文档库 最新最全的文档下载
当前位置:文档库 › 棉籽毛油生产生物柴油工艺的研究

棉籽毛油生产生物柴油工艺的研究

棉籽毛油生产生物柴油工艺的研究
棉籽毛油生产生物柴油工艺的研究

技术·油脂工程

>>>

C EREALS AN

D OILS PROCESSING

棉籽毛油生产生物柴油工艺的研究

王治泽

谭有将

高剑锋

(石河子大学生命科学学院)

【摘要】以棉籽毛油为原料,经过简易的加碱精炼反应后,在催化剂NaOH 作用下,通过

酯交换反应制得生物柴油,考察反应条件如醇油摩尔比、催化剂用量、反应温度、反应时间等的变化对产率的影响,得到的最佳反应条件为醇油摩尔比6∶1、催化剂用量0.9%、反应温度

40℃、反应时间40min 。

【关键词】棉籽毛油;酯交换反应;生物柴油中图分类号:TQ 645

文献标识码:A

文章编号:1673-7199(2010)03-0028-03

表1

棉籽毛油加碱得油结果比较

毛油(g )

碱液(g )

碱炼后油(g )

得率(%)

20016160.0580.0520018161.0880.53200

20

155.56

77.78

生物柴油是一种含氧清洁、可再生、可降解的绿色生物燃料,但生物柴油成本问题一直是其生产存在的主要问题,开发廉价的植物油脂是解决成本问题的一个主要研究方向。我国是世界上最大的产棉国之一,棉籽油单一的应用,制约了棉籽油的生产,用棉籽油生产生物柴油能开辟棉籽油的销售市场。

利用精炼棉籽油生产生物柴油已经有较成熟的工艺路线,毛棉籽油经预酯化也可生产生物柴油,邬国英等人研究指出精棉籽油比毛棉籽油更合适生产生物柴油。经过预榨和浸出的棉籽毛油中含有2%以上棉酚、磷脂、甾醇、树脂、烃类和色素非甘油酯成分,这些物质易形成强烈的棕红色,并使其有臭味,色黑。不处理掉这些非甘油酯成分,只优化工艺条件,毛油将不能降低生物柴油的生产成本。本试验通过毛油碱炼,化学酯交换法利用棉籽毛油制备生物柴油,旨在寻找棉籽毛油制备生物柴油的最佳工艺条件。

1

材料与方法

1.1

试验材料

棉籽毛油,购自新疆石河子汇昌油脂公司。氢氧

化钠、无水甲醇、无水硫酸钠,均为国产分析纯。

1.2试验方法

1.2.1

毛油的碱炼反应

毛油过滤后倒入反应器,加热至60℃时,添加一

定量的碱液(20%的氢氧化钠水溶液)。边加边搅拌,油温约升到100℃时停火,沉淀,然后抽滤、离心收集清油。碱炼后的棉籽油色淡、透明,具有油脂的光泽,酸值低于0.5(KOH )/(mg /g ),含水率为0.2%~0.3%,可用于生产生物柴油。

反应材料棉籽毛油的酸值按GB 9104.3-88测得为

15(KOH )/(mg /g ),碱炼反应后棉籽油的酸值低于0.5(KOH )/(mg /g )。加入不同的碱液量,进行毛油碱炼反应,结果见表1。

1.2.2酯交换反应

将碱炼后的棉籽油水洗干燥后,置于带有回流装

置的三口烧瓶中,利用磁力加热搅拌器加热搅拌,达到一定温度后,加入氢氧化纳-甲醇溶液,开始计时。待反应完全后,冷却、分层、洗涤、干燥、离心,蒸馏,得到黄色澄清透明的产品,即生物柴油。

1.3分析方法

采用高效液相色谱法检测不同反应条件下产物中

的脂肪酸甲酯的含量。分析仪器为Agilent 1200Series ,

28

C EREALS AN

D OILS PROCESSING

<<<

油脂工程·技术

图1

生物柴油的液相色谱分析图

表2

原料油理化性质

原料油皂化值[(KOH )/(mg /g )]酸值[(KOH )/(mg /g )]水分含量(%)相对分子量

(g /mol )

毛油195.5150.17932.6碱炼后的油

198.5

0.345

0.25

848

Agilent HC-C18柱(150mm×4.6mm ,5μm ),流动相为乙腈和丙酮,其比例为9∶1,流动相流速1mL /min ,柱温30℃,紫外检测波长210nm 。在上述色谱操作下得到色谱图,如图1所示。生物柴油的主要成分按出峰顺序依次为亚油酸甲酯、油酸甲酯、棕榈酸甲酯和硬脂酸甲酯。在高效液相中油酸甲酯和棕榈酸甲酯出峰时间极近,不能达到完全分离,其他各峰的分离明显,峰形良好。亚油酸甲酯是脂肪酸甲酯的主要成分。

2

结果与分析

2.1

毛油碱炼

在毛油的简易碱炼反应中,加入毛油质量9%的碱

液得油率较高,而且油皂分层更显著,易分离,色泽更淡,是较适合的用量。碱炼后的油水洗干燥后,就可用来制备生物柴油。二者理化性质区别见表2。

棉籽油的平均分子量可由皂化值(SV )和酸值(AV )计算得到,平均分子量的计算式为

M =56.1×1000×3

SV -AV

毛油中棉酚、磷脂的存在均可增大油脂的酸值,因供试的毛油非优质毛油,色深,含杂质较多,影响游离脂肪酸的准确测定,使得毛油相对分子量偏大。

2.2醇油摩尔比对酯化率的影响

在反应温度为60℃,催化剂用量1.1%,反应时间

为60min 的条件下,醇油摩尔比对反应产物中甲酯含

量的影响如图2所示。在理论上醇油摩尔比为3∶1最合适,但酯交换反应是一个可逆反应,增加甲醇的用量有利于反应向正反应方向进行,所以酯交换反应的甲醇用量越多,棉籽油反应越完全。随着甲醇体积含量的增加,酯化率也相应有所增加。

2.3催化剂用量对酯化率的影响

在醇油摩尔比5∶1,反应时间60min ,反应温度

60℃的条件下,催化剂用量对反应产物中甲酯含量的影

响如图3所示。

由图3可知:随着催化剂用量的提高,酯化率降低,这是由于毛油只是经过简单的碱炼反应,内部还含有一定量杂物,不如经过精细加工的棉籽油,催化剂浓度过高时,易导致副反应皂化反应的发生,使酯化率下降。因此,选择最佳的催化剂用量低于1.1%较好。

