文档库 最新最全的文档下载
当前位置:文档库 › 川西茶区土壤重金属元素背景值及其评价

川西茶区土壤重金属元素背景值及其评价

川西茶区土壤重金属元素背景值及其评价
川西茶区土壤重金属元素背景值及其评价

三种土壤重金属快速检测仪的检测原理及方法

三种土壤重金属快速检测仪的检测原理及方法 土壤重金属污染目前是我国面临非常严峻的问题,所以市场上检测土壤重金属仪器层出不穷。 测量土壤重金属目前主要是有下面几种方法: 1、原子吸收光谱法 这种方法是相对比较传统的测量重金属的方法,先将土壤风干,再经过消解处理、定容,之后制备标准溶液,之后上机操作测量。测量原理是利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度;它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。这种原理测出来相对精度较高,只是测量的时间上相对过长,通常整个过程需要24小时出结果。 2、伏安极谱法 这种方法也是先将土壤风干,再经过消解处理,然后将浸提液放入极谱仪中,直接测量。其原理是通过将一个变化的电压信号施加到电极上,而后测量电极的响应电流来测量重金属的含量,这种方法与原子吸收光谱法相比,测量精度更高,运行成本低,可以做形态分析等。 3、X射线荧光光谱法 X射线荧光光谱分析法利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。这种方式测量土壤重金属无需将土壤进行前处理,测量速度快,精度也能达到ppm 级。非常适合拿到野外走哪儿测哪儿,测量结果还能保存,有些还可以进行GPS 定位,记录什么地方土壤测量的结果是多少。并且测量时不存在任何耗材,无需任何使用成本。目前做的比较好的品牌有托普云农的土壤重金属快速检测仪,设备小巧,配有专门分析土壤模块,所以相对测量精度高。非常适合野外快速测量土壤重金属。 以上介绍的这些测量土壤重金属的方法都是目前市场上相对成熟的测量土壤重金属的方法,也是比较常规的方法。可以根据自己的需要选择合适的土壤重金属检测仪。 仪器名称:托普云农土壤重金属快速检测仪仪器型号:TPJS-B 金属检测仪、便携式重金属检测仪

