文档库 最新最全的文档下载
当前位置:文档库 › 凸轮机构

凸轮机构

凸轮机构
凸轮机构

一、单项选择题

1 与连杆机构相比,凸轮机构最大的缺点是()。

A.惯性力难以平衡B.点、线接触,易磨损C.设计较为复杂D.不能实现间歇运动

2 与其他机构相比,凸轮机构最大的优点是()。

A.可实现各种预期的运动规律B.便于润滑C.制造方便,易获得较高的精度D.从动件的行程可较大

3 ()盘形凸轮机构的压力角恒等于常数。

A.摆动尖顶推杆B.直动滚子推杆C.摆动平底推杆D.摆动滚子推杆4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推

杆相比,两者在推程段最大压力角的关系为()关系。

A.偏置比对心大B.对心比偏置大C.一样大D.不一定

5 下述几种运动规律中,()既不会产生柔性冲击也不会产生刚性冲击,可用于高速合。A.等速运动规律B.摆线运动规律(正弦加速度运动规律)

C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律)

6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用()措施来解

决。

A.增大基圆半径B.改用滚子推杆

C.改变凸轮转向D.改为偏置直动尖顶推杆

7.()从动杆的行程不能太大。

A. 盘形凸轮机构

B. 移动凸轮机构

C. 圆柱凸轮机构

8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。

A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆

9.()可使从动杆得到较大的行程。

A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构

10.()的摩擦阻力较小,传力能力大。

A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆

11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。

A. 尖顶式从动杆

B.滚子式从动杆

C. 平底式从动杆

12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线13.凸轮轮廓曲线上各点的压力角是()。A. 不变的 B. 变化的

14.凸轮压力角的大小与基圆半径的关系是()。

A 基圆半径越小,压力角偏小 B. 基圆半径越大,压力角偏小

15.压力角增大时,对()。 A. 凸轮机构的工作不利 B. 凸轮机构的工作有利 C. 凸轮机构的工作无影响

16.使用()的凸轮机构,凸轮的理论轮廓曲线与实际轮廓曲线是不相等的。 A 尖顶

式从动杆 B. 滚子式从动杆 C 平底式从动杆

17. 压力角是指凸轮轮廓曲线上某点的()。

A. 切线与从动杆速度方向之间的夹角

B. 速度方向与从动杆速度方向之间的夹角

C. 法线方向与从动杆速度方向之间的夹角

18.为了保证从动杆的工作顺利,凸轮轮廓曲线推程段的压力角应取()为好。

A. 大些

B. 小些

19.为保证滚子从动杆凸轮机构从动杆的运动规律不“失真”,滚子半径应()。

A. 小于凸轮理论轮廓曲线外凸部份的最小曲率半径

B. 小于凸轮实际轮廓曲线外凸部份的最小曲率半径

C. 大于凸轮理论轮廓曲线外凸部份的最小曲率半径

20.从动杆的运动速度规律,与从动杆的运动规律是()。

A. 同一个概念

B. 两个不同的概念

21.若使凸轮轮廓曲线在任何位置都不变尖,也不变成叉形,则滚子半径必须()理论轮廓外凸部分的最小曲率半径。

A. 大于

B. 小于

C. 等于

22.凸轮轮廓曲线没有凹槽,要求机构传力很大,效率要高,从动杆应选()。

A. 尖顶式

B. 滚子式

C. 平底式

二、填空题

1 在凸轮机构几种常用的推杆运动规律中,只宜用于低速;和

不宜用于高速;而和都可在高速下应用。

2 滚子推杆盘形凸轮的基圆半径是从到的最短距离。

3 平底垂直于导路的直动推杆盘形凸轮机构中,其压力角等于。

4 在凸轮机构推杆的四种常用运动规律中,有刚性冲击;、

运动规律有柔性冲击;运动规律无冲击。

5 凸轮机构推杆运动规律的选择原则为:①,②,

③。

6 设计滚子推杆盘形凸轮机构时,若发现工作廓线有变尖现象,则在尺寸参数改变上应

采用的措施是。

7 在设计直动滚子推杆盘形凸轮机构的工作廓线时发现压力角超过了许用值,且廓线出现变尖现象,此时应采用的措施是。

8 设计凸轮机构时,若量得其中某点的压力角超过许用值,可以用

使压力角减小。

9.凸轮机构能使从动件按照,实现各种复杂的运动。

10.凸轮机构是副机构。

11.凸轮是一个能从动件运动规律,而具有或

凹槽的构件。

12.凸轮机构主要由,和三个基本构件所组成。

13.当凸轮转动时,借助于本身的曲线轮廓,从动件作相应的运动。14.凸轮的轮廓曲线可以按任意选择,因此可使从动件得到的种运动规律。

15.盘形凸轮是一个具有半径的盘形构件,当它绕固定轴转动时,推动从动杆在凸轮轴的平面内运动。

16.盘形凸轮从动杆的不能太大,否则将使凸轮的尺寸变化过大。

17.圆柱凸轮是个在圆柱开有曲线凹槽或是在圆柱上作出曲线轮廓的构件。

18.凸轮机构从动杆的形式有从动杆,从动杆和从动杆。

19.尖顶式从动杆与凸轮曲线成尖顶接触,因此对较复杂的轮廓也能得到运动规律。

20.凸轮机构从动杆的运动规律,是由凸轮决定的。

21.以凸轮的半径所做的圆,称为基圆。

22.在凸轮机构中,从动杆的称为行程。

23.凸轮轮廓线上某点的方向与从动杆方向之间的夹角,叫压力角。

24.如果把从动杆的量与凸轮的之间的关系用曲线表示,则此曲线就称为从动杆的位移曲线。

25.当凸轮作等速转动时,从动杆上升或下降的速度为一,这种运动规律称为运动规律。

26.将从动杆运动的整个行程分为两段,前半段作运动,后半段作运动,这种运动规律就称为运动规律。

27.凸轮机构从动杆位移曲线的横坐标轴表示凸轮的,纵坐标轴表示从动杆的量。

28.画凸轮轮廓曲线时,首先是沿凸轮转动的方向,从某点开始,按照位移曲线上划分的在基圆上作等分角线。

29.凸轮机构的从动件都是按照运动规律而运动的。

30.凸轮的轮廓曲线都是按完成一定的而进行选择的。

31.当盘形凸轮只有转动,而没有变化时,从动杆的运动是停歇。

32.凸轮机构可用在作间歇运动的场合,从动件的运动时间与停歇时间的,以及停歇都可以任意拟定。

33.凸轮机构可以起动,而且准确可靠。

34.圆柱凸轮可使从动杆得到的行程。

35.尖顶式从动杆多用于传力、速度较以及传动灵敏的场合。

36.滚子从动杆与凸轮接触时摩擦阻力,但从动杆的结构复杂,多用于传力要求的场合。

37.平底式从动杆与凸轮的接触面较大,易于形成油膜,所以较好,较小,常用于没有曲线的凸轮上作高速传动。

38.滚子式从动杆的滚子选用得过大,将会使运动规律“失真”。

39.等加速等减速运动凸轮机构,能避免传动中突然的,消除强烈的提高机构的工作平稳性,因此多用于凸轮转速和从动杆质量的场合。

40.凸轮在工作中作用到从动杆上的力,可以分解成:与从动杆运动速度方向的分力,它是推动从动杆运动的分力;与从动杆运动速度方向的分力,它会使从动杆与支架间的正压力增大,是分力。

41.凸轮的基圆半径越小时,则凸轮的压力角,有效推力就,有害分力。

42.凸轮的基圆半径不能过小,否则将使凸轮轮廓曲线的曲率半径,易使从动杆的“失真”。

43.凸轮基圆半径只能在保证轮廓的最大压力角不越过时,才能考虑。

44.凸轮轮廓曲线上的向径公差和表面粗糙度,是根据凸轮的而决定的。

45.凸轮机构主要由、和三部分组成。

46.等速运动规律会引起冲击,因而这种运动规律只适用于速载的凸轮机构。

47.由于尖顶从动件能力低,不,因而在实际中常采用从动件和从动件。

48.以凸轮轮廓最小向径为半径所作的圆称为圆。

49.若已知位移的比例尺为 3 /mm,则图纸上量出的20mm相当于凸轮转角的值为.

