文档库 最新最全的文档下载
当前位置:文档库 › 生物质能源的现状和发展前景

生物质能源的现状和发展前景

生物质能源的现状和发展前景
生物质能源的现状和发展前景

生物质能源的现状和发展前景

一. 生物质能源概述化石资源的过度消耗引发了能源和环境危机, 寻找不可再生资源的替代品成为人类社会生存发展面临的重大问题。生物质能源环境友好, 可再生, 并且有丰富的存量, 且从生物质出发, 获得多种形态的能源成为了研究热点和投资热点。生物质是指由光合作用产生的各种有机体。生物质能则是以生物质为载体的、蕴藏在生物质中的能量, 即绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量形式。它除了可以提供燃烧热, 还可以制成种类繁多的重要化工品[1]及气、液、固的能源形态, 尤其是可以作为交通燃料的制备原料[2]。生物质的研究在推动化学工业和能源燃料可持续发展中已经并将继续发挥重要作用。生物质资源按其来源分类可分为: 一是木材及森林; 二是农业废弃物; 三是水生植物; 四是油料植物; 五是城市和工业有机废弃物; 六是动物粪便。生物质的应用和开发在政策层面上引起了各国的重视, 我国在生物能源产业发展十一五规划中, 突出了五个方面: 1.提高能源植物的数量和质量;2. 从原料到技术发展燃料乙醇工业。3.加快生物柴油产业化的步伐。4.推进生物质发电和供热。5.促进生物质转化为致密成型燃料。利用生物质能方式主要有: 一是热化学转换技术, 获得木炭焦油和可燃气体等高品位的能源产品,分为高温干馏、热解、生物质液化等方法; 二是生物化学转换法, 主要指生物质在微生物的发酵作用下, 生成沼气、酒精等能源产品; 三是利用油料植物所产生的生物油;四是直接燃烧技术, 包括炉灶燃烧技术、锅炉燃烧技术、致密成型技术和垃圾焚烧技术等。

二. 生物质资源量 1.全球的生物质资源生物质能仅次于三大化石能源位列第四, 存量丰富且可再生,具备很大的发展前景。全球每年经光合作用产生的生物质约1700 亿吨, 其能量相当于全球能量年消耗总量的10 倍, 而作为能源的利用量还不到总量的1% ,开发潜力巨大。目前来自生物质的能量约占全球消耗能量的14%。其中发达国家每年3%左右的能源来自生物质能, 发展中国家生物质利用约占这些国家能源消耗的35%。按照一些国际能源组织测算, 随着化石能源的枯竭和价格的增长, 到2015 年, 全球总能耗将有40%来自生物质能源。

2.我国的生物质资源据估计, 我国每年产生的生物质总量有50 多亿吨(干重), 相当于20 多亿吨油当量, 约为我国目前一次能源总消耗量的 3 倍,目前我国商品化的生物质能源仅占一次能源消费的0.5%左右。即使考虑到中国有坚持“不与人争粮、不与粮争地”的原则, 秸秆、畜禽粪便等农业农村废弃物和林木枝桠等林业废弃物发展生物质能源的存量仍然很大。据2003 年不完全统计, 我国每年仅可收集的农业废弃物及禽畜粪便资源就可达10 亿吨, 其中农作物秸秆总量则有 6.5 亿吨,除部分作为造纸原料、炊事燃料、饲料肥料和秸杆还田之外, 可作为能源用途的秸秆约

3.5 亿吨,折合 1.8 亿吨标准煤, 可以转化为 1 亿吨燃料酒精或5000 万吨生物柴油。目前各类农业废弃物每年利用率不足10%。到2010年秸秆总量将达7.26 亿吨, 相当于 5 亿吨标煤。2005 年统计我国畜禽粪便资源的实物量仅为1.38 亿吨。预计到2010 年和2015 年, 中国规模化养殖场畜禽粪便资源的实物量将分别达到25 亿吨和32.5 亿吨。我国自l981 年起,