河南省主要元素的土壤环境背景值_邵丰收

N ●能源环保●表1 河南省土壤A 、B 、C 层背景值统计量及范围 单位:mg /kg (另注明者除外) 层 样 统 元 点 计?素 次 数量算 术几 何平均值标准差平均值标准差分布类型95(%)范围值 层 样 统 元 点 计?素 次 数量算 术几 何平均值标准差平均值标准差分布类型95(%)范围值Cu Pb Zn Cd Ni Cr H g A 40720.0 5.919.9 1.35对11.0-36.1B 25721.7 6.421.3 1.36对11.5-39.2C 33820.7 6.820.6 1.44对10.03-42.49A 40722.3 5.321.8 1.27对13.6-35.0B 25721.5 4.921.0 1.28对13.0-34.1C 33821.3 5.420.8 1.30对12.4-34.8A 40762.513.561.9 1.25对40.1-95.7B 25763.013.962.2 1.27正35.3-90.6C 33863.113.962.9 1.25正35.4-90.9A 4070.0650.0210.065 1.4对0.034-0.124B 2570.0620.0220.060 1.5对0.030-0.121C 3380.0580.0220.057 1.5对0.027-0.120A 40727.47.927.3 1.31对16.0-46.4B 25729.77.9129.1 1.31正13.9-45.5C 33829.68.930.0 1.33对11.9-47.3A 40563.214.462.5 1.26正34.5-91.9B 25665.815.065.4 1.25对42.0-102.0C 33565.318.164.8 1.31正38.2-109.8A 4070.0250.0130.026 2.0对0.007-0.097B 2560.0450.0140.025 2.0对0.007-0.093C 3360.0200.0110.020 2.0对0.005-0.076As Co V Mn F 有机质(%)p H A 4079.83.99.4 1.6对 4.0-21.7B 25711.04.310.4 1.48正 2.5-19.5C 33810.64.810.2 1.57正 1.1-20.2A 40711.53.611.3 1.39对 5.8-21.8B 25712.13.811.8 1.38对 6.2-22.5C 33812.33.912.2 1.43对 6.0-24.5A 407118.747.3118.21.575对47.6-293.1B 257106.438.4107.41.569对43.6-264.5C 337110.439.2112.01.553对46.5-269.9A 407567158570 1.35对316-1029B 257597189590 1.35对324-1075C 338618230605 1.44对293-1250A 407439139442 1.42对221-888B 255457159454 1.43对224-921C 336477167474 1.44对229-984A 382 1.390.83 1.35 2.13对0.30-6.10B 2550.760.490.71 2.2对0.15-3.32C 3340.590.370.57 2.5对0.10-3.35A 3737.71.07.6 1.2正5.8-9.6B 2298.00.78.0 1.1正6.6-9.4C 3067.90.87.9 1.1正6.4-9.4表2 国内外土壤环境背景值对比表 单位:mg /kg (另注明者除外) 元素 符号国内土壤背景值国外土壤背景值河南省土壤背景值黄河下游潮土背景值全国土壤背景值日本土壤背景值美洲大陆连片地区世界土壤背景值中位数95%范围值平均值95%范围值中位数95%范围值几何均值算术均值中位数全距中位数全距Cu 20.011.0-36.121.420.6-22.220.77.3-55.125.5024.8217<1-700302-250Pb 21.813.6-35.014.413.9-14.923.510.0-56.118.1017.1219<10-700352-300Zn 62.540.1-95.765.163.4-66.868.028.4-161.157.3054.8960<5-2500901-900Cd 0.0640.034-0.1240.0910.088-0.0940.0790.017-0.3330.380.330//0.350.01-2.00Ni 27.316.0-46.424.924.1-25.724.97.7-71.019.3018.5819<5-700502-750Cr 63.334.5-91.953.652.4-54.957.319.3-150.228.3025.67541-2000705-1500H g 0.0260.007-0.0970.0220.020-0.0240.0380.006-0.272////0.060.01-0.50As 9.8 4.0-21.712.9412.57-13.329.62.5-33.57.20 6.827.2<0.1-9760.1-40.0Co 