文档库 最新最全的文档下载
当前位置:文档库 › 最小曲率半径

最小曲率半径

最小曲率半径
最小曲率半径

曲率的倒数就是曲率半径。

曲线的曲率。平面曲线的曲率就是是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。

K=lim|Δα/Δs|,Δs趋向于0的时候,定义k就是曲率。曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度

特殊的如:圆上各个地方的弯曲程度都是一样的(常识)而曲率半径就是它自己的半径;直线不弯曲,所以曲率是0,0没有倒数,所以直线没有曲率半径.

圆形越大,弯曲程度就越小,也就越近似一条直线.所以说,圆越大曲率越小,曲率越小,曲率半径也就越大.

如果在某条曲线上的某个点可以找到一个相对的圆形跟他有相等的曲率,

那么曲线上这个点的曲率半径就是该圆形的半径(注意,是这个点的曲率半径,其他点有其他的曲率半径).也可以这样理解:就是把那一段曲线尽可能的微分,直到最后近似一个圆弧,这个圆弧对应的半径即曲线上这个点的曲率半径.

Eg:

因列车在高速通过弯道时由于惯性有向弯道的外侧翻车的危险(参看:2008年胶济铁路列车相撞事故),在铁路的设计和建造时,对不同速度等级的铁路规定了车辆可以安全通过的圆曲线的最小半径,就是线路的最小曲线半径。

如何计算抛物线点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径 对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

物理方法求曲率半径

用物理方法求常见曲线的曲率半径 王吉旭 滑县第一高级中学 456400 求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如2008年江苏理综14题涉及到曲率半径,2011年高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看2011高考安徽理综17题: 一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。则在其轨迹最高点P 处得曲率半径是( ) A .g v 20 B .g v α220sin C .g v α220cos D .ααsin cos 220g v [解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力. 由r v m F 2 =向得: ρα20)cos (v m mg = 则有:g v αρ220cos = 本题正确答案为C 上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径 物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 22 1gt y = ② 联立①②式得220 2x v g y = 图1

物理方法求曲率半径

用物理方法求常见曲线的曲率半径 求曲线曲率的问题常出现在高中物理竞赛中,而近年来高考中也涉及到曲线曲率的问题,例如江苏理综14题涉及到曲率半径,高考安徽理综17题更是要求求出曲线曲率. 在数学中曲线的曲率半径可以用高等数学的方法求出,这里我们另辟蹊径,从物理的角度采用初等数学求出曲线曲率半径. 我们首先来看高考安徽理综17题: 一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替. 如图(a )所示,曲线上A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径. 现将一物体沿与水平面成α角的方向以速度v 0抛出,如图(b )所示。则在其轨迹最高点P 处得曲率半径是( ) A .g v 20 B .g v α220sin C .g v α220cos D .α αsin cos 220g v [解析] 物体在最高点P,只有水平速度为αcos 0v ,物体只受重力. 由r v m F 2 =向得: ρα20)cos (v m mg = 则有:g v α ρ22 0cos = 本题正确答案为C 上述问题给我们启示: 从物理的角度,我们也可以求出曲线上某点的曲率半径. 事实上,物理学上我们常讨论的曲线有抛物线、椭圆、双曲线等,我们都可以利用上述的方法求曲率半径.下面我们来逐一研究. 一、求抛物线顶点的曲率半径 物体做平抛运动时其轨迹就是抛物线.假设物体平抛初速度为0v ,运动轨迹如图2所示. 则有将物体的运动分解为水平分运动和竖直分运动: 公式为:t v x 0= ① 2 2 1gt y = ② 联立①②式得2 2 2x v g y = 图1 x y O 图2 v 0

完整word版,各种曲率半径(通信与广电)

通信电缆的分类及特点 双屏蔽数字同轴电缆的技术要求:电缆安装敷设温度为-5—50度,储存和工作温度为-30—70度。电缆安装与运行的最小弯曲半径为电缆最大外径的7.5倍。 机房设备安装的工艺要求 电缆布放:电缆转弯应均匀圆滑,转弯的曲率半径应大于电缆直径的5倍 光缆布放:槽道内光纤应顺直、不扭绞,拐弯处曲率半径应不小于光缆直径的20倍 天馈线系统安装要求 移动基站馈线系统和室外光缆:馈线拐弯应圆滑均匀,弯曲半径应大于或等于馈线外径的20倍,软馈线的弯曲半径应大于或等于其外径的10倍 卫星地球站馈线系统:同轴电缆馈线转弯的曲率半径应不小于电缆直径的12倍,LDF4-50欧姆的同轴电缆转弯的曲率半径应不小于125mm 电源施工技术馈电母线安装和电源线信号线布放:铠装电力电缆的弯曲半径不得小于外径的12倍,塑包线和胶皮电缆不得小于其外径的6倍 线路工程通用施工技术 电缆曲率半径必须大于共外径的15倍 直埋线路施工技术 直埋光(电)缆敷设安装及保护:光缆在各类管材中穿放时,管材内径应不小于光缆外径的1.5倍 综合布线工程施工技术 电缆布放中的注意事项:应避免电缆过度弯曲,安装后的电缆弯曲半径不得低于电缆直径的8倍;对典型的六类电缆,弯曲半径应大于50mm。