50. 若已知位移的比例尺为2 mm /mm,则图纸上量出的20mm相当于从动杆位移的值为.

51.凸轮是一个能从动杆运动规律具有轮廓的构件;通常是作

并转动。

52. 基圆是以凸轮半径所作的圆,基圆半径越小则压力角,有效推力从而使工作条件变坏。

53.从动杆的形式一般有,和等。

54.从动杆常用运动速度规律,有规律和运动规律。

三、问答题

1.什么样的机构是凸轮机构?

2.凸轮机构的功用是什么?

3.什么样的构件叫做凸轮?

4.凸轮的种类有哪些?都适合什么工作场合?

5.凸轮机构的从动件有几种?各适合什么工作条件?

6.凸轮轮廊曲线是根据什么确定的?

7.从动杆的运动速度规律有几种?各有什么特点?

8.凸轮的压力角对凸轮机构的工作有什么影响?9.什么叫基圆?基圆与压力角有什么关系?

10.从动杆的等速位移曲线是什么形状?等速运动规律有什么缺点?11.凸轮机构的从动杆为什么能得预定的要求?

12.在什么情况下凸轮机构从动杆才能得到运动的停歇?

13.基圆在凸轮结构中有何意义?

14.滚子式从动杆的滚子半径的大小,对凸轮工作有什么影响?15.某一凸轮机构的滚子损坏后,是否可任取一滚子来替代?为什么?16.凸轮压力角太大有什么不好?

17.凸轮压力角越小越好吗?为什么?

18设计直动推杆盘形凸轮机构时,在推杆运动规律不变的条件下,需减小推程的最大压力角,可采用哪两种措施?

19 何谓凸轮机构的压力角?它在哪一个轮廓上度量?压力角变化对凸轮机构的工作有何影响?与凸轮尺寸有何关系?

20 题17图中两图均为工作廓线为偏心圆的凸轮机构,试分别指出它们理论廓线是圆还是非圆,运动规律是否相同?

21 滚子推杆盘形凸轮的理论廓线与实际廓线是否相似?是否为等距曲线?

22试问将同一轮廓曲线的凸轮与不同型式的推杆配合使用,各种推杆的运动规律是否一样?若推杆的运动规律相同,使用不同型式的推杆设计的凸轮廓线又是否一样?

23 若凸轮是以顺时针转动,采用偏置直动推杆时,推杆的导路线应偏于凸轮回转中心的哪一侧较合理?为什么?

24 已知一摆动滚子推杆盘形凸轮机构,因滚子损坏,现更换了一个外径与原滚子不同的新滚子。试问更换滚子后推杆的运动规律和推杆的最大摆角是否发生变化?为什么?

题17图

6

25 为什么平底推杆盘形凸轮机构的凸轮廓线一定要外凸?滚子推杆盘形凸轮机构的凸轮廓线却允许内凹,而且内凹段一定不会出现运动失真?

26 在一个直动平底推杆盘形凸轮机构中,原设计的推杆导路是对心的,但使用时却改为偏心安置。试问此时推杆的运动规律是否改变?若按偏置情况设计凸轮廓线,试问它与按对心情况设计的凸轮廓线是否一样?为什么?

27 两个不同轮廓曲线的凸轮,能否使推杆实现同样的运动规律?为什么?

28 滚子半径的选择与理论廓线的曲率半径有何关系?图解设计时,如出现实际廓线变尖或相交,可以采取哪些方法来解决?

29 如摆动尖顶推杆的推程和回程运动线图完全对称,试问其推程和回程的凸轮轮廓是否也对称?为什么?

30 力封闭和几何封闭凸轮机构许用压力角的确定是否一样?为什么?

四、判断题

1.一只凸轮只有一种预定的运动规律。()

2.凸轮在机构中经常是主动件。()

3.盘形凸轮的轮廓曲线形状取决于凸轮半径的变化。()

4.盘形凸轮机构从动杆的运动规律,主要决定于凸轮半径的变化规律。()

5.凸轮机构的从动杆,都是在垂直于凸轮轴的平面内运动。()

6.从动杆的运动规律,就是凸轮机构的工作目的。()

7.计算从动杆行程量的基础是基圆。()

8.凸轮曲线轮廓的半径差,与从动杆移动的距离是对应相等的。()

9.能使从动杆按照工作要求,实现复杂运动的机构都是凸轮机构。()

10.凸轮转速的高低,影响从动杆的运动规律。()

11.从动件的运动规律是受凸轮轮廓曲线控制的,所以,凸轮的实际工作要求,一定要按凸轮现有轮廓曲线制定。()

12.凸轮轮廓曲线是根据实际要求而拟定的。()

13.盘形凸轮的行程是与基圆半径成正比的,基圆半径越大,行程也越大。()14.盘形凸轮的压力角与行程成正比,行程越大,压力角也越大。()

15.盘形凸轮的结构尺寸与基圆半径成正比。()

16.当基圆半径一定时,盘形凸轮的压力角与行程的大小成正比。()

17.当凸轮的行程大小一定时,盘形凸轮的压力角与基圆半径成正比。()

18.在圆柱面上开有曲线凹槽轮廓的圆柱凸轮,它只适用于滚子式从动杆。()19.由于盘形凸轮制造方便,所以最适用于较大行程的传动。()

20.适合尖顶式从动杆工作的轮廓曲线,也必然适合于滚子式从动杆工作。()21.凸轮轮廓线上某点的压力角,是该点的法线方向与速度方向之间的夹角。()22.凸轮轮廓曲线上各点的压力角是不变的。()

7

23.使用滚子从动杆的凸轮机构,滚子半径的大小,对机构的预定运动规律是有影响的。()

24.选择滚子从动杆滚子的半径时,必须使滚子半径小于凸轮实际轮廓曲线外凸部分的最小曲率半径。()25.压力角的大小影响从动杆的运动规律。()26.压力角的大小影响从动杆的正常工作和凸轮机构的传动效率。()

27.滚子从动杆滚子半径选用得过小,将会使运动规律“失真”。()

28.由于凸轮的轮廓曲线可以随意确定,所以从动杆的运动规律可以任意拟定。()29.从动杆的运动规律和凸轮轮廓曲线的拟定,都是以完成一定的工作要求为目的的。()

30.从动杆单一的运动规律,可以由不同的运动速度规律来完成的。()

31.同一条凸轮轮廓曲线,对三种不同形式的从动杆都适用。()

32.凸轮机构也能很好的完成从动件的间歇运动。()