11.2 5.8-21.810.259.87-10.6311.64.0-31.2//9.1<0.3-7080.05-6.50V 112.747.6-293.1//76.834.8-168.2//80<7-500903-500M n 560316-1029600578-623540130-1786450.3431.99600<200-7000100020-10000F 433221-888453441-463453191-1012////20020-700有机质(%)1.290.30-6.10/ /2.00.3-13.2//////p H 7.95.8-9.6//6.84.1-10.4//////河南省主要元素的土壤环境背景值 河南省环境保护研究所 邵丰收 周皓韵 摘要 根据《河南省土壤环境背景值研究》成果,给出了河南省境内Cu 、Pb 、Zn 、Cd 、Ni 、Cr 、Hg 、As 、Co 、V 、M n 、F 、有机质等 元素(项目)的背景值,分析了背景值在剖面上的分部特征,并与 国内外背景值进行了比较。 关键词 土壤 元素 背景值 1 背景值概况背景值的概念始于地球化学,常被理解为克拉克含量,也称 地球化学丰度。在环境科学中,背景值表征岩石、土壤、水、大气、 生物等环境要素在自然界的存在与发展过程中形成的本身固有 的物质组成和结构特征,反映环境原有状况。土壤环境背景值即 是土壤在其自然成土过程中形成的物理、化学特征。土壤环境背 景值的研究,对于评价区域性环境质量,制定各类环境标准、法 规,研究各类污染物在土壤中的迁移转化规律,进而预测、预报 环境污染的发展与变化趋势,制定环境治理计 划,合理规划工农业发展布局等,具有重要意义。国外自60年代即有美国、前苏联、日本等国家开始了土壤背景值方面的研究,国内从70年代由中科院有关研究所在北京、南京等地开展了土壤环境背景值研究,在1987年国家还将土壤环境背景值研究列为“七五”重点科技课题进行攻关。河南省土壤环境背景值研究起步较晚,仅有省科学院地理所于1980-1982年间 进行了主要针对农业项目的背景值调查。 2 《河南省土壤环境背景值研究》课题概 况《河南省土壤环境背景值研究》是国家“七五”攻关项目《全国土壤环境背景值研究》(项目编号75-60-01-01)河南分课题(合同号75-60-01-01-13)的扩大和延伸,在完成国家课题下达的河南省内 86个土壤剖面环境背景值调查与研究基础上,将研究对象扩大到全省12个主要土类407个土壤剖面,分析样本数1047个,共取得有效实验数据17178个。课题于1987年2月开始,1996年6月结束,1996年11月通过河南省环保局主持的成果鉴定。1997年5月获得河南省环保局一九九七年度科技进步一等奖,1997年11月,获河南省科技进步三等奖。3 河南省土壤元素背景值表示方法土壤元素背景值有多种表示方法,一般按其在土壤中的丰度,即元素在土壤中的含量的算术平均值来表示。《河南省土壤环境背景值研究》采用《全国土壤环境背景值研究》课题组规定的方法,以数学期望值(算术平均值,几何平均值,中位数等)来表示背景值集中的趋势,用相应的标准差来表示其离散程度,并据以建立背景值的表达方式,其数学处理过程如下:①对元素测定的原始数据进行顺序量统计,用偏度峰度法确定分布类型。 ②根据分布类型,剔除异常值:对于分布类型属于正态分布的元素,剔除X -±3S (X -为算术平均 值,S 为标准偏差)以外的异常值;对 于对数正态分布的元素,剔除M /D 3 ~M D 3(M 为几何平均值,D 为几何 标准偏差)范围以外的异常值。③根据分布类型,确定背景值表 达方式和参数:对于属于正态分布的元素,用X -±2S(X -表示95%置信度的背景值范围;对于属于对数正态分布的元素,用M /D 2~M D 2表示95%置信度的背景值范围。 4 河南省土壤主要元素的环境背景值按上述原则确定出的河南省A 层(表层)、B 层(淀积层)、C 层(母质层)土壤环境背景值见表1。为便于与国内外土壤环境背景值进行比较,将河南省土壤环境背景值及国内外部分地区土壤环境背景值主要统计量列于表2。由表1可以看出:各元素在土壤垂直剖面中(自上而下)的含量变化的总趋势为:Cu 、Zn 、Ni 、Cr 、As 、Co 、M n 、F 、p H 基本呈现增高趋势,Pb,Cd,Hg ,V ,有机质呈现降低趋势。由表2可以看出,河南省土壤环境背景值除钒(V )的范围值上限略为偏高外,大都在全国土壤背景值含量范围之内;与黄河下游潮土区背景值相比较,各元素范围值上限均明显偏高;与日本土壤背景值比较(以中位数与其几何均值比),Cd 明显偏低,Cr 偏高,其余项目接近;与世界土壤背景值比较(中位数相比),Cd 、Ni 、Pb 、Hg 、M n 明显偏低,F 略微偏高,其余项目较接近。 5 主要参考文献 5.1 河南省环境保护研究所《河南省土壤环境背景研究》1996年6月 5.2 国家环境保护局主持、中国环境监测总站主编《中国土壤元素背景值》中国环境科学出版社1990年 5.3 李健、郑春江等《环境背景值数据手册》中国环境科学出版社1989年 5.4 中国环境监测站《“七五”国家重点科技攻关项目全国土壤背景值》研究参考资料(一)~(三)1988年(内部资料)本栏责编 任瑞芳·29·