2.4温度对酯化率的影响

在醇油摩尔比5∶1,反应时间60min ,催化剂用量

1.1%的条件下,反应温度对反应产物中甲酯含量的影响如图4所示。

由图4可知:在反应温度高于45℃时,酯化率随着温度的升高而降低,这是由于随着温度的升高,达到甲醇沸点附近,甲醇挥发出来,致使溶液中甲醇浓

图2醇油摩尔比对酯化率的影响

图3催化剂用量对酯化率的影响

29

技术·油脂工程

>>>

C EREALS AN

D OILS PROCESSING

图5

反应时间对酯化率的影响

图4反应温度对酯化率的影响

表3

正交试验和数据分析表L 9(34)

试验号

醇油比

A 催化剂

B (%)温度

C (℃)反应时间

D (min )甲酯得率(%)

11(5∶1)1(0.9)1(40)1(40)96.62212(1.0)2(45)2(50)94.48313(1.1)3(50)3(60)91.2342(5.5∶1)

12396.495

223194.646231295.2073(6∶1)13296.908321397.819

332196.77

K 1282.33290.01289.63288.03K 2286.22286.93287.74286.58K 3

291.48283.2282.77285.53R

9.15

6.81

6.86

2.5

度变低,导致反应酯化率下降,而且温度较高易使油皂化,降低产率,因此,反应温度低于50℃较为合适。

2.5反应时间对酯化率的影响

在醇油摩尔比5∶1,反应温度60℃,催化剂用量

1.1%的条件下,反应时间对反应产物中甲酯含量的影响如图5所示。

由图5可知:在40min 以内,随着反应时间的增

加,反应酯化率明显增加,但随着时间的增加,酯化率随反应时间的增加而降低。这是由于本反应是一个可逆反应,反应在40min 已达到平衡,继续增加反应时间导致副反应的发生,故酯交换反应时间为40min 较合适。

2.6正交试验

由于酯交换反应实际上是受醇油摩尔比(A )、催

化剂用量(B )、反应温度(C )和反应时间(D )4个因素交叉影响,为了全面考察这4个因素对酯交换反应的影响,根据单因素试验结果设定设计了L 9(34)方案进行正交试验,试验结果见表3。

通过极差分析,得出棉籽油制备生物柴油的最佳反应条件为A 3B 1C 1D 1,即:醇油比6∶1,催化剂用量为0.9%,反应温度40℃,反应时间为40min 。由极差大小得出4个因素对反应产率的影响顺序为醇油比>反应温度>催化剂用量>反应时间。

3结论

(1)酸值较高的棉籽毛油加入毛油质量9%的碱

液,进行简易碱炼,效果较好,得油率在80%以上,操作简单方便,获得的油适合用于生产生物柴油,不需进一步精炼加工,比直接用精炼油加工生物柴油节约生产成本。

(2)通过正交试验得到的适宜反应条件为醇油比

6∶1,催化剂用量为0.9%,反应温度40℃,反应时间为40min ,其生物柴油得率可达到98.81%。

参考文献

[1]卢碧林,等.棉籽油制备生物柴油技术研究[J ].粮油加工,

2006(12):45~46.

[2]杜玮.棉籽油的特性与常用精炼工艺比较[J ].中国油脂,

2005,30(1):37~39.

[3]邬国英,等.棉籽油甲酯化联产生物柴油和甘油[J ].中国油脂,

2003,28(4):70~73.

2008年度教育部促进与美大(美洲与大洋洲)地区科研合作与高层次人才培养项目,项目名称:棉籽油生物法生产生物柴油及其品质优化的关键技术研究。

作者简介:王群(1985—),女,湖北,硕士研究生,主要从事棉籽综合利用加工方面的研究。

通讯作者:高剑峰(1964—),男,教授,博士生导师,研究方向为生物化学和新能源开发。通讯地址:

(832003)新疆石河子市北四路

30

零件的工艺分析及生产类型的确定-设计说明书

蚌埠学院 机械制造技术 课程设计说明书 姓名: 学号: 系别:电子与车辆工程系 专业:2013级材料成型及控制工程 指导老师:陈兴强

目录 1序言 (2) 2零件的工艺分析及生产类型的确定 (3) 3选择毛坯确定毛坯尺寸设计毛坯图 (5) 4选择加工方法,制定工艺路线 (6) 5工序设计 (11) 6确定切削用量及基本时间 (13) 7设计心得体会 (22) 8参考文献 (23)

序言 课程设计作为学生专业课程学习的重要组成部分,是对课程理论学习的综合运用,通过课程设计可以使学生系统的将所学的专业知识进行回顾和总结,并在此基础上针对设计题目进行具体分析和应用。达到理论学习与教学实践相结合,更好的保证学生的学习效果。 这次设计使学生进一步学习并巩固机械制造技术基础中的基本理论,并结合生产实习中学到的实践知识,独立地分析和解决了零件机械制造工艺问题,设计了机床专用夹具这一典型的工艺装备,提高了结构设计能力,为今后的毕业设计及未来从事的工作打下了良好的基础,是大学生在校学习期间不可或缺的一次实践。

零件的工艺分析及生产类型的确定 1. 零件的结构特点及作用 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 设计说明书图示传动轴零件属于阶梯轴类零件,由圆柱面、轴肩、砂轮越程槽和键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩。 2.零件的工艺分析 传动轴毛坯材料为45。该材料属于优质碳素钢,经热处理(淬火加高温回火)后具有良好的综合力学性能,即具有较高的的强度和较高的塑性、韧性,一般用来制作机床主轴,机床齿轮和其他受力不大的轴类零件。主要技术要求如下:根据工作性能与条件,该传动轴图样规定了主要轴颈、轴头、外圆、键槽以及轴肩有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。因此,该传动轴的关键工序是轴头、轴颈、键槽、外圆及轴肩的加工。