就有计划地建设薪炭林, 到l995 年, 年增产薪材量2000- 2500 万吨, 经济林面积有 3.2 亿亩, 但是目前加工利用的还不足1/4 。林木枝桠和林业废弃物年可获得量约9 亿吨, 约有 3 亿吨可作为能源利用。我国存在约20 亿亩的山地、滩涂、盐碱地等边际性土地, 不宜种植粮食作物, 但可以作为能源等专业植物种植的土地。按这些土地的20 %利用计算, 每年约生产10 亿吨生物质。目前全国年产有机废水25.2亿吨, 废渣0.7 亿吨, 可获得沼气资源量为106.8 亿m3。城市固体废弃物年产生量约1.5 亿吨, 每年以8%- 10%的速度持续增长。三. 利用的现状为解决能源危机我国政府制定了相应政策及规划支持生物质转化技术的开发。目前我国在几项生物质能源技术的研发和产业化上取得了一定的进展: 1.沼气生物质(农作物秸秆、粪便、有机废水等有机废弃物) 在厌氧环境通过微生物发酵产生一种以甲烷为主要成分的可燃性混合气体, 即沼气。我国的沼气建设始于20 世纪五、六十年代, 是世界上沼气利用开展得最好的国家, 在厌氧发酵、工程建设等方面已居于国际领先水平。农村户用沼气系统已经成熟, 主要为农户提供生活燃料, 副产的沼液和沼渣做有机肥料部分替代化肥。已经研制出适应不同气候、原料和使用条件的标准化系列池型, 并广泛采用混凝土现浇施工工艺, 使用寿命长; 由于技术的进步, 使沼气池的使用管理变得更加简单易行; 沼气产业规模发展不断扩大, 产品基本实现了标准化生产, 规范化设计和专业化施工。目前民用沼气技术已相当成熟, 已进入商业化普遍推广阶段。污水处理的大型沼气工程技术也已基本成熟, 进入商业示范和初步推广阶段。

“十五”开始, 国家开始提供专项支持沼气建设, 到2007 年我国大中型沼气设施有5000 多处, 户用沼气池有2700 多万口。年产沼气90 亿立方米, 相当于当年天然气消费量的10%。按照国家计划, 2020 年, 中国沼气开发量将达到270 亿立方米, 年增长率为9.1%。从沼气的原料来看, 预计到2015 年, 中国规模化养殖场畜禽粪便资源的实物量将分别达到32.5 亿吨, 城市有机废水达到25吨, 如果全部利用约产生2000 多亿立方米沼气。2. 燃料乙醇中国以粮食为原料的燃料乙醇生产已初步形成规模。“十五”期间, 在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂, 已在9 个省(5 个省全部, 4 个省的27 个地(市)) 开展车用乙醇汽油销售,2005 年, 这些地方实现了车用乙醇汽油替代汽油。考虑到成本与粮食供给, 我国现今政策仅鼓励非粮生产乙醇的开发。以木薯替代粮食生产乙醇, 全国具有年产500 万吨燃料乙醇的潜力。以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高粱乙醇)已经达到年产5000 吨燃料乙醇的生产规模。由于现阶段国家对燃料乙醇实行定点生产, 再者产品本身距离交通燃料的要求还有差距, 这些甜高粱乙醇无法进入交通燃料市场, 大多数掺入了低质白酒中。另外, “八五”期间, 我国开始研究利用纤维素废弃物制取乙醇, 主要研究纤维素的稀酸水解及其发酵技术,并在“九五”期间进入中间试验阶段; 目前已经建成年产600 吨规模的纤维素废弃物制取乙醇燃料技术中试设施。3. 生物柴油由生物质替代石油原料制取汽油和柴油, 是可再生能源开发利用的重要方向, 研究方向主要集中在催化转化为适宜的油品或含油品