33.适用于尖顶式从动杆工作的凸轮轮廓曲线,也适用于平底式从动杆工作。()34.滚子从动杆凸轮机构,凸轮的实际轮廓曲线和理论轮廓曲线是一条。()

35.盘形凸轮的理论轮廓曲线与实际轮廓曲线是否相同,取决于所采用的从动杆的形式。()

36.凸轮的基圆尺寸越大,推动从动杆的有效分力也越大。()

37.采用尖顶式从动杆的凸轮,是没有理论轮廓曲线的。()

38.当凸轮的压力角增大到临界值时,不论从动杆是什么形式的运动,都会出现自锁。()

39.在确定凸轮基圆半径的尺寸时,首先应考虑凸轮的外形尺寸不能过大,而后再考虑对压力角的影响。()

40.凸轮机构的主要功能是将凸轮的连续运动(移动或转动)转变成从动件的按一定规律的往复移动或摆动。()

41.等加速等减速运动规律会引起柔性冲击,因而这种运动规律适用于中速、轻载的凸42.凸轮机构易于实现各种预定的运动,且结构简单、紧凑,便于设计。()

43.对于同一种从动件运动规律,使用不同类型的从动件所设计出来的凸轮的实际轮廓是相同的。()

44.从动件的位移线图是凸轮轮廓设计的依据。()

45.凸轮的实际轮廓是根据相应的理论轮廓绘制的。()

46.为了保证凸轮机构传动灵活,必须控制压力角,为此规定了压力角的许用值。()47.对凸轮机构而言,减小压力角,就要增大基圆半径,因此,改善机构受力和减小凸轮的尺寸是相互矛盾的。()

48.为了避免出现尖点和运动失真现象,必须对所设计的凸轮的理论轮廓曲线的最小曲率半径进行校验。()

49.对于相同的理论轮廓,从动件滚子半径取不同的值,所作出的实际轮廓是相同的。()

50.压力角不仅影响凸轮机构的传动是否灵活,而且还影响凸轮机构的尺寸是否紧凑。()

51.以尖顶从动件作出的凸轮轮廓为理论轮廓。()

52.尖顶从动件凸轮的理论轮廓和实际轮廓相同。()

凸轮机构作业习题讲解学习

凸轮机构作业习题

9.设计凸轮廓线时,若减小凸轮的基圆半径,则凸轮压力角将( A )。 A.增大 B.减小 C.不变 D.不确定 10.直动平底从动件盘形凸轮机构的压力角(B)。 11.A.永远等于0° B.等于常数 C.随凸轮转角而变化 D.肯定大于0°二.填充题(每空2分,共20分) 1.理论轮廓曲线相同而实际轮廓曲线不同的两个对心移动滚子从动件盘形凸轮 机构,其从动件的运动规律是相同的。(选填相同/不同)2.设计某移动从动件盘形凸轮机构,采用平底从动件可以保证凸轮 机构在运动过程中压力角保持不变。 3.图示凸轮机构的名称是偏置移动从动件盘型凸轮机构。 (填充题3图)(填充题4图) 4.在图示凸轮机构中,盘形凸轮的一段轮廓线为渐开线,且凸轮基圆与渐开线 基圆半径相同(半径r0=10 mm),偏置距离e=10 mm,当从动件尖端与渐开线轮廓段在图示位置接触时,其压力角α= 0 。 5.在凸轮机构中,当从动件选择等速运动规律时,会产生刚性冲击。 6.当凸轮机构的压力角过大时,机构易出现锁死现象。 7.在设计滚子移动从动件盘形凸轮机构时,若发生凸轮实际轮廓变尖现象,为 克服变尖现象,可采取的措施有__增大基圆半径___或____减小滚子半径___。 8.用作图法绘制凸轮廓线时,常采用的方法为有_____图解法__________。 9.凸轮机构中常用弹簧来保持凸轮和从动件紧密接触,弹簧在机构运动分析中 不是一个构件。(选填是/不是) 三、(本题10分)在图示偏置滚子移动从动件盘形凸轮机构中,在图中作出:(1)图示位置时推杆的压力角和位移;(2)凸轮从图示位置转过90°后,推杆的压力角和位移;(3)推杆的行程和所在位置的压力角。

凸轮机构图解法

滚子从动件凸轮机构设计 当根据使用场合和工作要求选定了凸轮机构的类型和从动件的运动规律后,即可根据选定的基圆半径着手进行凸轮轮廓曲线的设计。 凸轮廓线的设计方法有图解法和解析法,其依据的基本原理相同。 凸轮机构工作时,凸轮和从动件都在运动,为了在图纸上绘制出凸轮的轮廓曲线,可采用反转法。下面以图示的对心尖端移动从动件盘形凸轮机构为例来说明其原理。 从图中可以看出: 凸轮转动时,凸轮机构的真实运动情况: 凸轮以等角速度ω绕轴O 逆时针转动,推动从动件在导路中上、下往复移动。 当从动件处于最低位置时,凸轮轮廓曲线与从动件在A点接触,当凸轮转过φ1角时,凸轮的向径OA 将转到OA′的位置上,而凸轮轮廓将转到图中兰色虚线所示的位置。这时从动件尖端从最低位置A 上升到B′,上升的距离s1=AB′。 采用反转法,凸轮机构的运动情况: 现在设想凸轮固定不动,而让从动件连同导路一起绕O点以角速度(-ω)转过φ1角,此时从动件将一方面随导路一起以角速度(-ω)转动,同时又在导路中作相对移动,运动到图中粉红色虚线所示的位置。此时从动件向上移动的距离与前相同。此时从动件尖端所占据的位置B 一定是凸轮轮廓曲线上的一点。若继续反转从动件,可得凸轮轮廓曲线上的其它点。 由于这种方法是假定凸轮固定不动而使从动件连同导路一起反转,故称反转法(或运动倒置法)。 凸轮机构的形式多种多样,反转法原理适用于各种凸轮轮廓曲线的设计。 一、直动从动件盘形凸轮廓线的设计 (1)尖端从动件 以一偏置移动尖端从动件盘形凸轮机构为例。设已知凸轮的基圆半径为rb,从动件轴线偏于凸轮轴心的左侧,偏距为e,凸轮以等角速度ω顺时针方向转动,从动件的位移曲线如图(b)所示,试设计凸轮的轮廓曲线。 依据反转法原理,具体设计步骤如下: 1)选取适当的比例尺,作出从动件的位移线图。将位移曲线的横坐标分成若干等份,得分点1,2, (12) 2)选取同样的比例尺,以O 为圆心,rb为半径作基圆,并根据从动件的偏置方向画出从动件的起始位置线,该位置线与基圆的交点B0,便是从动件尖端的初始位置。 3)以O 为圆心、OK=e 为半径作偏距圆,该圆与从动件的起始位置线切于K点。 4)自K点开始,沿(-ω)方向将偏距圆分成与图(b)横坐标对应的区间和等份,得若干个分点。过各分点作偏距圆的切射线,这些线代表从动件在反转过程中从动件占据的位置线。它们与基圆的交点分别为C1,C2,…,C11。 5)在上述切射线上,从基圆起向外截取线段,使其分别等于图(b)中相应的坐标,即C1B1=11',C2B2=22', …,得点B1,B2,…,B11,这些点即代表反转过程中从动件尖端依次占据的位置。 6)将点B0,B1,B2,…连成光滑的曲线,即得所求的凸轮轮廓曲线。