生物柴油生产工艺

生物柴油的制备方法主要有 4 种: 直接混合法( 或稀释法) 、微乳化法、高温热裂解法和酯交换法。前两种方法属于物理方法, 虽简单易行, 能降低动植物油的黏度, 但十六烷值不高, 燃烧中积炭及润滑油污染等问题难以解决。高温裂解法过程简单,没有污染物产生, 缺点是在高温下进行, 需催化剂,裂解设备昂贵, 反应程度难控制, 且高温裂解法主要产品是生物汽油, 生物柴油产量不高。酯交换法又分为碱催化酯交换法、酸催化酯交换法、生物酶催化酯交换法和超临界酯交换法。酯交换法是目前研究最多并已工业化生产的方法但生物酶催化酯交换法目前存在着甲酯转化率不高, 仅有40%~60%, 短链醇( 甲醇、乙醇) 对脂肪酶毒性较大,酶寿命缩短; 生成的甘油对酯交换反应产生副作用,短期内要实现生物酶法生产生物柴油, 还是比较困难。超临界酯交换法由于设备成本较高, 反应压力、温度也高, 一程度上影响了该技术的工业化, 目前主要处于试验室研究阶段。 1 生物柴油生产工艺 目前, 国内采用的原料主要有地沟油、酸化油、混合脂肪酸、废弃的植物和动物油等, 根据不同的原料应采用不同的工艺组合来 生产生物柴油。因目前国内企业的日处理量不是很大( 大多为5~50t /d 不等) , 酯交换( 酯化) 工序一般采用反应釜间歇式的; 分离、水洗工序有采用罐组间歇式的, 也有采离心机进行连续分离、水洗的。 1 地沟油制取生物柴油 地沟油水分大、杂质含量多, 酸值较高, 酸值一般在20(KOH)

/(mg/g) 油左右。由地沟油制得的生物柴油颜色较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。 碱法催化制备生物柴油工艺流程 氢氧化钠→甲醇粗甘油→脱溶→精制→甘油 ↓↑ 地沟油→过滤→干燥→酯交换→分离→脱溶→水洗→干燥→生物柴油 2酸化油制取生物柴油 酸化油的机械杂质含量较大( 如细白土颗粒) , 酸值一般在80~160(KOH) /(mg/g) 油间, 国内有一步酸催化法和先酸催化后碱催化两步法来制备生物柴油。因酸化油中含有一定量的悬浮细白土颗粒及胶杂, 在反应过程易被硫酸炭化, 在反应釜底部会有一定量的黑色废渣。在酯化反应过程国内有采用均相反应的, 也有采用非均相反应的, 各有利弊。均相反应( 反应体系温度60~65℃) 甲醇在体系内分布均匀, 接触面积大, 利于参与反应, 但生成的水没有带走, 阻碍反应进程; 非均相反应( 反应体系温度105~115℃) 甲醇以热蒸汽形式鼓入, 可以带走一部分生成的水, 有利于反应进程, 以及免去反应釜的搅拌装置, 但甲醇气体在油相的停留时间短、接触面积小, 不利于参与反应,需要更多的热能和甲醇循环量。由酸化油制得的生物柴油颜色也较深, 一般需经过脱色或蒸馏工序、添加剂调配工序处理。一步酸催化制备生物柴油工艺流程:

百度文库-典型油脂精炼工艺流程

典型油脂精炼与加工工艺学 油脂精炼工艺流程--豆油、花生油、芝麻油 豆油、花生油、芝麻油是我国大宗油脂,其脂肪酸组成均以油酸、亚油酸为主,是人类主要食用油脂,如果油料品质好,制取工艺科学,则其毛油的品质是较好的。一般游离脂肪酸含量低于1%,经过粗炼即能达到普通食用油的品质,其精制油的精炼工艺也较简单。两种品级食用油的精炼工艺如下: 1.一级食用油精炼工艺流程(间歇式) 操作条件:过滤后的毛油含杂不大于0.2%,水化温度60-65℃,加水量为毛油胶质含量的3~3.5倍,水化搅拌时间30~40分钟,沉降分离时间不少于6小时,干燥温度不低于95℃,操作时极限真空6.6kPa(50mmHg).若有残留溶剂时,根据卓品科技工程师现场经验,脱溶温度160~170℃左右,极限真空为4.0kPa,脱溶时间需要3小时。 2.精制食用油精炼工艺流程(间歇式脱色脱臭) 操作条件:过滤毛油含杂不大于0.2%,碱液浓度16~18Be’,超量碱添加量为理论

碱量的10%~25%,有时还先添加油量0.05%~0.20%的磷酸(浓度为85%),脱皂温度 70~82℃,洗涤温度95℃左右,软水添加量为油量的10~20%,吸附脱色温度95~98℃,极限真空为4.0~4.7kPa。脱色温度下的操作时间为20分钟左右,活性白土添加量为油量的2.5~5%,分离白土时的过滤温度不大于70℃。脱臭温度180℃左右,极限真空为 0.67kPa(5mmHg),气提蒸汽通量30~50千克/吨油·小时,脱臭时间’6~7小时,柠檬酸添加量为油量的0.02%(配制成乙醇溶液)在90℃油温时加入,根据卓品科技工程师现场经验,安全过滤温度不高于70℃。 油脂精炼工艺流程--菜籽油 菜籽油是世界性的大宗油脂之一,是含芥酸的半干性油类,除低芥酸菜籽油外,其余品种菜籽制得的菜籽油均含有较高的芥酸,含量约占脂肪酸组成的26.3%~57%,高芥酸菜油营养结构不及低芥酸菜油,但特别适合于制造船舶润滑油和轮胎等工业用油。 由于制油过程中芥子甙在芥子酶作用下发生水解,菜籽毛油中均含有一定量的含硫化合物,从而影响食用。一般的粗炼工艺对硫化物的脱除率甚低,因此,从卫生观点出发,食用菜籽油应该进行精制。目前市售菜籽油的品级有粗炼油、精制油和冷餐油,其精炼工艺流程分列如下: 1.一级菜籽油精炼工艺流程 操作条件:过滤毛油含杂不大于0.2%,碱液浓度20-28Be’,超量碱为理论碱的

年产2万吨硫化碱建设项目建议书复习过程

瓜州县鹏举化工有限责任公司2万吨/年硫化 碱建设项目建议书 一、项目概况 1、项目名称:瓜州县鹏举化工有限责任公司2万吨/年硫化碱建设项目 2、建设单位:瓜州县鹏举化工有限责任公司 3、建设性质:民营独资 4、拟建地点:南岔镇公路收费站西北方向1公里处 5、建设内容与规模:硫化碱用途广泛,随着我国经济的快速发展,各行业对硫化碱的需求将持续增长,根据国内硫化碱生产的技术水平和生产现状,本项目拟确定以芒硝碳还原法生产工艺,建设2万吨/年规模的硫化碱生产装置。 6、建设年限:2年 7、概算投资:该项目计划总投资1900万元。 二、建设必要性分析 硫化碱是基本的无机化工产品,用途广泛,随着我国经济的快速发展和加入WTO后相关产品出口量的增加,硫化碱的市场需求量总体保持稳定增长的态势,市场前景良好。本项目依托甘肃省丰富的芒硝资源,采用国内先进的技术建设硫化碱生产装置,产品附加值较高,对促进甘肃省地方经济的发展,提升资源利用水平,具有积极的意义,项目建设符合产业发展方向与政策。 三、项目建设的条件