评价方法及重金属背景值

有机污染评价 有机污染评价指数A A = COD/ COD0 +DN/ DN0 + DIP/ DIP0- DO/ DO0 COD 为水体中化学需氧量的实测浓度 DN 为溶解态无机氮的实测浓度 DIP 为溶解态活性磷酸盐的实测浓度数据 DO 为溶解氧的实测浓度 COD0、DN0 、DIP0 、DO0 分别为上述各项指标的评价标准。 COD0 为3 . 0 mg/ L, DN0 为0 . 10 mg/ L, DIP0 为0 . 015 mg / L, DO0 为5. 0 mg/ L。 [ 5]国家环保总局. 水和废水监测分析方法[ M ]. 4版. 北京: 中国环境 科学出版社, 2002 渤海湾环境背景值(孟伟等, 2006) 重金属元素Cu Pb Zn C d H g 重金属环境背景值17 . 54~ 25. 86 11. 29 ~ 16 . 63 53 . 30~ 75 . 00 0 . 040 ~ 0. 136 - 土壤中重金属评价方法 (1)、单因子污染指数法 (2)、内梅罗综合污染指数法 当评定区域内土壤质量作为一个整体与外区域土壤质量比较,或土壤同时被多种重金属元素污染时,需将单因子污染指数按一定方法综合起来应用综合污染指数法进行评价。综合污染评价采用兼顾单元素污染指数平均值和最大值的内梅罗综合污染指数法[23-24] P综合为土壤综合污染指数; i P:为土壤中各污染物的指数平均值; 变特征。 (3)、几何均值综合评价模式 优点是体现出较大数值污染因子在综合污染指数中的贡献作用,但是在某些情况下会反复提升或者反复降低较大值污染物对综合评价指数的作用,使评价结果失真。 (4)、污染负荷指数法

土壤中重金属形态分析方法

土壤中重金属形态分析方法 赵梦姣 (湖北理工学院环境科学与工程学院) 摘要:介绍了土壤重金属的形态及各种分析方法, 重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素, 重金属形态与重金属在土壤中的迁移性、可给性、活性的关系, 重金属污染土壤修复与重金属形态分布的关系。形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献, 并反映重金属的生物毒性。 关键词: 土壤; 重金属; 形态分析;分析方法 自20 世纪70 年代以来重金属污染与防治的研究工作备受关注,目前重金属污染物已被众多国家列为环境优先污染物。重金属的总量往往很难表征其污染特性和危害,环境中重金属的迁移转化规律、毒性以及可能产生的环境危害更大程度上取决于其赋存形态[1],不同的形态产生不同的环境效应。土壤的重金属污染是当今面积最广、危害最大的环境问题之一,其所含的重金属可以通过食物链被植物、动物数十倍的富集[2], 但土壤中的重金属的毒性不仅与其总量有关, 更大程度上由其形态分布所决定。环境中重金属的迁移性、生物有效性及生物毒性与重金属污染物在土壤中的存在形态有关, 因此, 土壤中的重金属形态分析已成为现代分析化学特别是环境分析化学领域的一个热门研究方向。

1重金属的形态及形态分析方法 根据国际纯粹与应用化学联合会的定义,形态分析是指表征与测定的一个元素在环境中存在的各种不同化学形态与物理形态的过程[3]。形态分析的主要目的是确定具有生物毒性的重金属含量,当所测定的部分与重金属生物效应或毒性一致时,形态分析的目的就可实现。重金属形态是指重金属的价态、化合态、结合态和结构态4个方面,由于土壤化学结构复杂及各种影响因素复杂多变,对土壤中的重金属形态分析,与水环境中重金属的分析方法:如溶出伏安法、离子选择电极法不同,土壤中重金属大多采用连续提取的形态分析方法对样品进行浸提和萃取,然后用原子吸收光谱法测定提取液中的每种形态重金属的浓度,许多学者关于土壤中重金属形态提出了不同的方法。FORSTNER[4]则提出了7步连续提取法,将重金属形态分为交换态、碳酸盐结合态、无定型氧化锰结合态、有机态、无定型氧化铁结合态、晶型氧化铁结合态、残渣态; SHUMAN[5]将其分为交换态、水溶态、碳酸盐结合态、松结合有机态、氧化锰结合态、紧结合有机态、无定形氧化铁结合态和硅酸盐矿物态8种形态;为融合各种不同的分类和操作方法,CAMBRELL[6]认为土壤中重金属存在7种形态,即水溶态、易交换态、无机化合物沉淀物、大分子腐殖质结合态、氧化物沉淀吸收态、硫化物沉淀态和残渣态;而具有代表性的形态分析方法是由TIESSER等人提出的[7]。将土壤或者沉积物中的金属元素分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态与残渣态。在TIESSER方法的基础上,欧共体标准物质局(European