(完整版)凸轮机构教案

凸轮机构 4.1 凸轮机构的类型及应用 4.1.1 凸轮机构的组成和应用 组成:由凸轮、从动件和机架三部分组成 特点: 1)只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。2)结构简单、紧凑。 3)凸轮机构是高副机构,易于磨损。 4)凸轮轮廓加工比较困难。 应用:只适用于传递动力不大的场合。 应用实例:内燃机配气机构绕线机的凸轮机构凸轮自动送料机构 结论:从动杆的运动规律取决于凸轮轮廓曲线或凹槽曲线的形状。 二、凸轮机构的分类 (一)按凸轮的形状分 1.盘形凸轮(盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转)

尖顶移动从动杆盘形凸轮机构尖顶摆动从动杆盘形凸轮机构滚子移动从动杆盘形凸轮机构滚子摆动从动杆盘形凸轮机构平底移动从动杆盘形凸轮机构平底摆动从动杆盘形凸轮机构特点:结构简单,但是从动件行程不能太大,否则凸轮运转沉重。 2.移动凸轮(移动凸轮可看作是转轴在无穷 远处的盘形凸轮的一部分,它 作往复直线移动。) 特点:凸轮和从动件都可作往复移动。 3. 圆柱凸轮(圆柱凸轮是一个在圆 柱面上开有曲线凹槽,或是在圆柱端 面上作出曲线轮廓的构件,它可看作 是将移动凸轮卷于圆柱体上形成的。) 特点:从动件可获得较大的行程。 (二)按从动杆的端部型式分 1.尖顶从动件凸轮机构 特点: (1)传动灵敏。 (2)从动杆的构造最简单,但易磨损。 应用:只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2.滚子从动件凸轮机构 特点:磨损较小,可用来传递较大的动力,但结构复杂。 应用:常用于速度不高、载荷较大的场合。 3.平底从动件凸轮机构

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

第九章凸轮机构及其设计

第九章凸轮机构及其设计 第一节凸轮机构的应用、特点及分类 1.凸轮机构的应用 在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。 例1内燃机的配气机构 当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。 例2自动机床的进刀机构 当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。 2.凸轮机构及其特点 (1)凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构的特点

1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。 2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 3.凸轮机构的分类 凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。 (1)按凸轮的形状分 1)盘形凸轮(移动凸轮) 2)圆柱凸轮 盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。移动 凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作 出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种 空间凸轮机构。盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。 (2)按推杆的形状分 1)尖顶推杆。这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2)滚子推杆。滚子推杆由于滚子与凸轮轮廓之间为滚动摩擦,所以磨损较小,故可用来传递较大的动力,因而应用较广。

空间凸轮机构在汽车开关的应用

申请上海同济大学工程硕士学位论文 空间凸轮机构在汽车开关的应用 院系:机械与动力工程学院 工程领域:车辆工程 上海同济大学汽车学院 2013年8月

School of Mechanical Engineering Shanghai Jiaotong University Shanghai,P.R.China June, 2013

学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其它个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日

学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权上海交通大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

空间凸轮机构在汽车线控换档开关的应用 摘要 碎着汽车电子技术的飞速发展,汽车上的电子装置越来越多。汽车的电子化、智能化、网络化也逐渐成为现代汽车发展的重要标志。今天,汽车电子技术已经成为汽车发展的技术支撑和汽车产品竞争力的关键。随着世界汽车工业尤其是汽车电子工业的飞速发展,在航空领域相当成熟的线控操纵技术也逐渐的在汽车领域得到了应用。以SBW(线控排挡)技术为代表的一系列X-By-Wire 技术正在成为各大OEM 角逐的竞技场。同时,伴随着节能减排、电动车、混合动力车等等环保节能理念的深入人心以及各大OEM 在这些领域的巨量投资,作为新能源汽车配套的线控技术,必然会迎来一个大发展的时期。SBW 是通过总线技术将换挡信号传送至执行机构同时接受执行反馈的一种换挡技术。 而控换档就是以机电系统代替传统的机械为连接换档杆和变速箱的传输控制信号。驻车(P),倒车档(R),空档(N)和前进档(D)之间的转换通过电子信号控制完成。线控换档系统由换挡选择模块、换档电控单元、换挡执行模块、停车控制ECU、停车执行机构和档位指示灯等组成。在该系统中,驾驶者通过换档杆的传感器将换档信号传递给电控单元,电控单元处理信号后将指令发给换档电机,实现前进档、倒档和空档的切换。其停车控制ECU会根据换挡选择模块的换挡指令,控制停车执行机构。

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

凸轮机构 (教案1)教材

凸轮机构 凸轮机构是机械中的一种常用机构,在自动化、半自动化机械中应用较为广泛。6.1凸轮机构的特点、应用和分类 6.1.1特点 凸轮机构是由凸轮1、从动件2和机架3所组成,如图6-1所示。 可以使从动件得到预定的运动规律; 且结构紧凑。但凸轮机构中包含有高副,不宜传递较大的动力; 同时由于凸轮具有曲线轮廓,它的加工制造比较复杂。 6.1.2应用 凸轮机构应用于各类机械中。 图6-2所示为内燃机的配气机构; 图6-3所示为自动车床上使用的走刀机构; 此外,凸轮机构还应用于其他机械中,不一一列举。 6.1.3类型 凸轮机构的类型是多种多样的,其基本类型可由凸轮和从动件的不同型式来区分。 1.按凸轮的型式分 按凸轮型式分,各类凸轮机构如表6-1所示。 图5-1凸轮机构图5-3自动车床走刀机构 图5-2内燃机配气机构

2 .按从动件的型式分 根据从动件的运动和端部型式区分,基本类型如表6-2所示。 表6-2 凸轮机构从动件的基本类型 表6-1 凸轮的类型

6.2 从动件的运动规律 6.2.1凸轮机构的工作过程 图6-4(a)所示为对心尖顶移动从动件盘形凸轮机构。 在尖顶移动从动件盘形凸轮机构的凸轮 上以向径 r为半径所绘的最大圆称为凸轮的 基圆。 当凸轮以ω等速沿逆时针方向回转Φ 时,从动件尖顶被凸轮轮廓推动,以一定运 动规律由离回转中心最近位置A到达最远位 置B的过程称为推程,这时它所走过的距离 h称为从动件的升程;而与推程对应的凸轮 转角Φ称为推程角。 当凸轮继续回转 s Φ时,以O点为中心的 圆弧BC与尖顶相作用,从动件在最远位置停 留不动,这一过程称为远休止,对应的凸轮 转角 s Φ称为远休止角; 当凸轮继续回转'Φ时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置,这个过程称为回程,对应的转角'Φ称为回程角。 当凸轮继续回转' Φ s 时,从动件在最近位置停留不动为近休止,' Φ s 称为近休止角。 如果以直角坐标系的纵坐标代表从动件位移S,横坐标代表凸轮转角?(转动时间t),则可以画出S与?之间的曲线,它简称为从动件位移线图,见图6-4(b)。A点为起始点. 由以上可知,从动件的位移线图取决于凸轮轮廓曲线的形状。从动件的不同运动规律,要求凸轮具有不同的轮廓曲线。因此,设计凸轮时必须首先确定从动件的运动规律。从动件的运动规律通常是根据机械的工作要求确定。 6.2.2常用从动件的运动规律 1、等速运动规律 当凸轮等速回转时,从动件上升或下降的速度为一常数,这种运动称为等速运动。图5-5为从动件等速运动时,其位移S、速度v和加速度a是随时间t变化的曲线(推程)。 由于凸轮作等速运动时,tω ?=,故横坐标也可以用?表示。其运动方程见表5-3。 由于速度V0为常数,所以从动件的速度线图为一平行于横轴的直线。 对速度线图积分,可以得到S= V0t,它是一条斜直线。又由图6-5可知, 当速度为常数时,加速度为零,惯性力也等于零,但是在运动开始和终止的瞬间,由于速度突变,此时理论上的加速度为无穷大,其惯性力将引起刚性冲击。 2、等加速、等减速运动规律 这种运动规律推程前半行程作等加速运动,而后半行程作等减速运动;回程则相反,其位移S、速度V和加速度a是随时间t变化的曲线如图6-6所示。其运动方程见表6-3。 图6-4凸轮机构的运动过程及位移曲线