1、瓜州县位于312国道和315省道交汇处,距瓜州火车站41公里,交通非常便利。 2、瓜州县有大电网进入,用电十分方便。 3、瓜州县内饮用水质尚好,可通过管线或打井入厂区,特种设备使用水通过处理后方可使用。 4、厂址拟定在瓜州县南岔镇公路收费站西北方向1公里处,地势平,水、电进入很方便,有利于施工。 四、市场预测 随着我国化学工业及其它相关工业迅速发展,我国硫化碱消费量增长也较快。1999年我国硫化碱表观消费量达到49.54万吨,为历史最高水平,比1990年增长41%,9年间年均增长率为3.9%,2000年我国硫化碱表观消费量为32.41万吨,同比下降约34.6%。近年来,我国硫化碱消费量又呈现出快速增长的势头,市场前景看好。 五、产品方案及生产规模 1、产品方案 1.1硫化碱的物化性质 硫化碱又名硫化钠、臭碱、硫化二钠,分子式Na2S,分子量78.04(无水物质)。 硫化碱无水物为白色结晶,容易潮解,相对密度1.856(14℃),熔点1180℃,溶于水(10℃时溶解度为15.4g/100ml水,90℃时溶解度57.2g/100ml水),水溶液呈碱性,遇酸反应,产生硫化氢。微溶于醇,不溶于醚。溶于硫磺生成多硫化钠。工业品常含有结晶水,因含

硫化碱生产工艺流程

4.2.1.2 工艺流程说明 本项目对原装置部分使用价值较高的设备进行搬迁,生产工艺流程仍按照搬迁前的进行设计,以焦炭粉为还原剂,采用含铬芒硝和脱水芒硝为原料生产工业低铁硫化碱。生产工序主要包括备料上料工序、煅烧工序、化坯洗渣工序、沉淀洗泥工序、低铁硫化碱制液工序、蒸发工序、制片包装工序。 工艺流程如下: (1) 备料上料工序 由于十水芒硝不能满足硫化碱生产原料的要求,首先要对十水芒硝进行脱水处理。十水芒硝先进入化硝罐,加入热水进行溶解,溶解液体进入蒸发器进行蒸发,蒸发热源采用蒸发工序二次蒸汽,蒸发液送入结晶罐进行冷却结晶,然后再通过皮带输送机送至离心机进行离心分离,分离后的固体为无水芒硝,送至仓库备用,离心母液再返回至蒸发器中进行循环。 原料含铬芒硝和脱水芒硝分别存入专门的储仓,经过破碎后保证进入工艺系统的芒硝粒径不超过50mm,芒硝、焦炭粉分别通过斗式提升机、皮带计量机送至混料机,按一定比例混合,再通过混料皮带输送机送入储料仓,然后经送料螺旋机送入煅烧工序。 (2) 煅烧工序 物料在长转炉(Φ2500×45000)内进行还原反应所需的热量由燃料煤燃烧提供。燃料煤由煤库经皮带输送机送至雷蒙机研磨后,再用斗式提升机送到煤粉仓,由皮带输送机送到炉头煤粉斗,再经下端送料螺旋机送入送风管道内,由罗茨鼓风机吹入长转炉内燃烧。

来自储料仓的芒硝与焦炭粉先进入预热器,然后进入长转炉尾部,燃料煤粉从转炉头部进入,与原料成逆向流动,当炉内温度为1050-1150℃时,芒硝与焦炭粉发生如下化学反应: Na2SO4+2C+→Na2S+2CO2 生成硫化碱; Cr6++C→Cr3+ 毒性较大的Cr6+变为无毒稳定的Cr6+; 同时,在有水蒸汽存在条件下,发生副反应 Na2S+CO2+H2O→Na2CO3+H2S 生成碳酸钠和硫化氢。 物料在转炉内经预热、熔化、沸腾、成熟制得熔体黑灰,从炉头送入热熔罐中,进入化坯洗渣工序,进行热溶。 每台转炉配套一台特制预热器,高温转炉烟气先经过预热器对生料进行预热,然后经降尘室降尘,再用麻石水膜除尘器进行除尘,除尘后进入脱硫塔进行脱硫,达标后排空。回收粉尘经过酸洗后外运至园区指定地点,可用作制砖。 (3)化坯洗渣工序 由煅烧工序来的熔融态黑灰由炉头直接进入热溶罐进行热溶,在搅拌机的作用下,用沉淀洗泥工序的洗渣水(稀卤水)直接制取浓卤碱水,当溶液中Na2S浓度达到23%左右时,用浓卤液下泵将其打至沉淀罐,沉淀罐上层清液送至沉淀洗泥工序浓卤储槽。 沉淀泥渣经过一号铰刀输送至一洗罐,在一洗罐中进一步浸取泥渣中含有的Na2S,一洗罐洗净的渣泥经二号绞刀送至二洗罐,当渣泥中碱含量小于1%时,将渣泥进行酸洗后外运至园区指定地点。洗渣用水为沉淀洗泥工序送来的洗泥水(稀卤水),洗渣水送至热熔罐循环使用。

地沟油制备生物柴油

可行性研究报告 项目名称:高效低成本地沟油制生物柴油技术研发及产业化申请单位:宁波杰森绿色能源科技有限公司 单位地址:宁波奉化市松岙镇金山工业区 联系人:邬仕平 合作单位:浙江工业大学