的混合物再进一步分离。生物柴油是一种优质的生物液体燃料, 其生产原料主要为廉价植物油和纤维性生物质。目前基于廉价植物油为原料的转化技术国内外已有突破性进展, 在尽量降低转化过程中能耗的前提下提高转化率并保证油品质量是生物柴油市场化的关键。上世纪80 年代末, 欧美国家投入大量的人力、财力、物力开发利用生物柴油。美国相继在1996年和2000 年颁布标准, 完善生物柴油的产业化条件, 政府实行积极鼓励, 在生物柴油的价格上给予一定的补贴。德国也于2001 年在海德地区投资5000 万马克(7马克约合0.26 元人民币), 兴建年产10 万吨的生物柴油装置。我国在1981 年已有用菜籽油、棉籽油等植物油生产生物柴油的试验研究。科技部已将生物柴油技术列入十一五国家863 计划和国际科技合作计划, 产业化方面已实现多处中试和示范线。外国公司也进军中国, 外国公司分别在山东威海市和黑龙江佳木斯市建设年生产能力25 万吨和20 万吨的生物柴油厂。目前利用我国自主知识产权的技术在海南、福建龙都已开发出并相继建成了万吨级的生产线。预计中国生物柴油产量2010 年前约可达每年100万吨。由于受到原材料来源和价格的影响大多数企业处于停产或半停产状态。相比之下, 以纤维为原料生产生物柴油的技术发展的要慢, 到目前为止, 还处于工业化示范阶段,且产生的生物柴油品质存在较大差异。但是由于这条技术路线原材料量大、价格可控, 如果生产成本合理, 将更有发展前景。 4. 生物质发电中国生物质发电技术可分为直接燃烧发电、混合燃烧发电、气化发电和沼气发电。直接燃烧发电和混合燃烧发电都是以固体生物质为燃

料。气化发电和沼气发电是以生物质汽化后再燃烧发电。固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。直接将具有生物质的原料进行燃烧发电处理是生物质能转化速度较快的一种方式, 从1988 年第一座秸秆生物燃烧发电厂在丹麦投产以来, 在一些欧美发达国家发展迅速并得到广泛应用。美国在2000 年就已有超过1200 个燃烧发电厂在正常运行, 总装机容量为1200 万kW, 年发电900 亿kW。中国生物质燃料发电也具有了一定的规模, 2006 年底全国生物质能发电累计装机容量220 万kW, 其中蔗渣热电联产170 万kW, 主要集中在南方地区的许多糖厂利用甘蔗渣发电。中国第一批农作物秸秆燃烧发电厂在河北石家庄市和山东菏泽市建成, 装机容量分别为2x12 兆瓦和25 兆瓦,发电量分别为 1.2 亿千瓦时和 1.56 亿千瓦时, 年消耗秸秆20 万吨。目前, 秸秆直燃发电技术仍存在着缺乏核心技术和设备、发电成本偏高、秸秆收储运困难等问题。中国沼气发电技术一方面积极引进了国外先进技术, 诸如兰州花庄奶牛繁殖中心引进了捷克沼气热电联产设备; 另一方面, 国产沼气发电机组也已基本成熟,维柴、胜动等厂家生产的燃气发电机组的技术性能指标已接近国际先进水平。2006 年完成生物质气化及垃圾填埋气发电3 万kW, 在建的还有9 万kW。中国生物质气化集中供气系统的秸秆气化站保有量539 处, 年产生物质燃气1.5 亿立方米; 年发电量160千瓦时的稻壳气化发电系统已进入产业化阶段。5. 生物质致密成型燃料生物质压块成型是将秸秆、稻壳、锯末、木屑等有机废弃物,用机械加压的方法, 使无定型、低发量的生