空间凸轮精密测量及数字化逆向工程关键技术的研究

空间凸轮精密测量及数字化逆向工程关键技术的研究 摘要 本文以空间凸轮为研究对象,从工程实际出发,以三坐标测量机和计算 机运动仿真技术为工具,对空间凸轮的精密测量方法、从动件的运动规律反 求方法及廓面误差检测方法进行了较深入的理论分析和实验研究。 对空间凸轮机构及其运动规律进行了分析和研究。介绍了空间凸轮机构 的常用类型、空间凸轮轮廓设计、压力角简化算法及常用运动规律。为空间 凸轮的精密测量、从动件运动规律反求及误差检测研究奠定了基础。 重点研究了空间凸轮的精密测量问题。提出了一种空间凸轮快速、精密 测量方法及测球半径补偿方法,系统地论述了该测量方法的原理,给出了测 球半径补偿的数学表达式,并基于WinMeil平台编制了可实现实时测球半 补偿的空间凸轮专用测量程序。解决了空间凸轮快速、精密测量的难题,为 空间凸轮机构从动件运动规律的反求及轮廓误差检测奠定了基础。 详细探讨了空间凸轮机构从动件运动规律反求问题。提出了一种基于计 算机运动仿真的运动规律反求方法,并详细探讨了该方法的理论基础,推导 出了从动件运动规律的数学表达式。计算机仿真技术的高效性与精确性保证 了本方法能够实现空间凸轮机构从动件运动规律的快速、准确反求。该方法 的提出为空间凸轮机构从动件运动规律的反求设计提供了新思路,同时也为 其它机构的正向与逆向设计指明了新方向与新方法。 系统分析了空间凸轮轮廓误差检测问题。以空间凸轮的精密测量为基 础,提出了一种简单实用的空问凸轮轮廓误差检测方法,并讨论了数据匹配 问题。最后,以此作为理论基础,采用Visual c++6.0作为开发工具,编制 _『空间凸轮轮廓面加工误差检测软件。 基于上述空间凸轮精密测量方法、运动规律反求方法及轮廓面误差检测 方法的研究结论,分别进行了实验验证及分析。实验结果表明,上述方法正 确可行。证明了本文所提出的理论及方法的正确性,具有重要的理论意义和 实际应用价值。 关键词:空间凸轮,精密测量,运动仿真,运动规律,反求设计,误差检测RESEARCH oN THE KEY TECHNIQUES FoR EXACT MEASUREMENT AND DIGITAL REVERS ENGINEERING oF SPA TIAL CAMS ABSTRACT Focusing on the spatial cams,the dissertation,starting with the practica processing,analyzes and experiments research the precision measuremen for spatial cams,the reverse design of follower motion specifications and contou error inspection of spatial cams deeply by coordinate measure machine and emulation. The spatial cam mechanisms and their motion speciation are analyzed and studied intensively.The commonly used spatial earn mechanisms,the design of spatial cam contours,the simplified algorithm of pressure angle and common used motion speciation are presented.The groundwork isestablished for the study of the precision measurement for spatial cams,the reverse design of follower motion specifications and the error inspection of spatial cams. The exact measurement method for spatial cams isstudied intensivel

7-1凸轮机构的应用,间歇运动机构

§7-1凸轮机构的应用,间歇运动机构 【课程名称】 凸轮机构的应用,间歇运动机构 【教材版本】 李世维主编,中等职业教育国家规划教材――机械基础(机械类)。第2版。北京:高等教育出版社,2006。 【教学目标与要求】 一.知识目标 1.掌握凸轮机构的应用实例。了解凸轮机构的有关参数。 2.熟悉棘轮机构和槽轮机构的组成及运动特点。 二.能力目标 1.能够分析凸轮机构中的凸轮运动与从动件运动轨迹的关系。 2.熟悉常用棘轮机构与槽轮机构的间歇运动特性。 三.素质目标 1.善于从凸轮应用的实例中归纳总结出凸轮应用的规律。 2.能够分析棘轮机构和槽轮机构的运动特点和应用实例,培养善于理论联系实际的思维方式。 四.教学要求 1.熟悉几种常用的凸轮应用实例,让学生尽力举出所见到的应用凸轮机构工作的例子。 2.了解常用间歇运动机构的运动特点与应用。 【教学重点】 1.凸轮应用举例。讲授时重点放在为什么要选用凸轮机构,而不用四杆机构来代替。并注意凸轮机构的选型思考。 2.机构和槽轮机构的运动特点。 【难点分析】 1.根据工作条件来选择合适的凸轮机构。 2.机构和槽轮机构运动特点比较。 【教学方法】

应用课件,教具进行动态演示,讲授凸轮机构的应用,分析间歇运动机构的运动特点。 【学生分析】 实物与课件,教具的演示将会提高学生的学习兴趣,增强感性认识,提高教学效果。 注意从演示中让学生比较各种间歇运动机构之间的特点。 【教学资源】 1.吴联兴主编。机械基础练习册。北京:高等教育出版社,2006。 2.教具,实物或课件。 【教学安排】 2学时 【教学过程】 一.导入新课 从上节课中已经知道凸轮机构的运动特点和常用类型,凸轮机构有着广泛的用途,如缝纫机,补鞋机这二种日常生活机械就是典型例子,电子自动配钥匙机也是一种。在工业生产中也应用很广。引出了本节课的内容。 二.新课讲授 1.凸轮机构的应用 通过书中四个实例的讲解,分别对三种类型的凸轮例举出应用实例,如学生能够举出自己见到的例子,那教学效果更好!讲授时注意分析比较不同例子的运动特点,从中更进一步地认识不同类型凸轮的运动特点。 2.棘轮机构与槽轮机构 从教具或课件的演示入手,比较得出这二种机构的各自组成,即连续转动而且是匀速转动的主动轮,将运动转化称断续的间歇运动的棘轮和槽轮,所不同的是棘轮的转角比较小,一般不大于45°,而槽轮的转角只能是90°,60°和45°几种,不能作任意调整。所以可根据从动轮的转角大小,来选择对应的间歇运动机构。 止回棘爪在起重机构中是必不可少的辅助元件,它保证了重物不

凸轮机构 (教案1)