土壤重金属检测方法汇总

土壤重金属检测方法汇总 摘要:土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性的同时,就灵敏度,测试范围,精确度,测试样品的数量等优缺点进行了对比。 关键词:土壤;重金属;检测方法 1. 前言 许多研究表明,种植物的质量安全与产地的土壤环境关系密切。重金属一般先进入土壤并积累,种植物通过根系从土壤中吸收,富集重金属,有时也通过叶片上的气孔从空气中吸收气态或尘态的重金属元素[1]。近几年,种植地因农药、肥料、生长素的大量施用及工业“三废”的污染,土壤重金属含量超标较严重且普遍,这不仅毒害土壤-植物系统,降低种植物品质,而且还会通过径流和淋洗作用污染地表水,尤其重要的是通过食物链的方式进入人体内,对于重金属的富集人体难以代谢,最终直接或间接危害人体器官的健康[2]。为此,解决这一难题,建设绿色食品和无公害食品生产基地,要求我们从土壤中的重金属检测分析抓起。本文介绍了土壤重金属的检测方法、并且对比各种方法优缺点。2.土壤中重金属检测方法 2.1 原子荧光光谱法 原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律[3],通过测定荧光的强度即可求出待测样品中该元素的含量。 原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势[4],并且克服了这2种方法在某些地方的不足。该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题[5]。该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用[6]。突出在土壤中的应用如何,以下各方法均是这个问题,相比之下2.5写的比较好

广西海陆重金属元素环境背景值结果对比

广西海陆重金属元素环境背景值结果对比 发表时间:2016-11-25T10:57:58.890Z 来源:《基层建设》2016年18期作者:黄祖心[导读] 针对铅(Pb)、汞(Hg)等潜在危害大的重金属元素的研究结果与广西土壤地球化学背景值、广西北部湾地区土壤地球化学背景值、北部湾海域地球化学背景值以及南海大陆架区域地球化学背景值进行对比,总结了广西北部湾地区重金属元素环境背景值的分布特征。 广西北海水文工程矿产地质勘察研究院广西北海 536000 摘要:针对铅(Pb)、汞(Hg)等潜在危害大的重金属元素的研究结果与广西土壤地球化学背景值、广西北部湾地区土壤地球化学背景值、北部湾海域地球化学背景值以及南海大陆架区域地球化学背景值进行对比,总结了广西北部湾地区重金属元素环境背景值的分布特征。 关键词:重金属;环境背景值 1 引言 重金属环境背景值的确定是研究与评价环境中重金属污染和制定环境质量标准的前提和基础。在各地区,由于自然物质构成与自然发展史的不同,各种与生命有关的化学物质在自然环境中的背景含量也不同,即不同的地区有不同的背景值。又因为环境背景值的数理统计计算是在“清洁样品”的基础之上,通过对不同区域元素环境背景值结果的对比,可以发掘自然环境动力下元素的运移及沉积特征。 2 各元素环境背景值汇总研究北部湾沉积物中重金属元素的地球化学特征统计表。 针对铅(Pb)、汞(Hg)等潜在危害大的重金属元素,我们将本次研究结果与广西土壤地球化学背景值、广西北部湾地区土壤地球化学背景值、北部湾海域地球化学背景值以及南海大陆架区域地球化学背景值进行对比(见表2-1、2-2),广西北部湾地区位于广西的南部,主要包括南宁、贵港、北海、钦州及防城港。其研究结果见表2-3 。 序号元素范围算数平均值 (背景值)* 均方差变化系数% Xδx Vx 1Pb 6.069-16.84311.456 5.38747.021 2Hg0.016-0.0320.0240.00834.487 表2-1 广西近岸海域重金属元素区域环境背景值汇总表 备注:表中元素含量单位为10-6 。 表2-2 广西北部湾土壤地球化学背景值统计参数表 元素(氧化物)最大值最小值变异系数背景值Pb49.8 4.10.3622.35 Hg\\0.500.067备注:本表参考《广西北部湾土壤地球化学基准值与背景值特征》羊安宏等,2014。 表2-3 北部湾沉积物中重金属元素的地球化学特征统计表 元素广西北部湾沉积物背景值南海陆架区沉积物背景值广西土壤 元素 广西北部湾沉积物背景值南海陆架区沉积物背景值广西土壤 背景值 (ug/g)平均值 (ug/g) 范围 (ug/g) 平均值 (ug/g) 范围 (ug/g) Pb28.90023.500-35.60015.69.100-22.1024.0 Hg0.0290.020-0.0410.02ND-0.0430.152 备注:本表参考《北部湾沉积物中重金属元素的地球化学特征及物源初探》张志锋等,2013。 3 毒害重金属元素环境背景值对比 不同区域毒害重金属元素坏境背景值对比见图3-1、3-2,毒害重金属在不同的区域具有不同的平均背景值,广西土壤、广西北部湾地区土壤毒害重金属平均背景值相对较高,广西近岸海域相对较低; 不同区域各重金属元素含量大小比较均表现为:Pb>Hg,每个不同区域各种元素含量大小比较排序基本一致表明,广西土壤、广西北部湾地区土壤、广西近岸海域和广西北部湾沉积物重金属元素均由同一物源提供。