气流敷设光缆技术 硅芯管道的敷设:直线段硅芯管道的路由要顺直,沟坎处应平缓过渡,转角处的弯曲半径,50/42mm、46/38塑料管的弯曲半径应大于550mm;40/30mm塑料管的弯曲半径应大于500mm。 广播电视发射工程技术 敷设低压电力电缆:10mm2以上的电缆弯曲时,其最小曲率半径为电缆外径的10倍。广播电视建筑声学施工技术 扩声、会议系统安装工程布放线要求:光缆布放时最小弯曲半径应为光缆外径的15倍,施工时应不小于20倍。

缓和曲线曲率半径 的计算

所谓完整缓和曲线就是某段缓和曲线的一端与直线连接点的曲率半径必须是无穷大(可用10的45次方代替,有时也可用“0”表示,具体情况具体分析),而缓和曲线两端无论在什么情况下与圆曲线相接时,其两端的曲率半径必须与对应连接圆曲线的半径相等。 现在我们来谈谈非完整缓和曲线,从上面的话知道,如果某段缓和曲线的一端与直线连接点曲率半径不是无穷大,而是一个实数,那么这段缓和曲线就是非完整缓和曲线。 设计图中遇到这种情况,一般会告诉这段缓和曲线的长度(我们把这段缓和曲线的长度记作L2,缺少的一段缓和曲线长度记作L1,L1+L2=完整缓和曲线长度L),如果没告诉这段缓和曲线的长度,也可以通过两端的桩号计算出来、设计参数A及缓和曲线另一端的曲率半径R2(应该是与一个圆曲线相接,也就是说R2等于这个圆曲线的半径)。 我们在输入匝道程序时必须要知道R1(起点曲率半径),怎么办呢?那就通过计算把R1计算出来不就行了,下面就是计算过程: 由公式:R=A2÷L 推出 R1= A2÷L1 => A2=R1*L1 ……………………………………………………① R2= A2÷(L1+L2) => A2=R2*(L1+L2) ……………………………………………………② R2= A2÷(L1+L2) => R2= A2÷L => L=A2÷ R2 …………………………………………③ 由公式①②推出 R1*L1=R2*(L1+L2) => R1=R2*(L1+L2)÷ L1 …………………………………………④ L=L1+L2 => L1=L-L2 ……………………………………………⑤ 由公式③④⑤推出 R1=R2*L÷(L-L2) => R1= A2÷(A2÷ R2-L2) …………………………………………⑥ 公式⑥就是我们要找的曲率半径公式,计算得到结果计算完毕。 现在我们在编制非完整缓和曲线程序时就清楚的知道起点和终点的曲率半径了。还要说明一点就是,计算出来的曲率半径既是起点也是终点,既是终点也是起点,关键是看线路前进方向了,只要大家细心,分清起点终点输入程序,计算出来的准没错。