凸 轮 机 构 凸轮机构是机械中的一种常用机构,在自动化、半自动化机械中应用较为广泛。 6.1凸轮机构的特点、应用和分类 6.1.1特点 凸轮机构 是由凸轮1、从动件2和机架3所组成,如图6-1所示。 可以使从动件得到预定的运动规律; 且结构紧凑。但凸轮机构中包含有高副,不宜传递较大的动力; 同时由于凸轮具有曲线轮廓,它的加工制造比较复杂。 6.1.2应用 凸轮机构 应用于各类机械中。 图6-2所示为内燃机的配气机构; 图6-3所示为自动车床上使用的走刀机构; 此外,凸轮机构还应用于其他机械中,不一一列举。 6.1.3类型 凸轮机构的类型是多种多样的,其基本类型可由凸轮和从动件的不同型式来区分。 1.按凸轮的型式分 按凸轮型式分,各类凸轮机构如表6-1所示。 图5-1凸轮机构 图5-3自动车床走刀机构 图5-2内燃机配气机构

2.按从动件的型式分 根据从动件的运动和端部型式区分,基本类型如表6-2所示。 表6-2 凸轮机构从动件的基本类型 表6-1 凸轮的类型

6.2 从动件的运动规律 6.2.1凸轮机构的工作过程 图6-4(a )所示为对心尖顶移动从动件盘形凸轮机构。 在尖顶移动从动件盘形凸轮机构的凸轮 上以向径0r 为半径所绘的最大圆称为凸轮的 基圆。 当凸轮以ω等速沿逆时针方向回转Φ 时,从动件尖顶被凸轮轮廓推动,以一定运 动规律由离回转中心最近位置A 到达最远位 置B 的过程称为推程,这时它所走过的距离 h 称为从动件的升程;而与推程对应的凸轮 转角Φ称为推程角。 当凸轮继续回转s Φ时,以O 点为中心的 圆弧BC 与尖顶相作用,从动件在最远位置停 留不动,这一过程称为远休止,对应的凸轮转角s Φ称为远休止角; 当凸轮继续回转'Φ时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置,这个过程称为回程,对应的转角'Φ称为回程角。 当凸轮继续回转'Φs 时,从动件在最近位置停留不动为近休止,'Φs 称为近休止角。 如果以直角坐标系的纵坐标代表从动件位移S ,横坐标代表凸轮转角?(转动时间t ),则可以画出S 与?之间的曲线,它简称为从动件位移线图,见图6-4(b )。A 点为起始点. 由以上可知,从动件的位移线图取决于凸轮轮廓曲线的形状。从动件的不同运动规律,要求凸轮具有不同的轮廓曲线。因此,设计凸轮时必须首先确定从动件的运动规律。从动件的运动规律通常是根据机械的工作要求确定。 6.2.2常用从动件的运动规律 1、等速运动规律 当凸轮等速回转时,从动件上升或下降的速度为一常数,这种运动称为等速运动。图5-5为从动件等速运动时,其位移S 、速度v 和加速度a 是随时间t 变化的曲线(推程)。 由于凸轮作等速运动时,t ω?=,故横坐标也可以用?表示。其运动方程见表5-3。 由于速度V 0为常数,所以从动件的速度线图为一平行于横轴的直线。 对速度线图积分,可以得到S= V 0t ,它是一条斜直线。又由图6-5可知, 当速度为常数时,加速度为零,惯性力也等于零,但是在运动开始和终止的瞬间,由于速度突变,此时理论上的加速度为无穷大,其惯性力将引起刚性冲击。 2、等加速、等减速运动规律 这种运动规律推程前半行程作等加速运动,而后半行程作等减速运动;回程则相反,其位移S 、速度V 和加速度a 是随时间t 变化的曲线如图6-6所示。其运动方程见表6-3。 图6-4凸轮机构的运动过程及位移曲线

凸轮机构画图

65.图示为一偏心圆盘凸轮机构,凸轮的回转方向如图所示。要求:(1)说明该机构的详细名称;(2)在图上画出凸轮的基圆,并标明图示位置的凸轮机构压力角和从动件2的位移;(3)在图上标出从动件的行程h及该机构的最小压力角的位置。 65.(1) 偏置直动滚子从动件盘形凸轮机构。 (2) ,,s如图所示。(3) h及 发 生位置如图示。 67.试在图示凸轮机构中,(1)标出从动件与凸轮从接触点C到接触点D时,该凸轮转过 的转角 ;2)标出从动件与凸轮在D点接触的压力角;(3)标出在D点接触时的从动 件的位移s。

67. (1) 如图示。(2) 如图示。(3)s如图示。 70.图示偏置直动滚子从动件盘形凸轮机构中,凸轮以角速度逆时针方向转动。试在 图上:(1)画出理论轮廓曲线、基圆与偏距圆;(2)标出凸轮从图示位置转过 时的 压力角和位移s。 70.(1) 1)理论廓线如图示:2)基圆如图示;3)偏距圆如图示。(2) 1)压力角如

图示;2)位移s 如图示。 72.图示为一偏置直动滚子从动件盘形凸轮机构,凸轮以等角速度1逆时针方向转动。试在图上:(1)画出该凸轮的基圆和理论廓线;(2)标出该位置时从动件的压力角;(3)标出该位置时从动件的位移s,并求出该位置时从动件的速度。 72.(1) 1)基圆如图示;2)理论廓线如图示。(2) 压力角如图示。(3) 1)位

移s如图示。2)v2= 79.图示的凸轮机构中,凸轮为一圆盘。试在图上作出:(1)基圆;(2)图示位置的凸轮 转角 和从动件的位移s;(3)图示位置时的从动件压力角。 79.(1)基圆如图示半径为 。(2) 凸轮转角和从动件位移s如图示。 (3) B点压力角如图示。 84.在图示偏置直动尖顶从动件盘形凸轮机构中,凸轮为偏心圆盘,圆心为O,回转中心为

凸轮机构的计算题1

凸轮机构的计算题1 凸轮机构在机械系统中主要用于控制。通过合理设计凸轮的轮廓,可以得到预期的推杆运动规律。 在考试中,对于一个给定的凸轮机构进行分析是比较常见的问题。其中,偏置直动滚子推杆盘形凸轮机构出现得最多,因为在这种机构在实践中出现很多,而且它也包含了很多的概念。本篇考察一个典型的例子来说明其分析方法。【题目】 图示凸轮机构中,凸轮为一半径R= 20 mm的偏心圆盘,圆盘的几何中心A到转动中心O的距离为e = 10 mm,滚子半径r g = 5 mm,凸轮角速度。试求:(14分) ①凸轮的理论廓线和基圆; ②图示位置时机构的压力角; ③凸轮从图示位置转过时的位移S; ④图示位置时从动件2的速度v。

【解答】 ①凸轮的理论廓线和基圆 理论廓线。对于滚子推杆的凸轮机构而言,理论廓线是过滚子中心的一条封闭廓线。题目中给出的是工作廓线,要得到理论廓线,只需要把工作廓线往外偏移一个滚子的半径即可。由于这里工作廓线就是一个以C为圆心,半径为20mm 的圆;而滚子的半径是5mm,所以理论廓线就是以C为圆心,半径为20+5=25mm的圆.如下图所示。

基圆。首先我们知道,基圆是在理论廓线上定义的;其次我们懂得,它是以转动中心O为圆心的,与理论廓线内切的一个半径最小的圆。按照该定义,我们以O为圆心做一个与理论廓线内切的最小的圆如下图,显然,它的半径是 10+5=15mm. ②图示位置时机构的压力角; 对于该机构而言,压力角是滚子的中心B点的受力方向与运动方向的夹角。