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

土壤中重金属全量测定方法

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量0.5000g样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标 样),用少量去离子水润湿; 2)缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4)加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5)加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸); 6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶 液中硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.

土壤pH值测定标准

pH值 土壤pH值是土壤重要的理化参数,对土壤微量元素的有效性和肥力有重要影响。例如在pH6.5~7.5,土壤磷酸盐的有效性最大。pH>7.5,由于磷酸钙的沉淀及pH<6.5,由于磷酸铁、磷酸铝沉淀的生成而降低了磷酸盐的有效性。土壤酸性增大,使土壤中许多金属离子的溶解度增大,其有效性或毒性均增大,酸雨作用使铝的溶解度增加而造成对植物根系的中毒便是一例。土壤pH值过高(碱性土)或过低(酸性土)对植物生长均不利。 中国土壤pH值得分布大体上是北高南低,西高东低。从中国4095个表土实测pH值为3.10~10.6;中位值6.8;95%置信度的范围为4.10~10.4。不同生物气候带及不同类型的土壤pH值是不同的。 pH测定(电极法) 概述 1、方法原理 土壤试液或悬浊液的pH值用pH玻璃电极为指示电极,以饱和甘汞电极为参比电极,组成测量电池,可测出试液的电动势,由此通过仪表可直接读取试液的pH值。 2、干扰及消除 土壤样品宜过20目筛(1mm),因为土壤过细过粗对pH测定均有影响。土样应贮存在密闭玻璃瓶中,要防止空气中的氨,二氧化碳及酸性气体的影响。 3、方法适用性 本方法适用于一般土壤、沉积物样品pH值的测定。 仪器 (1)pH计:读数精度0.02pH,玻璃电极,饱和甘汞电极。 (2)磁力搅拌器。 试剂 (1)pH4.01标准缓冲溶液:称取经105℃烘干2h的邻苯二甲酸氢钾10.21g,用蒸馏水溶解,稀释至1000ml,在20℃,其pH值为4.01。 (2)pH6.87标准缓冲溶液:称取磷酸二氢钾3.39g和无水磷酸氢二钠3.53g 溶于蒸馏水中,加水至1000ml,此溶液在25℃,pH值为6.87。

