 3 采用线路电抗器 线路电抗器主要用于发电厂向电缆电网供电的6~10kV配电装置中,其作用是限制短路电流,使电缆网络在短路情况下免于过热,减少所需要的开断容量。 4 采用微机保护及综合自动化装置 从短路电流分析可知,发生短路故障后约0.01s时间出现最大短路冲击电流,采用微机保护仅需0.005s就能断开故障回路,使导体和设备避免承受最大短路电流的冲击,从而达到限制短路电流的目的。

三相电流计算公式

三相电流计算公式 I=P/(U*所以1000W的线电流应该是。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是,电压等于380V时,电流是,以上说的是指的单相的情况。380V 三相的时候,公式是I=P/(U*,电流大小是 三相电机的电流计算I= P/*380* 式中:P是三相功率是根号3) 380 是三相线电压(I 是三相线电流) 是功率因数,这里功率因数取的是,如果功率因数取或者,计算电流还小。电机不是特别先进的都是按计算。按10kW计算:I=10kW/*380* =10kW/ = A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电流。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2 S=√(P2+Q2) 视在功率S= 有功功率P=Φ 无功功率Q=Φ 功率因数cosΦ=P/S 根号3,没有软件写不上,用代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器; FR表示热继电器;

三相电流计算公式演示教学

三相电流计算公式

精品文档 三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。 380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算: I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW 电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在: S2=P2+Q2 S=√(P2+Q2) 视在功率S=1.732UI 有功功率 P=1.732UIcosΦ无功功率Q=1.732UIsinΦ功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率 Pj:计算有功功率 Sj:计算视在功率 Ij:计算电流 Kx:同时系数 cosφ:功率因数 Pj=Kx*Pe Sj=Pj/cosφ单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, 收集于网络,如有侵权请联系管理员删除

电力系统分析短路电流的计算汇总

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求:(1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15. 01=T X 15 . 00=T X 25 . 02=T X 25. 02==''X X d 图1-1

1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1. 在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2. 正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3. 负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入 代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4. 零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1. 单相(a相接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I =

三相功率计算公式

三相功率计算公式 P=1.732×U×I×COSφ (功率因数COSφ一般为0.7~0.85之间,取平均值0.78计算) 三相有功功率 P=1.732*U*I*cosφ 三相无功功率 P=1.732*U*I*sinφ 对称负载,φ:相电压与相电流之间的相位差 cosφ为功率因数,纯电阻可以看作是1,电容、电抗可以看作是0 有功功率的计算式:P=√3IUcosΦ (W或kw) 无功功率的公式: Q=√3IUsinΦ (var或kvar) 视在功率的公式:S=√3IU (VA或kVA) ⑴有功功率 三相交流电路的功率与单相电路一样,分为有功功率、无功功率和视在功率。不论负载怎样连接,三相有功功率等于各相有功功率之和,即: 当三相负载三角形连接时: 当对称负载为星形连接时因

UL=根号3*Up,IL= Ip 所以P== ULILcosφ 当对称负载为三角形连接时因 UL=Up,IL=根号3*Ip 所以P== ULILcosφ 对于三相对称负载,无论负载是星形接法还是三角形接法,三相有功功率的计算公式相同,因此,三相总功率的计算公式如下。 P=根号3*Ip ULILcosφ ⑵三相无功功率: Q=根号3*Ip ULILsinφ (3)三相视在功率 S=根号3*Ip ULIL 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相B 相C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 电流和相电流与钳式电流表测量无关,与电机定子绕组接线方式有关。 当电机星接时:线电流=根3相电流;线电压=相电压。 当电机角接时:线电流=相电流;线电压=根3相电压。 所以无论接线方式如何,都得乘以根3。 电机功率=电压×电流×根3×功率因数

最新8.1.2三相和两相短路电流的计算汇总

8.1.2三相和两相短 路电流的计算

8.1.2.2 三相和两相短路电流的计算 在220/380网络中,一般以三相短路电流为最大。一台变压器供电的低压网络三相短路电流计算电路见图8?1?1。 图8?1?1 低压网络三相短路电流计算电路 (a )系统图;(b )等效电路;(c )用短路阻抗表示的等效电路图 低压网络三相起始短路电流周期分量有效值按下式计算 22 22230 3 /05.13/k k k k n k n X R X R U Z cU I + = +== '' kA (8-1-19) L m T s k R R R R R +++= L m T s k X X X X X +++= 式中 n U ——网路标称电压(线电压),V ,220/380V 网络为380V ; c ——电压系数,计算三相短路电流时取1.05; k Z 、k R 、k X ——短路电路总阻抗、总电阻、总电抗,mΩ; s R 、s X ——变压器高压侧系统的电阻、电抗(归算到400V 侧),mΩ; T R 、T X ——变压器的电阻、电抗,mΩ; m R 、m X ——变压器低压侧母线段的电阻、电抗,mΩ; L R 、L X ——配电线路的电阻、电抗,mΩ; I ''、k I ——三相短路电流的初始值、稳态值。 只要2222/s s T T X R X R ++≥2,变压器低压侧短路时的短路电流周期分量不衰减,即I I k ''=。

短路全电流k i 包括有周期分量z i 和非周期分量f i 。短路电流非周期分量的起始值 I i f ''=20,短路冲击电流ch i ,即为短路全电流最大瞬时值,它出现在短路发生后的半周期(0.01s )内的瞬间,其值可按下式计算 I K i ch ch ''=2 kA (8?1?20) 短路全电流最大有效值ch I 按下式计算 2)1(21-+''=ch ch K I I kA (8?1?21) 式中 ch K ——短路电流冲击系数,f ch T e K 01 .01+=; f T ——短路电流非周期分量衰减时间常数,s ,当电网频率为50Hz 时,∑ ∑ = R X T f 314; ∑X ——短路电路总电抗(假定短路电路没有电阻的条件下求得),Ω; ∑R ——短路电路总电阻(假定短路电路没有电抗的条件下求得),Ω。 如果电路只有电抗,则∞=f T ,2=ch K ,如果电路只有电阻,则0=f T ,1=ch K ;可见2≥ ch K ≥1。 电动机反馈对短路冲击电流的影响,仅当短路点附近所接用电动机额定电流之和大于短路电流的1%(I I M r ''>∑?01.0)时,才予以考虑。异步电动机起动电流倍数可取为6~7,异步电动机的短路电流冲击系数可取1.3。由异步电动机馈送的短路冲击电流的计算式(8?1?22)。 由异步电动机提供的短路冲击电流M ch I .按下式计算 rM qM M ch M ch I K K I ..29.0= kA (8?1?22) 计入异步电动机影响后的短路冲击电流ch i 和短路全电流最大有效值ch I ,按下列两式计算 M ch s ch ch i i i ..+= kA (8?1?23) ])1()1[(2)(..2M M ch s s ch M s ch I K I K I I I ''-+''-+''+''= (8?1?24) 以上式中 s ch i .——由系统送到短路点去的短路冲击电流,kA ;

相关文档