物质原料压制成具有一定形状、密度较高的固成型燃料。由此, 半松散的、低热值的生物质加工成热值高及能源密度高的能量块。从成型工艺上可分为常温压缩成型、热压成型和碳化成型三类。成型燃料热性能优于木材,与中质混煤相当, 而且点火容易,便于运输和贮存, 可作为生物质气化炉、高效燃烧炉和小型锅炉的燃料。生物型煤与原煤成本低等优点, 既能节省能源, 又能明显减少大气污染, 具有储存、运输和使用方便等特点。中国生物质固体成型技术的研究开发已有二十多年的历史,现在已达工业化生产规模。但由于压缩技术环节的问题, 成型燃料的压缩成本较高。目前, 中国(清华大学、河南省能源研究所、北京美农达科技有限公司) 和意大利(比萨大学)两国分别开发出生物质直接成型技术, 降低了生物质成型燃料的成本, 为生物质致密成型燃料的广泛应用奠定了基础。四. 生物质能源应用技术分析生物质转化方式多样,同一原料有多种可行的转化方式, 但是经济效益和环境效益却存在差异。沼气技术既可以处理掉大量工农业废弃物并转化为能量, 又可以解决农村和中小城镇的生活燃料问题, 同时也为农民提供了生物质农肥, 实现了循环物质的良性循环。但是目前生物质制沼气, 投资/产出的经济效益并不高; 主要效益是环境层面上。由于它是规模化养殖场畜禽粪便最合理的应用途径, 随着规模养殖的发展, 能够实现环境友好、可循环的规模发展, 也是新农村建设的亮点。从非粮食为原料制备乙醇从目前的发展情况来看, 以特定的木薯等淀粉类作物替代粮食作物来说具有良好的发展前景。但是由于受到原材料数量和产地的影响, 只能在一定的区域推广和应用。而以纤维

素为原料制备乙醇无论从技术的成熟度、经济效益, 还是产品销售等方面, 都存在着困难。一、生产成本高, 没有经济效益甚至是负效益。

二、具有一定环境负担, 在生产过程中用水量大, 还存在一定量的污水需要处理。三、生产中能耗偏大, 能量转换效率偏低, 特别将低浓度非能源类乙醇, 转变为高浓度能源类乙醇时, 效率还需要进一步提高。利用生物质制造乙醇, 作为生物质能源利用的一种能源转换方式, 虽然目前看不到经济效益, 但是作为可再生替代能源是可以继续在技术方面做以探索的。生物柴油是目前被业界普遍看好的生物质能源。其两种方式的进展差异较大。直接利用植物油转换生物柴油的方式, 技术比较成熟和可靠, 品质很好, 完全可以直接作为燃油甚至内燃机燃油使用。但是由于它立足于廉价的植物油, 因此它经常受到原料的成本和产品的售价之间的挤压, 经济效益极不稳定。进入2008 年以来, 由于粮油价格普遍上涨, 生物柴油企业大多数处于停产或半停产。科学家建议, 应利用新疆等的荒漠土地资源, 培育耐旱抗碱的能源植物, 结合荒漠治理, 大规模开发能源植物种植基地, 扩大种植规模, 为我国规模化发展生物质能源提供稳定的资源量。利用纤维素转换为生物柴油的方式, 由于技术上需要进一步完善, 还没有形成大规模生产, 由于技术路线的不同, 产生的生物柴油与柴油各项关键指标特别是燃烧值和成分相比较可分为: 低品质燃油和高品质燃油。两类技术都处于研发和中试。由于其原料量大面广(农业和林业的可利用纤维性生物质总量约17 亿吨, 直接可产生高品质生物柴油约 2 亿吨), 如果具有一定的经济效益, 该项技术(特别是高品质燃油技术) 将为

生物质能源利用打开广阔的天地, 通过一段时间的发展逐步缓解我国石油对外的高依存度, 意义重大。因此要积极引导和支持, 加快技术成熟和后续推广应用的步伐。生物质发电及致密成型材料主要是在已有技术上改进, 技术的原创性空间相对较小, 依托于相关工艺技术及产业水平。其应用只能是在特殊原材料供应地区或特殊需求地区, 从行业发展、经济效益、技术进步和规模化来看, 仅仅作为生物质能源利用的过渡和补充方式。五. 未来的前景和建议中国拥有丰富的生物质资源, 预测在2020 年前后中国的年农业废弃物资源实物量( 干重) 近20 亿吨, 可利用超过11 亿吨。林业可利用生物质资源总量将超过20 亿吨, 其中50%可以利用。全国作为生物能源原料总量达到约21 吨, 约折合15 亿吨标准煤, 超过届时全国能源消费需求预计总量28.69 亿吨标煤的一半, 不可小视。尽管如此, 生物质资源还具有极大的开发潜力, 如沙漠治理、低质地、荒坡及滩涂利用发展能源植物种植, 利用生物技术进行品种改良能源植物等等。但是生物质资源种类繁多、集中度差、不易集中; 利用时, 对技术要求高, 投资量大、政策性强。为此生物质能源利用对政策依赖性较强。该行业的发展在技术的支撑的前提下, 主要取决于政府支持。因此生物质能源作为我国未来战略能源的一部分, 应该对其的开发和利用立足于社会效益优先, 兼顾经济效益的原则。为了尽快推进生物质能源的利用建议: 首先, 尽快做好生物质能源开发和利用的调研和布局。做好我国农林业的废弃物等生物质原料的收集及生物质转化建厂离不开中央及地方政府的规划。同种原料重点满足哪项