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法

目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一

关于不同类型缓和曲线 的判断及起点、终点曲率半径的计算方法

关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法 目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。关于这点,相关的课本教材上没有明确的讲述,网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。第一:先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈. 1.当对于单独一段缓和曲线从其完整与否来讲是分为完整与不完整两类;当对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言)又有对称缓和曲线与不对称缓和曲线之分。由此看来,完整与对称与否是针对缓和曲线两个方面来看待区分的。 2.缓和曲线我们的测量教材上讲述的其实就是完整缓和曲线,也可以知道缓和曲线上:各个点的半径是不同的,起点到终点的半径值过度是从正无穷大到所接圆曲线半径之过度如从ZH向HY方向;或者是从所接圆曲线半径值向正无穷大过度的,如从YH向HZ方向。那么由此可以不难判断出来,完整缓和曲线就是符合上述特征的,那么不完整的缓和曲线就是不符合上述特征的,但是线路上的平曲线设计时候一般缓和曲线不单独存在的,整体上缓和曲线前或后一般都是要连接一个圆曲线的,那么不完整缓和曲线其实就是在完整缓和曲线上截取的一段,一般就是去掉了半径无穷大的那端而是从某个点开始的半径值向所接圆曲线半径值过度的。 3.对称与不对称缓和曲线是相对于一个单交点内的两段缓和曲线(即常说的第一缓和曲线和第二缓和曲线而言),当两个缓和曲线长度相等时候则称之为对称缓和曲线,自然此时的切线长、缓和曲线参数A值都是相等的,反之不相等就称为不对称缓和曲线,自然切线长、缓和曲线是不相等的。第二:由此可以看出对于缓和曲线而言,对称与否很容易分辨判断无需赘述,完整与否不易区分,也是这里重点要说的问题. 1.完整与不完整缓和曲线的区别判断方法:综上所述,完整缓和曲线与不完整缓和曲线的判断其实就在于验证完整缓和曲线参数方程A^2=R*Ls这个等式成立与否就可。(A为已知的缓和曲线参数,R为缓和曲线所接圆曲线的半径,Ls为该段缓和曲线的长度)理论上,当该式子成立时候,那就是完整缓和曲线无疑,当不成立时候那就可判断为不完整缓和曲线了。实际工作操作时候验证方法如下:先把R*Ls的乘积进行开平方然后看所得到的结果是否与所提供的缓和曲线参数A值相等。 2.完整缓和曲线与不完整缓和曲线起点终点的曲率半径的判断与计算:线路设计上的缓和曲线一般不会单独存在的,连续的缓和曲线起点或终点必定有一端都是要接圆曲线的,那么缓和曲线一端的半径值必定就是圆曲线的半径值了,求半径的问题就变成只需求出另外一端半径就可以了.上面说过首先判断出该缓和曲线是否是完整的办法,那么当是完整缓和曲线时候,起点或终点两端的半径,必定一端是无穷大,一端就是圆曲线半径了;那么当判断是不完整缓和曲线时,一端半径就是圆曲线半径,另一端的半径就绝对不能是无穷大了的,理论上应该是该端点的半径值要小于无穷大而大于所接圆曲线的半径值,那么该怎么求出来呢?此时就牵涉到了不完整缓和曲线的参数方程:A^2=[(R大*R小)÷(R大-R小)]*Ls 由上方程可以看出,R大就是我们所需要求的这端半径了,R小自然就是该不完整缓和曲线所接的圆曲线半径了。A为该不完整缓和曲线参数,R小为所接圆曲线半径,Ls为该不完整缓和曲线的长度,这些图纸都提供的有了,只需按照上面的不完整缓和曲线的参数方程进行解方程就可得到另一端的半径值了,也就是R大=(A^2*R小)÷(A^2-R小*Ls)就可以

曲率 曲率半径

曲率 曲率半径 高中时期,做万有引力题时偶尔会出现非常规题,也就是行星的运动不是标准圆,而是椭圆。对于椭圆,万有引力公式是不能随便用,原因R 不是我们所理解的r ,而是曲率半径。当时以我们的知识更本无法求出R 。问老师吧,得到的结果不是,这不在高考考查的范围内,不用深究;就是,这些题的关键就是求曲率半径,而曲率半径我们根本没有学,讲了你也听不懂,不要在这上面浪费时间了。 人就是这样,越是得不到的东西越是想得到。那时我是多么想做出来证明自己的实力啊,可是就是没有人教,只剩下苦恼,郁闷。 现在已经知道了什么是曲率,怎么求曲率半径。下面仅作简述,希望拍砖! 曲率 设曲线C;y=f(x)具有连续导数。曲线C 是光滑的,点M,N 在曲线C 上,当动点M 从移动到N 时,切线转过的角度为|α?|,弧段的长度为|s ?|。用比值s ??α | |,即单位弧度上的切线转过的角度大小来表示弧段平均弯曲程度,称为弧段的平均曲率,并记为,即 || s k ??=α 当S ?趋近于0时,平均曲率的极限就是曲线C 在M 点的曲率,记作,即||0s s Lim k ???→??= α 关于曲率的求解过程就不再详细解出,只给出结果) 1(2.^| |2 3 ,,y y K += (注意:分子上是Y 的二阶导数,分母是Y 的一阶导数) 曲率半径 设曲线在点处的曲率为K (K,><0).过点M 处的曲线的法线MN ,在曲线凹的一侧取点C ,使|MC|= K 1 =R.以为圆心,为半径作圆,这个圆叫做曲线在点处的曲率圆,C 就是圆心,R 就是曲率半径。 椭圆1| 2 ^2 ^2 ^2 ^=+b Y a X 或者是双曲线1| 2^2 ^2 ^2 ^=-b Y a X 曲率半径表达式一致, b a x b y a R 4 ^4 ^2 3)(2^4^2^4^+= ;抛物线py x 22 =,P Y R 2 2 3)1(2^+= (如果对称轴在Y 轴 上,只须将x 换成y 即可)。R 的等式中的x ,y 均是要求点的坐标