目录 一、对项目相关领域国内外技术现状和发展趋势的掌握和理解 ..... - 3 - 1、项目背景简述.............................................................................. - 3 - 2、国内外技术现状及发展趋势...................................................... - 6 - 二、项目攻关预期目标及其具体考核指标 ......................................... - 8 - 1、预期目标...................................................................................... - 8 - 2、考核指标...................................................................................... - 8 - 三、项目拟采用的工艺技术路线、关键技术 ..................................... - 9 - 1、项目拟采用的工艺技术路线...................................................... - 9 - 2、工艺技术路线............................................................................ - 11 - 3、关键技术.................................................................................... - 11 - 四、项目的主要技术特点和创新点、知识产权分析 ....................... - 14 - 1、主要技术特点和创新点............................................................ - 14 - 2、可能取得知识产权分析............................................................ - 20 - 五、项目的组织管理及相关保障措施 ............................................... - 21 - 1、组织管理措施............................................................................ - 21 - 2、项目的保障措施........................................................................ - 22 - 六、项目完成年限及进度安排............................................................ - 22 - 七、项目经费预算说明........................................................................ - 23 - 1、对各科目支出的主要用途、与项目研究的相关性及测算方法、 测算依据进行详细分析说明。...................................................... - 23 - 2、课题的主要研究内容、任务分解,以及经费预算的需求、测算 方法、测算依据等相关说明.......................................................... - 29 - 八、申报单位综合经济实力................................................................ - 30 - 九、申报单位研究工作基础条件 ....................................................... - 31 - 1、申报单位情况............................................................................ - 31 - 2、合作单位情况............................................................................ - 32 - 十、项目承担人员水平........................................................................ - 35 -十一、项目的风险分析........................................................................ - 41 - 1、风险评价.................................................................................... - 41 - 2、效益分析.................................................................................... - 43 -

大豆油生产工艺

大豆油生产工艺 1.压榨法制油工艺流程 2.以花生果为例:清理→剥壳→破碎→轧胚→蒸炒→压榨→花生原油(毛油) 3.2.浸出法制油工艺流程 4.以大豆为例:清理→破碎→软化→轧胚→浸出→蒸发→汽提→大豆原油(毛油)5.3.油脂精炼工艺流程 6.原油(毛油)→过滤→水化(脱胶)→碱炼(脱酸)→脱色→脱臭→成品油 油脂精炼 毛油一般指从浸出或压榨工序由植物油料中提取的含有不宜食用(或工业用)的某些杂质的油脂。 毛油的主要成分是甘油三脂肪酸酯的混合物(俗称中性油)。除中性油外,毛油中还含有非甘油酯物质(统称杂质),其种类、性质、状态,大致可分为机械杂质、脂溶性杂质和水溶性杂质等三大类。 1﹒油脂精炼的目的和方法 (1)油脂精炼的目的油脂精炼,通常是指对毛油进行精制。毛油中杂质的存在,不仅影响油脂的食用价值和安全贮藏,而且给深加工带来困难,但精炼的目的,又非将油中所有的杂质都除去,而是将其中对食用、贮藏、工业生产等有害无益的杂质除去,如棉酚、蛋白质、磷脂、黏液、水分等都除去,而有益的"杂质",如生育酚等要保留。因此,根据不同的要求和用途,将不需要的和有害的杂质从油脂中除去,得到符合一定质量标准的成品油,就是油脂精炼的目的。 (2)油脂精炼的方法根据操作特点和所选用的原料,油脂精炼的方法可大致分为机械法、化学法和物理化学法三种。

上述精炼方法往往不能截然分开。有时采用一种方法,同时会产生另一种精炼作用。例如碱炼(中和游离脂肪酸)是典型的化学法,然而,中和反应生产的皂脚能吸附部分色素、粘液和蛋白质等,并一起从油中分离出来。由此可见,碱炼时伴有物理化学过程。 油脂精炼是比较复杂而具有灵活性的工作,必须根据油脂精炼的目的,兼顾技术条件和经济效益,选择合适的精炼方法。 2﹒机械方法 (1)沉淀 K沉淀原理沉淀是利用油和杂质的不同比重,借助重力的作用,达到自然分离二者的一种方法。 L沉淀设备沉淀设备有油池、油槽、油罐、油箱和油桶等容器。 M沉淀方法沉淀时,将毛油置于沉淀设备内,一般在20~30℃温度下静止,使之自然沉淀。由于很多杂质的颗粒较小,与油的比重差别不大。因此,杂质的自然沉淀速度很慢。另外,因油脂的粘度随着温度升高而降低,所以提高油的温度,可加快某些杂质的沉淀速度。但是,提高温度也会使磷脂等杂质在油中的溶解度增大而造成分离不完全,故应适可而止。 沉淀法的特点是设备简单,操作方便,但其所需的时间很长(有时要10多天),又因水和磷脂等胶体杂质不能完全除去,油脂易产生氧化、水解而增大酸值,影响油脂质量,不仅如此,它还不能满足大规模生产的要求,所以,这种纯粹的沉淀法,只适用于小规模的乡镇企业。 (2)过滤

生物柴油生产工艺

学院:化学与环境保护学院专业:化学工程与工艺 姓名:朱慧芳 学号:201031204011

新型藻类制生物柴油生产工艺 摘要:我国石油资源紧缺,研究开发生物柴油是当务之急。结合我国情况介绍了几种可用于生产生物柴油的原料,并针对不同的原料,提出了几种可供使用的生产工艺。用泔水油、地沟油和油厂下脚料等原料生产生物柴油工艺成熟、经济合算, 值得推广。为适应我国生物柴油的研究与生产,建议加快制定我国生物柴油的相关标准。 关键词:生物柴油;酯化;醇解;酯交换;脂肪酸;脂肪酸甲酯 一生物柴油概述 生物柴油 (Biodiesel),又称脂肪酸甲酯 (Fatty Acid Ester)是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类 (甲醇、乙醇) 经交酯化反应 (Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr. Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使

用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外生物柴油是一种可再生能源,也是一种降解性较高的能源。 二生产生物柴油背景技术市场分析 1生物柴油原料 由于各国的资源差异,生物柴油的原料差异较大,欧盟主要是菜籽油为主,美国主要是以大豆油为主。我国主要生物柴油主要以废弃油脂以及木本原料为主,并在价格合适的情况下考虑进口棕榈油。 2 生物柴油的优缺点 (1)生物柴油优势 与常规柴油相比,生物柴油下述具有无法比拟的性能。 1) 具有优良的环保特性。主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。 2) 具有较好的低温发动机启动性能。无添加剂冷滤点达-20℃。 3) 具有较好的润滑性能。使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。 4) 具有较好的安全性能。由于闪点高,生物柴油不属于危险品。因