B点的速度方向。由于B点是推杆与滚子的连接点,所以它也就是推杆上的B点。由于推杆在上下平移,推杆上任何一点的轨迹都是沿着推杆的直线,所以任何一点的速度方向都是推杆直线的方向,因此推杆上的B点速度方向也在该直线上。 B点的受力方向。推杆上的B点与理论廓线接触,在忽略摩擦的前提下,其受力方向其实就是理论力学中的光滑接触面中的反力方向。光滑接触面的反力是公法线方向。由于推杆的B点是尖点,无所谓法线,所以公法线方向就是理论廓线在该点的法线方向。而理论廓线是一个圆,圆上任何一点的法线方向都是从从该点指向圆心的。所以BC的方向就是公法线方向。 显然,速度方向与力的方向重合,所以压力角是0度。这是我们最希望的压力角。压力角越小,则凸轮机构的传力性能越好。

第九章 凸轮机构及其设计要点

第九章凸轮机构及其设计 1 什么是凸轮的理论轮廓曲线、实际轮廓曲线?两者之间有什么关系? 2 在凸轮机构设计中有哪几种常用的从动件运动规律?这些运动规律各有什么特点以及适用场合?在选择从动件运动规律时应考虑哪些主要因素? 3 发生刚性冲击的凸轮机构,其运动线图上有什么特征?如发生柔性冲击时又有什么特征? 4 用反转法设计盘形凸轮的廓线时,应注意哪些问题?移动从动件盘形凸轮机构和摆动从动件盘形凸轮机构的设计方法各有什么特点? 4 何谓凸轮机构的“失真”现象?失真现象在什么情况下发生?如何避免失真现象的发生? 6 一凸轮机构滚子从动件已损坏,要调换一个新的滚子从动件,但没有与原尺寸相同的滚子。试问用该不同尺寸的滚子行吗?为什么? 7 何谓凸轮机构的压力角?其在凸轮机构的设计中有何重要意义?一般是怎样处理的? 8 设计直动推杆盘形凸轮机构时,在推杆运动规律不变的条件下,要减小推程压力角,可采用哪两种措施? 9 图中两图均为工作廓线为圆的偏心凸轮机构,试分别指出它们的理论廓线是圆还是非圆,运动规律是否相同。 10 凸轮机构从动件按余弦加速度规律运动时,在运动开始和终止的位置,有突变,会产生冲击。 11根据从动件凸轮廓线保持接触方法的不同,凸轮机构可分为力封闭和几何形状封闭两大类型。写出两种几何形状封闭的凸轮机构和。12为了使凸轮廓面与从动件底面始终保持接触,可以利用,,或依靠凸轮上的来实现。 13 凸轮机构的主要优点为,主要缺点为。14为减小凸轮机构的推程压力角,可将从动杆由对心改为偏置,正确的偏置方向是将从动杆偏在凸轮转动中心的侧。 15凸轮机构的从动件按等加速等减速运动规律运动,在运动过程中,将发生突变,从而引起冲击。 16 当凸轮机构的最大压力角超过许用压力角时,可采取以下措施来减小压力角。 17凸轮基圆半径是从到的最短距离。18平底垂直于导路的直动杆盘形凸轮机构,其压力角等于。

凸轮机构及其设计(简)

第九章凸轮机构及其设计(Cam Mechanisms and Synthesis) §9-1凸轮机构的应用和分类 §9-2推杆的运动规律 §9-3凸轮轮廓曲线的设计 §9-4凸轮机构基本尺寸的确定

§9-1凸轮机构的应用和分类 结构: 作用: 应用: 分类:1)按凸轮形状分 2)按推杆形状分 3)按推杆运动分 4)按保持接触方式分

§9-2 推杆的运动规律 凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式;2)推杆运动规律; 3)合理确定结构尺寸;4)设计轮廓曲线。 δ’0δ’ o t δ s 名词术语: 一、推杆的常用运动规律 基圆推程运动角 基圆半径推程远休止角 回程运动角回程近休止角 r 0h ωA δ01 δ 01 δ02 δ02 D B B’δ0δ

δ’0δ’0 o t δ s r 0 h ω A δ01 δ01 δ02δ02D B C B’ δ0δ0运动规律:推杆在推程或回程时,其位移S 、速度V 、 和加速度a 随时间t 的变化规律。 形式:多项式、三角函数。 s =s(t)v=v (t)a=a (t) 位移曲线

推程运动方程:s=hδ/δ0 v=hω/δ0s δδ v δa δ h +∞ -∞刚性冲击 回程运动方程: s=h(1-δ/δ0′) v=-hω/δ0′ a=0 a=0 1.一次多项式(等速运动规律) (rigid impulse)

3δ a h/2δ h/2 等减速段推程运动方程为: s =h -2h(δ0–δ)2/δ20 1δ s v =-4hω(δ0-δ)/δ20 a =-4hω2/δ20 25 462h ω/δ 柔性冲击4h ω2/δ 20 等加速段推程运动方程为: s=2hδ2/δ20 v=4hωδ/δ20 a=4hω2/δ20 δ v 2.二次多项式(等加速等减速运动规律)

凸轮机构

机械基础一轮复习资料 (凸轮机构) 【复习要求】 1.了解凸轮机构的分类、应用及特点; 2.了解凸轮轮廊曲线的画法,熟悉常用位移曲线的画法; 3.掌握基圆半径、行程、压力角等基本参数的概念及它们对工作的影响; 4.掌握凸轮从动件的常用运动规律及其特点和应用。 【知识网络】 【知识精讲】 一、凸轮机构的基本概念 1.凸轮:具有控制从动件运动规律的曲线轮廓的构件。 2.凸轮机构:由凸轮、从动件和机架组成的传动机构,该机构中凸轮作主动件并作等速转动(往复移动)。 3.基圆(基圆半径):以凸轮回转中心为圆心,以凸轮理论廓线的最小回转半径为半径所作的圆称为基圆。该圆的半径称为基圆半径,用r0表示。 4.凸轮理论廓线:凸轮从动件的参考点(尖端或滚子中心或平底中点)在凸轮平面内的运动轨迹。 5.凸轮实际廓线:直接与从动件接触的凸轮廓线。 6.位移及行程:凸轮转过一个角度,从动件对应移动的距离,称为从动件的位移S。在凸轮一转中,从 动件所能达到的最大位移称为行程,用符号h表示。 7.压力角(α):凸轮理论廓线上某点的法线方向(即从动件的受力方向)和从动件运动速度方向之间所 夹的锐角。 8.S—δ曲线:表达从动件位移S与凸轮转角δ关系的曲线。 9.转角(运动角)δ:凸轮转过的角度。 二、凸轮机构的应用特点

1.高副机构易磨损,结构简单、紧凑,传动力较小。 2.能严格实现从动件的运动要求,从动件的运动规律可任意拟定。 3.可高速起动,但高速凸轮精确设计困难。 4.加工方便容易,广泛用于自动化机械中。 三、凸轮机构的分类(见表) 四、凸轮机构从动件的常用运动规律及工作特点、应用场合(见表) 五、凸轮机构有关参数对工作的影响(见表) 为使运动不“失真”r T<ρmin一般 取r T<0.8ρmin ,加工中被切去,运动“失真”