各种曲线类型的缓和曲线的判断及起点、终点曲率半径的计算方法

各种曲线类型的缓和曲线的判断及起点、终点曲率半径的计算方法 看到这个标题是有点绕口啊!总结任何曲线类型都是由自然段组合而成,所谓自然段统指直线、缓和曲线、圆曲线。圆曲线又分单圆曲线和复曲线。单圆曲线就是单一半径的曲线。具有两个半径或以上不同半径的曲线称复曲线。在此一般平曲线不在说了,第一缓和曲线、圆曲线、第二缓和曲线。目前在坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,问题就出于该缓和曲线是否是完整缓和曲线。目前公路线性有非对称线性的设计,特别是在互通立交匝道和山区高速公路线性设计中。非对称线性又分为完全非对称线性和非对称非完整线性两种。所谓“完全非对称曲线”的含义就是第一缓和曲线长和第二缓和曲线长不等,而第一缓和曲线和第二缓和曲线起点处的半径为无穷大。所谓“非完整”的含义就是第一缓和曲线和第二缓和曲线的半径不是无穷大,而是有半径的。关于这点,一般课本教材上没有明确的讲述,查找网上对此问题的解释也是散见于不同的论文著作中,对于测量新手来说,线元法程序是非常适用上手的,但却往往因为遇到不完整缓和曲线的起点或终点的半径判断计算不出来导致坐标计算错误,的确是件令人恼火的事情,在此我就把自己的判断经验做一论述,给用线元法程序的测友们一同分享,当然高手们请一笑而过,也可留下你的经验与大家一起分享交流学习。 先说说完整缓和曲线和不完整缓和曲线以及不对称缓和曲线与对称缓和曲线的概念问题,以免混为一谈.

曲率半径与曲率(20200511214341)

曲率半径 目录 词条定义 ____ 曲率半径解析 遵]编辑本段 词条定义 曲率的倒数就是曲率半径。

曲线的曲率。平面曲线的曲率就是是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。 K=lim| △ a / △ s| △ s趋向于0的时候,定义k就是曲率。 曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度特殊的 如:一个圆上任一圆弧的曲率半径恰好等于圆的半径,也许可以这样理解:就是把那一段曲线尽可能的微分,直到最后近似一个圆弧,这个圆弧对应的半径吧,个人理解 比如说 曲率/曲率半径应用题 一飞机沿抛物线路径y=(xT)/10000 (y轴铅直向上,单位为m)作俯 冲飞行,在 坐标原点0处飞机的速度为v=200m/s。飞行员体重G=70kg。求飞机俯冲至最低点即原点0处时座椅对飞行员的反力。 解: y=x A2/10000 y'=2x/10000=x/5000 y"=1/5000 要求飞机俯冲至原点0处座椅对飞行员的反力,令x=0,则: y'=0 y"=1/5000 代入曲率半径公式p =1/k=[(1+y'A2)A(3/2)]/ I y" I =5000 米 所以飞行员所受的向心力F=mvA2/ p =70*200八2/5000=560 牛 得飞机俯冲至原点O处座椅对飞行员的反力 R=F+mg=560+70*9.8=1246N 编辑本段 曲率半径解析 在曲线上某一点找到一个和它内切的半径最大的圆,这个圆的半径就定义为曲率半径。 比如说:直线上每一点随便都能找个圆与它相切,那么称直线上的曲率半径无意义(或称无穷大) 而在圆上,每一点与它内切的圆就是其本身,故其曲率半径为其本身 的半径。 抛物线顶点曲率半径为焦距两倍