硫化黑生产工艺

硫化黑生产工艺 硫化黑及其副产品大苏打生产工艺流程。 (一)硫化黑生产工艺 硫化黑生产工艺过程可分为多硫化钠制备、水解、硫化、提纯、烘干、配合及包装六个工序。 (1)多硫化钠制备 首先用天车将硫化钠(60%)投入到多硫化钠釜中,同时向反应釜中加水,配制成硫化钠溶液(确保硫化钠完全溶解),再加入99%硫磺,快速升温至90℃,然后缓慢加热到98-100℃,并在此温度下保温3小时,直到反应釜中硫磺全部溶解,即到达反应终点,得到多硫化钠溶液。 发生反应如下: 反应生成多硫化钠溶液,用多硫泵送至多硫化钠高位槽备用。 反应生成的废气(含硫化氢)经三级冷凝吸收和三级碱液吸收装置处理,形成硫化钠溶液,回用于多硫化钠制备。 (2)水解 首先原料罐区二硝基氯苯自流入提料箱,再用二硝基泵将二硝基氯苯打入高位槽内,计量后加入水解釜中。然后加入定量冷水,开动搅拌,夹套通蒸汽升温至70℃,开始滴加配制好的碱液(浓度0.36kg/L),发生水解反应,反应时间约3小时。 反应方程式如下: Na 2 S H 2O NaHS NaOH 2NaHS S n-1 Na 2S n H 2 S

Cl NO 2 NO 2 NO 2 NO 2 ONa H 2O NaCl 反应完后,将水解完成的二硝基酚钠,用蒸汽压送到硫化反应釜。 (3)硫化 硫化反应釜中首先加入二硝基酚钠,开动搅拌、夹套通汽升温至100℃时,关夹套汽,开始滴加配制好的多硫化钠溶液,保持反应温度为100-110℃,用1小时滴加完多硫化钠溶液,滴加完后开夹套通蒸汽,进行常压熬煮,保持反应釜内沸腾,每小时测量色液比重一次,当釜内色液比重达到1.14时,开始加入温水,之后静置8-11小时,染料中间体即可消失,反应釜内色液比重上升到 1.45左右,中间体消失后,上好人孔盖升温到120℃,保持120±1℃5小时(釜内压力为0.05-0.09MPa,夹套压力为0.1-0.15MPa),然后放气管阀门,放釜内汽,使温度降至110℃,准备打入精制釜使用。 硫化产生的含氨气和硫化氢的废气先经过三级冷凝水吸收装置,使得废气中的水蒸气充分冷凝,形成水膜用于吸收氨,由于氨气极易被水吸收,被冷凝下来的水吸收形成氨水。废气经过三级冷凝水吸收装置后,进入三级碱液吸收装置,吸收废气中的硫化氢,形成硫化钠溶液,回用于多硫化钠制备。 缩合反应式如下: ONa NH 2 2 NO 2 NO 2ONa H 2O Na 2S n Na 2S 2O 3

地沟油制备生物柴油的技术方法

同时使0号柴油的闪点提高,凝点和冷滤点降低,使储运过程更加安全,低温性能得到改善,有利于在更宽的温度范围内使用,可以满足使用要求。

地沟油酸催化法制备生物柴油是利用地沟油与甲醇或乙醇等低碳醇在酸性催化剂条件下进行酯交换反应,生成相应脂肪酸甲酯或乙酯。姚亚光等以酸作为催化剂,首先对地沟油进行除杂、脱胶、脱色、脱水的预处理,在酸催化条件下利用地沟油制备生物柴油,通过对地沟油与甲醇、乙醇酯化反应进行正交实验,实验确定了酸催化地沟油制备生物柴油的最佳反应条件为:甲醇温度为70 ℃,油醇摩尔比为1∶40,催化剂浓度为7%,反应时间为6小时,级差顺序依次是:油醇摩尔比、反应时间、催化剂浓度、温度;乙醇温度为80 ℃,油醇摩尔比为1∶30,催化剂浓度为5%,反应时间为6小时,级差顺序依次是:油醇摩尔比、温度、催化剂浓度、反应时间。通过该方法制备出性质优良的生物柴油。主要优点有:良好的可燃性(十六烷值)、蒸发性(馏程及馏出温度)、安全性(闪点),黏度和冷凝点温度,对发动机的腐蚀性(酸度和酸值),热值。该实验制备的生物柴油在很多方面具有普通柴油无法比拟的优越特性。 付严等以地沟油为原料,研究了地沟油和甲醇在三段式反应器中固定化脂肪酶上合成生物柴油。对地沟油的酸值、皂化值以及水含量进行了检测。考察了进料流速、溶剂、水含量对反应的影响。在40 ℃,正己烷作溶剂,添加水含量为地沟油质量的20%,每一段反应器中添加的甲醇与地沟油的摩尔比为1∶1时,生物柴油产率为94%。 陈英明等将地沟油通过过滤、脱胶、脱色、脱水等预处理后,与甲醇、正己烷、水等按一定比例通过搅拌器混合均匀,用蠕动泵输送到填充片状固定化酶的反应器顶部,滴入反应器内,恒温循环水浴。将三支反应器串联起来形成一个三级反应系统,每一级反应器进料的油醇摩尔比均为1∶1,每级反应的产物及时去除副产物甘油。将反应产物通过水洗、蒸馏等除去甲醇、水和正己烷,得到粗制生物柴油。以该方法制备的生物柴油,采用GC-2010型气相色谱仪和QP2010型色质联用仪对该生物柴油作定性分析,运用GC-MS方法确定生物柴油中脂肪酸甲酯、游离脂肪酸和甘油酯类的位置,由此确定GC色谱图中各种成分及其含量,并通过面积法和内标法测定生物柴油的转化率和产率,最终得到地沟油酶法制得的生物柴油转化率达到93.53%、产率为77.45%。 李为民等以地沟油为原料制备生物柴油,先通过预酯化把地沟油酸值降低到2±1 mg KOH/g,再进行酯交换制备生物柴油,通过正交试验得到地沟油预酯化反应的最佳条件是:浓硫酸用量为2%、甲醇用量为16%、反应 温度75 ℃、反应时间4 小时;地沟油酯交换反应的最优工艺条件是:甲醇20%、KOH用量1%、反应温度65 ℃、反应时间2 小时,且制备所得的生物柴油达到国家生物柴油标准要求。 张爱华等利用多元醇的预酯化技术对地沟油进行处理,以碱性离子液体1-甲基-3-丁基咪唑氢氧化物为催化剂制备生物柴油。考察了离子液体的用量、醇与油物质的量比、反应温度和反应时间对酯交换反应的影响。结果显示,以地沟油制备生物柴油的工艺条件为:醇与油物质的量比为8∶1、反应温度70 ℃、反应时间110 分钟、催化剂用量为原料油质量的3.0%。在此条件下,脂肪酸甲酯转化率为95.7%。实验考察了甘油加入量、反应温度、反应时间对预酯化反应的影响,同时考察了催化剂用量、醇油摩尔比、反应温度、反应时间对酯交换反应的影响。通过正交试验确定了地沟油预酯化—酯交换反应制备生物柴油的最佳反应条件。陈安等根据地沟油酸值高的特点,采用固酸、固碱两步非均相催化法开发生物柴油。此法避免了均相酸法耐酸设备价格高、反应时间长、酯化率低、有废水等缺点;克服了均相碱催化酯交换反应对高酸值地沟油易皂化、得率低、产生大量废水等弊病;同时,也弥补了两步均相法产生大量废水、影响环境的不足。通过试验确定了该方法的最佳实验条件为:反应时间2.5 小时,醇油摩尔比10∶1,固碱催化剂为油重的2.0%,助溶剂四氢呋喃为3%,反应温度71 ℃。此时酯化率在96%以上。 超临界酯交换反应即无催化的酯交换反应。当甲醇 地沟油超临界法生产生物柴油