水果蔬菜重金属快速检测仪各项重金属的检测原理及采用标准

水果蔬菜重金属快速检测仪各项重金属的检测原理及采用标准 重金属中特别是砷、汞、锡、铬、镉等具有显著的生物毒性,其危害性是空前的。重金属一旦进入土壤后,很难从土壤中移除。尽管土壤对重金属等有毒物质有一定的缓冲能力,但是大量重金属的存在会对土壤的理化性质、土壤微生物、土壤酶活性以及土壤生产能力产生明显的不良影响。重金属在土壤中的危害还具有长期性、隐蔽性和交互性的特点,所以土壤一旦被重金属污染,其危害性将是长远的。 如被某些重金属污染的土壤可能要100~200年才能恢复。土壤污染不仅导致土壤质量和生产力的降低,而且引起水、气环境质量的下降,严重的土壤污染将直接危及到生态安全、食品安全和人体健康,同时也影响着投资经商、对外贸易以及一些重要国际公约的履行,不利于我国的环境外交、全社会的稳定和经济增长,从而制约区域和国家的可持续发展。据报道,全国每年受重金属污染的粮食多达1 200万吨,因重金属污染而导致粮食减产高达1 000多万吨,合计经济损失至少200亿元。 从宏观来说,土壤受到重金属污染后,会影响植物生长状况,植物整体长势变差,根系发育不良,地上部生长矮小,叶片失色变形,果实畸形,最终产量下降,果实品质变差。土壤污染直接导致农产品品质不断下降,降低我国农产品的

国际市场竞争力。 食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞等重金属大量富积、积累,特别是城市郊区现象更为严重;加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤繁琐且仪器昂贵。基于这种形势,我们开发出了重金属快速测定方法,可对食品样品中的铅、砷、铬、镉、汞进行快速联合测定 现场测试 一、重金属快速检测仪检测原理: (一)、样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量是否超标。 (二)、各项重金属的检测原理及采用标准 1、重金属砷的检测原理及采用标准 采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三

晋中平原区耕层土壤主要重金属离子背景值及其评价

晋中平原区耕层土壤主要重金属离子背景值及其评 价 By milan7sheva 摘要: 土壤的重金属污染是一个严重的环境问题,土壤环境背景值的测定和研究是环境科学中的一项基础工作,它能为土壤环境质量评价、污染趋势预测、重金属在土壤中的迁移转化规律的研究提供科学依据,本文检测了晋中市盆地区土壤中As、Hg、Pb三种重金属离子的背景值并进行了初步分析,发现这三种重金属离子的背景值都比较低,处于非污染水平,Pb和Hg的背景值相关系数较大,为0.2576,用主成分分析法表明晋中市盆地区重金属离子背景水平最高的为Pb。通过采用单因子污染指数法和综合污染指数法相结合的方法,对晋中盆地土壤重金属污染进行了评价,确定了基于污染指数的土壤质量等级为1级,污染程度为安全,污染水平为清洁。 关键词:晋中市;土壤;重金属离子;背景 Abstract Soil heavy metal pollution is a serious environmental problem, the determination of soil environmental background values and research is a basic work in environmental science. It provides scientific basis for the soil environmental quality assessment, pollution trend forecasts, migration and transformation of heavy metals in the soil . This study detected the background value of As, Hg and Pb in Jinzhong City basin soil and a preliminary analysis found that the background values of these three heavy metal ions are relatively low, at the level of non-polluting correlation. The coefficient of the background values of Pb and Hg is relatively high to 0.2576. I t is detected by using Principal component analysis that the highest background levels of heavy metal ions is Pb. Soil heavy metal pollution of the Jinzhong basin were evaluated combining the single factor pollution index and the integrated pollution index method , it showed that the pollution index of soil quality and grade of a pollution degree were of safety levels Key Words: jinzhong city; soil; Heavy metal ions; Background