凸轮机构

第十五单元凸轮机构 选择题 1、组成凸轮机构的基本构件有____个。 A、2个; B、3个; C、4个。 2、与平面连杆机构相比,凸轮机构的突出优点是_ _。 A、能严格的实现给定的从动件运动规律; B、能实现间歇运动; C、能实现多种运动形式的变换; D、传力性能好。 3、凸轮轮廓与从动件之间的可动联接是_ ___。 A、移动副; B、高副; C、转动副; D、可能是高副也可能是低副。 4、凸轮机构从动件作等速规律运动时会产生冲击。 A.刚性; B.柔性; C.刚性和柔性 5、若要盘形凸轮机构的从动件在某段时间内停止不动,对应的凸轮轮廓应是 ___。 A、一段直线; B、一段圆弧; C、一段抛物线; D、一段以凸轮转动中心为圆心的圆弧。 6、从动件的推程采用等速运动规律时,在___ _会发生刚性冲击。 A、推程的起始点; B、推程的中点; C、推程的终点; D、推程的起点和终点。

7、凸轮机构在从动杆运动规律不变情况下,若缩小凸轮基圆半径,则压力角。 A、减小 B、不变 C、增大 查看答案 第十五单元凸轮机构 选择题(答案) 1、组成凸轮机构的基本构件有C个。 A、2个; B、3个; C、4个。 2、与平面连杆机构相比,凸轮机构的突出优点是 C。 A、能严格的实现给定的从动件运动规律; B、能实现间歇运动; C、能实现多种运动形式的变换; D、传力性能好。 3、凸轮轮廓与从动件之间的可动联接是 B _。 A、移动副; B、高副; C、转动副; D、可能是高副也可能是低副。 4、凸轮机构从动件作等速规律运动时会产生A冲击。 A.刚性; B.柔性; C.刚性和柔性

凸轮机构(7页)

凸轮机构在机械系统中主要用于控制。通过合理设计凸轮的轮廓,可以得到预期的推杆运动规律。 在考试中,对于一个给定的凸轮机构进行分析是比较常见的问题。其中,偏置直动滚子推杆盘形凸轮机构出现得最多,因为在这种机构在实践中出现很多,而且它也包含了很多的概念。本篇考察一个典型的例子来说明其分析方法。 【题目】 图示凸轮机构中,凸轮为一半径R= 20 mm的偏心圆盘,圆盘的几何中心A到转动中心O的距离为e = 10 mm,滚子半径r g = 5 mm,凸轮角速度。试求:(14分) ① 凸轮的理论廓线和基圆; ② 图示位置时机构的压力角; ③ 凸轮从图示位置转过时的位移S; ④ 图示位置时从动件2的速度v。 【解答】 ① 凸轮的理论廓线和基圆 理论廓线。对于滚子推杆的凸轮机构而言,理论廓线是过滚子中心的一条封闭廓线。题目中给出的是工作廓线,要得到理论廓线,只需要把工作廓线往外偏移一个滚子的半径即

可。由于这里工作廓线就是一个以C为圆心,半径为20mm的圆;而滚子的半径是5mm,所以理论廓线就是以C为圆心,半径为20+5=25mm的圆.如下图所示。 基圆。首先我们知道,基圆是在理论廓线上定义的;其次我们懂得,它是以转动中心O为圆心的,与理论廓线内切的一个半径最小的圆。按照该定义,我们以O为圆心做一个与理论廓线内切的最小的圆如下图,显然,它的半径是10+5=15mm. ② 图示位置时机构的压力角; 对于该机构而言,压力角是滚子的中心B点的受力方向与运动方向的夹角。 B点的速度方向。由于B点是推杆与滚子的连接点,所以它也就是推杆上的B点。由于推杆在上下平移,推杆上任何一点的轨迹都是沿着推杆的直线,所以任何一点的速度方向都是推杆直线的方向,因此推杆上的B点速度方向也在该直线上。 B点的受力方向。推杆上的B点与理论廓线接触,在忽略摩擦的前提下,其受力方向其实就是理论力学中的光滑接触面中的反力方向。光滑接触面的反力是公法线方向。由于推杆的B点是尖点,无所谓法线,所以公法线方向就是理论廓线在该点的法线方向。而理论廓线是一个圆,圆上任何一点的法线方向都是从从该点指向圆心的。所以BC的方向就是公法线方向。

凸轮机构的研究与发展

凸轮机构的研究与发展 1 前言 凸轮机构由凸轮、从动件或从动件系统和机架组成,凸轮通过直接接触将预定的运动传给从动件。凸轮机构是典型的常用机构之一,它广泛用于轻工机械、纺织机械、包装机械、印刷机械、内燃机等各种自动机械中。 凸轮机构之所以能在各种自动机械中获得广泛的应用,是因为它兼有传动、导引及控制机构的各种功能。当凸轮机构用于传动机构时,可以产生复杂的运动规律,包括变速范围较大的非等速运动,以及暂时停留或各种步进运动;凸轮机构也适宜于用作导引机构,使工作部件产生复杂的轨迹或平面运动;当凸轮机构用作控制机构时,可以控制执行机构的自动工作循环。 人类对凸轮机构的认识由来已久。但直到19世纪末,对凸轮机构还未曾有过系统地研究。随着工业化的发展,对高效的自动机械的需求大大增加,需要改善内燃机配气机构的工作性能,所以直至20世纪初,凸轮机构的研究才开始受到重视。在20世纪40年代以后,由于内燃机转速增加,引起故障增多,才开始对配气凸轮机构进行深入研究,并从经验设计过渡到有理论根据的运动学与动力学分析。 2 凸轮机构介绍 2.1 平面凸轮机构 平面型凸轮机构在凸轮机构中占有相当大的比重,因而对它的研究也更具有代表性。平面凸轮机构设计的关键技术是凸轮廓线的设计和制造,只要正确地设计出凸轮的轮廓曲线,就可以使从动件得到各种预期的运动规律,而且结构简单。平面凸轮机构设计的方法主要有图解法和解析法,图解法简单、直观、概念清晰,但缺点是误差较大,作图繁琐,不能满足高速精密凸轮的设计要求;解析法可得到精度高的设计结果,但计算却比较复杂,直观性较差。 但随着计算机的普遍使用及其应用技术的发展,凸轮机构的计算机辅助设计CAD 正逐步取代图解法。当前对凸轮机构的CAD研究出现较多,有针对凸轮机构从动件运动规律的 CAD 研究,有针对某种从动件类型的凸轮机构 CAD,有针对凸轮轮廓的 CAD 研究,以及凸轮机构一体化 CAD/CAM 系统。对设计人员来讲使用凸轮机构一体化CAD/CAM 系统来解决实际问题才更具有实际意义,而目前的凸轮机构 CAD/CAM 系统中所采取的方法大都是试算法,即在这种方法中避开了凸轮机构基本尺寸的设计,而由设计人员初始给定基本尺寸,然后由系统进行不断的试算,最后得到比较满意的设计结果。因此这些系统就存在着设计速度慢、设计人员在确定基本尺寸时带有盲目性等缺点。并且由于凸轮机构不是标准机构,种类多、应用广、设计质量与设计者的水平和经验有密切关系,且有许多知识不能公式化,所以应用凸轮机构 CAD/CAM 系统

相关文档