生物柴油制备方法及国内外发展现状

生物柴油制备方法及国内外发展现状 摘要:通过查找文献,简要介绍了生物柴油的定义和优点,重点介绍它的制备方法,同时也对它在国内外的发展现状作了些介绍。 关键词:生物柴油;制备;现状; Abstract:This article gives a brief introduction to the definiton , advantages and development at home and abroad of the biodiesel,it also gives an emphasis introduction on prepation method . Keywords: biodiesel;prepation;actuality; 随着城市对能源需求的不断增加,石油资源的日益枯竭,全世界都将面临能源短缺的危机,而且石油燃烧对环境造成严重的污染,在很大程度上影响着人们的健康水平,于是对生物柴油的研究应用成为缓解日益恶化的能源和环境问题的焦点。 1生物柴油的定义及优点 1.1 定义 生物柴油是指以油料作物、野生油料植物、工程微藻等水生植物油脂以及动物油脂、餐饮废油等为原料,通过酯交换工艺制成的有机脂肪酸酯类燃料[1]。产业化生产中所说的生物柴油是指脂肪酸甲酯,是脂肪酸与甲醇发生酯化反应后的生成物。 基于美国生物柴油协会定义,生物柴油是指以植物、动物油脂等可再生生物资源生产的可用于压燃式发动机的清洁替代燃料。天然油脂由长链脂肪酸的甘油三酯组成,分子量大,接近700~1000,虽本身可以燃烧,但不能和普通柴油充分混合,直接用作柴油有很多缺陷,需要设计专门的柴油机。酯交换后得到脂肪酸甲酯,分子量降低至200-300,与柴油的分子量相近,性能也接近于柴油,可以按任意比例混合,也无需设计专门的柴油机。且具有接近于柴油的性能,是一种可以替代柴油使用的环境友好的环保燃料。 1.2 优点 生物柴油与石化柴油具有相近的性能,并具有显著的优越性[2,3]:(1)具有优良的环保特性。生物柴油中硫含量低,不含芳香烃,不含芳烃和硫(<10μg/g),燃烧尾气

籽棉与棉籽加工流程和成本分析

籽棉与棉籽加工流程和成本分析 皮棉作为一种战略物资资源,其流转过程是:棉农家中零散籽棉→籽棉收购企业→皮棉加工企业→棉纺织企业。在籽棉开始收购阶段,籽棉价格由棉农与籽棉收购企业供求关系决定。此时是籽棉价格决定当期皮棉价格走势。在籽棉大规模收购后,籽棉完成从棉农到皮棉加工企业的转移。此时籽棉收购加工成本应该是皮棉价格的支撑阻力线。籽棉收购完成后,此时皮棉价格由棉花企业和棉纺织企业供求关系决定。现在通过籽棉加工成本的分析来了解影响皮棉价格的基本因素。 籽棉经扎花(使棉纤维与棉籽分离的工艺)得到皮棉、不孕籽和棉籽。加工不孕籽可得到18-25mm长度的清弹棉,清弹棉可理解为长度等级较低的棉花。棉籽经三道剥绒后可得短绒和光籽,头道绒长度12-16mm,可纺低级纱;二道绒长度12mm以下,可纺人造丝;三道绒长度3mm以下,纤维素含量较高,可制成粘胶纤维。 如无特殊说明,短绒通常是指第一、二道混绒。籽经脱壳后得到棉仁与棉籽壳,后者木质素含量较高,种菇类或菌类效果好,也可做合成木材的填充物。棉仁经榨油后可得棉籽油与棉粕,故棉籽也是重要的油料。棉花及其副产品加工流程见图一。 棉花及其副产品加工流程图(略) 单位籽棉能生产皮棉的数量叫衣分率。内地棉的衣分率为33%

-35%,新疆棉为38%-40%。衣分是个很重要的指标。今年10月份以前,籽棉收购价较高,造成市场棉价坚挺的假象,但部分投资者没有注意到扎花厂对收购籽棉的衣分要求相当高,并以此降低皮棉销售成本,因此后期皮棉价格的下降空间较大。应出皮棉与实出皮棉的差占应出皮棉的比率称衣亏率。衣亏率太高皮棉损失较大,衣亏率太低则皮棉中短纤维含量较高。国家规定皮棉加工的标准衣亏率为2.5%-4%,如折算成占籽棉损耗则1、2级皮棉约为1%,3、4级皮棉约为1.5%。 不孕籽经加工可得到回收棉进而得到清弹棉。据了解,清弹棉产量约占皮棉产量的2%,目前市价在7000元/吨左右。有些加工厂虽无力加工清弹棉,但可出售不孕籽。由此每生产1吨皮棉可补贴成本不低于100元。 棉籽在扎花过程中会有1%的损耗。通常每公斤棉籽的出扎花厂价比到棉籽加工厂价要低至少4-6分钱,以作中间环节的损耗及利润。 经剥绒、脱壳和榨油等工艺后,1000公斤棉籽约可得到90公斤混绒,150公斤棉籽油(内地棉籽出油率10%-14%,新疆棉籽出油率18%),棉籽壳280公斤,棉粕420公斤。一吨棉籽加工费通常为170元。具体成本核算可见表一。

生物柴油工艺流程图CAD图

一、概述 1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。美国能源部研究得出的结论是:使用B20(生