如何计算抛物线某点处的曲率和曲率半径

用物理方法计算抛物线某点处的曲率和曲率半径对于一般的弧来说,各点处曲率可能不同,但当弧上点A处的曲率不为零时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A相切(即与弧有公切线),这样的圆就称为弧上A点处的曲率圆。 对于函数图形某点的曲率和曲率半径,在数学上我们需要用到求二阶导数的方法。 今天我想简单说一种有趣的方法,将该问题用物理的思维来解决,无需求导便能够知道抛物线某点处的曲率和曲率半径。这种方法不属于主流方法,因此不能用它代替常规方法。介绍此方法的目的,只是为了让大家对抛物线及抛体运动和圆周运动乃至整个曲线运动本质上的联系有更加深刻的认识。 举一个最简单的例子:y=-x2,我们作出它的图像 设图像上存在一点A(a,-a2),求该点的曲率和曲率半径。 我们假设一质点从顶点O开始做平抛运动,恰经过A(a,-a2)。 接下来,我们可以算出该点处质点的速度大小:先得到下落时间,接着算出水平速度和竖直速度分量,再合成。质点在该点处速度大小为v=√(g/2+2a2g)。 接下来,我们利用角度关系,将A处的加速度(即重力加速度g)沿速度方向和垂直于速度方向分解,如下图:

令A点处质点速度方向与水平方向的夹角为θ,可得垂直于速度方向的加速度分量为gcosθ。我们可以求出cosθ=v0/v=1/√(1+4a2),那么垂直于速度方向的加速度分量就等于g/√(1+4a2)。 我们想象一下在A点处有个圆与抛物线切于A,且该圆为抛物线A点处的曲率圆,半径为r。 根据圆周运动向心加速度计算式a=v2/r,得到gcosθ=g/√(1+4a2)=(g/2+2a2g)/r。 从而可以求出r=(1/2+2a2)√(1+4a2) 我们用微积分可求出该函数图象某点处曲率半径为:R=|{1+[y’(x)]2}3/2/y”|(x)。 在A点,导数为-2a,二阶导数为-2,所以上式就等于(1+4a2)3/2/2=(1/2+2a2)√(1+4a2)。 与上面算出的半径相等! 因而,曲率半径K=1/r=2/(1+4a2)3/2 抛体运动和圆周运动都是曲线运动,但在高中课本里它们是分开学习的,大家或许曲线运动学得都不错,但或许很少有人想过抛体运动和圆周运动的内在联系。 高中阶段数学还没有曲率半径的概念,写本文的目的并不在于提前灌输曲率知识,也并不代表这种求法能够替代微积分。表面上看,这是一种新的数学求法,但实质上是以数学的形式为物理服务,目的是让大家看到抛体运动和圆周运动这两种曲线运动并不是割裂开的,它们内部有着非常大的联系,甚至可以说本质是相同的,我们甚至可以将抛体运动视为由无数个圆周运动组合而成!

曲率半径

曲线的曲率 曲线的下凸和上凸说的是曲线的弯曲方向,而曲线的曲率说的是曲线的弯曲程度。直线段没有弯曲,所以认为它的曲率为0. 一般情形下,如图9,弧 AB 的全曲率规定为起点A 处切线方向与终点B 处切线方向的偏 差θ?. 可是,弧CD 的全曲率与弧AB 的全曲率相同,但前者显 然比后者弯曲得更厉害一些。这就是说,弧的弯曲程度与弧本身 的长度有关。因此,就像测量物理量或几何量时先确定一个单位 那样,把单位长度弧的全曲率取作测量弧时曲率的单位,而把长 度为s ?的弧的全曲率θ?同弧长s ?的比值/s θ??,称为该弧的 平均曲率。它有点像质点运动的平均速度。像定义质点运动的瞬时速度那样,把极限 s s s K s d d lim lim 0A B A θ θθ=??=??=→?→ 定义为弧AB 在点A 处的曲率 (其中θ?为弧AB 的全曲率, s ?为弧AB 的长度)。 对于半径为R 的圆周来说 (图10),由于θ?=?R s , 所以圆周上任一点处的曲率都相等,且曲率为 R s s K s 1 d d lim 0==??=→?θθ (半径的倒数) 对于一般的弧来说,虽然弧上各点处的曲率可能不尽相同,但是当弧上点A 处的曲率 0A K ≠时,我们可以设想在弧的凹方一侧有一个圆周,它与弧在点A 相切 (即有公切线) 且半径1/A A R K =. 这样的圆周就称为弧上点A 处的曲率圆;而它的圆心称为弧上点A 处的曲率中心。如图11中那个抛物线在原点O 或点(1,)A a 的曲率圆。请读者注意,因为曲率....有可能是负数......(在实际应用中,有时把绝对值A K 称为曲率),而曲率半径要与曲率保持相同.............的正负号....,所以曲率半径也有可能是负数.............。保留曲率或曲率半径的正负号,以便说明曲线的 对于用方程)(x y y =)(b x a ≤≤表示的弧(图12),由于 ()tan y x θ'=, a r c t a n (y x θ'= 所以,若有二阶导数()y x '',则 [] 2 () d d 1()y x x y x θ''= '+ 图10 图11 图12 )

相关文档