重金属元素对人体地危害及检测方法

人体重金属元素的危害及检测方法 一、选定课题的简要说明: 近年来,随着我国工业化快速发展,大气、水土的污染形势日益严峻,人体中金属含量超标已经越来越多的在各地发生,其对人体造成的危害不容无视,如铅毒症、水俣病等。这些中毒症状往往会给人体带来严重的永久性损伤,进而导致残疾甚至死亡。因而,只有了解重金属以及其摄入过多的症状,才能有效防重金属中毒。 由于危害人体健康的重金属含量极低,常规检查不易查出,一旦查出时往往已经出现严重的并发症,研制灵敏度更高、准确度更好、速度更快的检测方法便是现阶段追求的目标,本文将例举集中常用的测定重金属元素的检测方法。 二、信息检索说明: 1 检索关键词:重金属、人体、危害 2 检索工具和数据库: 2.1 中国期刊全文数据库 2.2 万方数据系统 三、综述: 以上检索共查找到了相关文献85篇,另外又对比参考了各个数据库推荐的相似文献,其中重点参考了中国期刊全文数据库中的20余篇文章。在经过对其的学习和理解并通过自己的总结及相应参考后,现将该课题容和自己的启示心得综述如下。 摘要对什么是重金属目前尚无严格的定义,化学上跟据金属的密度把金属分成重金属和轻金属,常把密度大于4.5g/cm3的金属称为重金属。如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种。从环境污染方面所说的重金属是指:汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物或无机物。通常认可的重金属分析方法有:微谱分析(MS)、紫外可分光光度法(UV)、原子吸收

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

某矿区土壤重金属背景值调查与重金属污染现状评价

doi:10.3969/j .issn.1007-7545.2019.010.016收稿日期:2019-04- 09基金项目:中国地质调查局地质调查项目(DD20190269,DD20160073 )作者简介:张永康(1987-),男,江西上饶人,硕士,工程师.某矿区土壤重金属背景值调查与重金属污染现状评价 张永康1,2,3,曹耀华1,2,3,柳林1,2,3,冯乃琦1, 2,3,王庆1,2,3,王振宁1, 2,3(1.中国地质科学院郑州矿产综合利用研究所,郑州450006; 2.国土资源部多金属矿评价与综合利用重点实验室,郑州450006; 3.西北地质科技创新中心,西安710054) 摘要:测试了某铜镍矿区土壤重金属元素含量,分析了铜镍矿区和对照区土壤背景值。采用地累积污染 指数法和单因子指数法评价了研究区土壤重金属污染状况,分析了水流、风力等对废石堆场周边区域重 金属扩散、传播的影响。结果表明:研究区是Ni、As元素高背景区,研究区土壤环境质量除As元素超 标外,总体质量较好,As元素超标与该地区背景值偏高有关。废石堆场周边区域, 水流、风力等因素对重金属扩散传播作用不明显。 关键词:铜镍矿;砷;土壤背景值;重金属污染;镍 中图分类号:X825 文献标志码:A 文章编号:1007-7545(2019)10-0074- 06Survey of Background Values of Heavy Metal in Soil in a Mining  Areaand Assessment of Heavy  Metal PollutionZHANG Yong-kang1,2,3, CAO Yao-hua1,2,3,LIU Lin1,2,3,FENG Nai-qi 1,2, 3,WANG Qing1,2,3,WANG Zhen-ning1,2,3(1.Zhengzhou Institute of Multipurpose Utilization of Mineral Resources,CAGS,Zheng zhou 450006,China;2.Key Laboratory  for Polymetallic Ores'Evaluation and Utilization,MLR,Zhengzhou 450006,China;3.Northwest China Center for Geoscience Innovation,Xi’an  710054,China)Abstract:Contents of heavy  metal elements(As,Cd,Hg,Pb,Cu,Zn,Cr,Ni)in soil samples weremeasured.Background values of soil in control area as well as copper and nickel mining  area wereanalyzed.Heavy metal pollutions in soil of the study  area were evaluated based on single factor indexmethod and Muller’s Geo-accumulation p ollution index method.Influence of water flow,wind and otherfactors on diffusion and transmission of heavy metal in soil surrounding  waste-rock yard was analyzed.Theresults show that heavy metal background values of As and Ni are high in the study area.Soil quality inthe study area is good except that As content is higher than the soil environmental quality  risk controlstandard(GB 15618—2018).The excess of As element is related to the high backg round value.There islittle influence of water flow,wind and other factors on diffusion and transmission of heavy metal in soilsurrounding  the waste-rock yard.Key  words:copper and nickel ore;arsenic;background value of soil;heavy metal pollution;nickel·47·有色金属(冶炼部分)(http:??ysyl.bg rimm.cn) 2019年第10期

相关文档