物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。 1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。生物柴油具有许多优点:*原料来源广泛,可利用各种动、植物油作原料。*生物柴油作为柴油代用品使用时柴油机不需作任何改动或更换零件。*可得到经济价值较高的副产品甘油(Glycerine) 以供化工品、医药品等市场。*相对于石化柴油,生物柴油贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆) ;*可再生性(一年生的能源作物可连年种植收获,多年生的木本植物可一年种维持数十年的经济利用期,效益高;*可在自然状况下实现生物降解,减少对人类生存环境的污染。 生物柴油突出的环保性和可再生性,引起了世界发达国家尤其是资源贫乏国家的高度重视。德国已将生物柴油应用在奔驰、宝马、大众、奥迪等轿车上,全国现有900多家生物柴油加油站。美国、印度等其他发达国家和发展中国家也在积极发展生物柴油产业。目前,世界生物柴油年产量已超过350万吨,预计2010年可达3000万吨以上。1.4我国生物柴油发展的现状在生物柴油方面,我国的技术研究并不落后于欧美等发达国家,从各种公开的文献资料上,涉及生物柴油的文献80余篇,涉及技术研究的文献20余篇,内容包括了生物

地沟油生产生物柴油科研报告

科研实践:利用地沟油生产生物柴油 的研究进展 姓 名: 廖伟霖 学 号: 210892285 学 院: 福州大学至诚学院 专 业: 机械设计制造及其自动化 年 级: 08级(2)班 指导教师: 沈英

摘要: 生物柴油是一种原料广泛的可再生性燃料资源,目前世界各国正掀起开发利用生物柴油资源的热潮,与矿物柴油相比,它具有低含硫和低排放污染,可再生,优良的生物可降解性等特点,有广阔的发展前景,而原料问题是制约生物柴油产业发展的瓶颈。地沟油来源广泛,廉价易得,是制备生物柴油的良好原料。利用地沟油制备生物柴油不但可以缓解能源危机、环境污染等社会问题,还提供了废弃食用油脂的合理化利用方式、防止废弃食用油脂再次返回餐桌。文章综述了我国地沟油的现状,综述了国内外利用地沟油制备生物柴油的主要技术方法及其进展情况,并展望了地沟油生产生物柴油的发展前景 关键词:地沟油生物柴油制备 1、研究意义 随着人们对不可再生能源日益减少及环境污染的日趋关注,开发新型环境友好的可再生燃料已成为当今科学研究的热点课题之一。将废弃油脂转化为柴油的代用燃料有着可再生及可生物降解等优点,不但可以缓解能源危机、环境污染等社会问题,还提供了废弃食用油脂的合理化利用方式、防止废弃食用油脂再次返回餐桌。 2、研究目的 综述了国内利用地沟油制备生物柴油的主要技术方法及其进展情况,并展望了地沟油生产生物柴油的发展前景 3、研究内容 3.1引言 地沟油是指宾馆、饭店附近的地沟里,污水上方的灰白色油腻漂浮物,捞取收集后经过简单加工,油呈黑褐色,不透明,有强烈的酸腐恶臭气味。随着第三产业的迅速发展,我国的餐饮业规模日益扩大,餐饮废水中排出的地沟油增多,不仅堵塞管网、严重污染城市环境,甚至孳生出了地沟油的非法回收提炼,有毒“地沟油”回流市场用于食品加工等现象,由于地沟油与地下水泥壁、地下生活污水、废旧铁桶、果蔬腐败物、生活垃圾(粪便)、多种细菌毒素、寄生虫及虫卵等接触,所受污染严重,同时由于在聚集过程中会逐渐发生水解、氧化、缩合、聚合、酸度增高、色泽变深等一系列变化,伴随这些变化会随之产生游离脂肪酸、脂肪酸的二聚体和多聚体、过氧化物、多环芳烃类物质、低分子分解产物等对人

生物柴油工艺流程简述

本项目所采用的是吸收发展日本HAVE技术及与公司技术研发合作方上海华东理工大学共同研制的脂肪酸甲脂提纯的分子蒸馏技术和自有的精制技术相结合,自主开发创新,独具特色的生产工艺和设备。是在国内外同行业中具有先进性的生物柴油生产新工艺。 叙述如下: STEP-1前处理 原料油在,多数场合时是含有一定的水分和微生物的,在加热100℃以上的情况下.甘油三酯(三酸甘油酯)的一部分加水分解,变为游离脂肪酸。因此,一般的原料油尤其是废食用油里含有2~3%的游离脂肪酸,饱和溶解度的水以及残渣的固定成分。这些杂质,特别是在由碱性触媒法的酯化交换过程中,使触媒活性下降,产生副反应生成使燃料特性变坏的副生物,所以,在酯交换反应前,有去除的必要.D/OIL 制造过程中,配合高速分离,真空脱水,脱酸等,几乎可以全部除去废食用油中的杂质。饱和脂肪酸采用烙合法断链转换成不饱和脂肪酸。 STEP-2 甲醇触媒的溶解 水分等杂质含有量在所定值以下的甲醇和触媒混合后,用来调制甲醇溶液.此过程中,特别要注意的是,由于溶解热的突然沸腾,有必要控制溶解速度和溶液的温度。另有,KOH触媒由于吸水性较高,所以,在储藏和使用阶段尽量防止吸收水分、一旦,吸收了大量的水分时, KOH就会变得难于溶解,将会影响到下一个工序。

STEP-3 酯交换反应 将经过前处理的原料油和触媒,甲醇混合,在65度左右时进行酯交换反应(Ⅲ--4)。在此工序中,为了达到完全反应的目的(tri-di-mono-甘油酯的转化率在99%以上),有必要控制甲醇/原料油比,触媒/原料油比,搅拌速度,反应时间等的参数。。通常,甲醇/原料油比和触媒/原料比越大,反应速度越快,投入化学反应理论以上的过剩甲醇时,不只是D/OIL的制造原价升高, D/OIL中的残存甲醇浓度也升高,燃料特性反而恶化。还有,此工程,如果原料油中水分和游离脂肪酸有残留的情况下,会引起如下图所示的副反应。过量甲醇通过闪蒸分离后经精馏回用。 STEP-4 甘油的分离 反应结束后,从酯交换反应的生成物甘油和甲酯的混合物中分离出甘油. 甘油的分离,虽然可以利用甘油(1.20g/cm3) 和甲酯(0.88g/cm3)的比重差,使之自然沉降,不仅分离速度很慢,也不能使甘油完全分离.所以, .D/OIL的制造过程是通过高效率的高速离心分离机来进行分离的. STEP-5 甲酯的精制 甲酯的精制是通过蛋白页岩吸附剂,去除生物柴油中的碱性氮、和黄曲霉素。

相关文档