转化技术所需, 建厂类型与规模多大, 原料如何收集成本最低, 覆盖多大产地半径的原料范围能平衡运费和规模化收益等问题都属于考虑范畴。其次, 做好战略规划。对于生物质能源利用的方式, 着眼于我国能源总体利用的大局, 将生物质能源与太阳能、氢能等其他新能源一起做整体思考和布局。在未来发展中有选择的、逐步的补充和替代现有的某些行业的化石能源。如,利用沼气解决城镇的生活使用的气体能源, 利用生物质柴油逐步替代汽车和燃烧使用的柴油等等, 都具有很大的可行性。其三, 形成完整的政策体系。针对各个区域不同的特点分类指导、细化各项优惠政策和支持措施, 对各种条件适合的地区尽快上马, 形成示范效应, 同时总结经验。尽快推广。其四, 加快关键技术的研究和推广。对生物质能源利用中存在的关键问题, 加大支持力度和组织措施, 尽快攻关。促进技术成熟, 缩短从研发到产业化应用的中间环节。政府对新技术的扶持与政策优惠对生物质能源的应用和发展有决定性的作用。

生物质能源的利用

简述生物质化学转化技术 本文本课题组研究方向对生物质能的利用做了简要介绍。 引言 生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体。从狭义上讲,生物质主要是指农林生物质,主要包括农业秸秆和乔灌木等木质纤维原料。这些农林生物质数量巨大,具有可再生、再生周期短、可生物降解、环境友好等优点[1]。在广大的农村,农林生物质主要用于直接燃烧产热,此外,部分用作饲料、肥料以及制浆造纸原料,然而这些领域的利用量不足农林生物质总量的50%。大量的农林生物质被弃置于露天或焚烧,既造成环境的污染,又造成资源的极大浪费。随着石油等化石资源贮量的逐渐减少,从农林生物质等可再生资源转化利用获得新材料、化工原料、能源和功能食品及药物,补充化石等不可再生资源的缺口,正成为一种新的发展趋势,很多国家特别是发达国家已将此列为经济和社会发展的重大战略[2]。对我国这样一个化石资源短缺、人口众多、经济持续快速发展的大国,推动农林生物质的高效转化利用,具有更突出的迫切性,这也是事关我国农业、农村和农民发展的重大问题,将是我国新世纪的工业结构调整与升级的重点战略。 1 农林生物质的化学成分 农林生物质细胞壁主要由纤维素、半纤维素和木质素组成,其质量占细胞壁的80%~95%,是构成植物纤维原料的主要化学成分[3]。在生物质中,这三种成分构成了植物体的支持骨架,其中纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素则是填充在纤维之间和微细纤维之间的“粘合剂”和“填充剂”。不同种类的植物,细胞壁中的化学组成不同,半纤维素的含量也不同,表1 列举了几种农林废弃物的化学组成。 表 1农林生物质的化学组分 (%绝干原料) Table 1-1 Chemical composition of forest and agricultural biomass 种类水溶性成分纤维素半纤维素木质素蜡灰分 麦草 4.7 38.6 32.6 14.1 1.7 5.9 稻草 6.1 36.5 27.7 12.3 3.8 13.3 黑麦草 4.1 37.9 32.8 17.6 2.0 3.0 大麦草 6.8 34.7 27.9 14.6 1.9 5.7 燕麦草 4.6 38.5 31.7 16.8 2.2 6.1 玉米秆 5.6 38.5 28.0 15.0 3.6 4.2 玉米芯 4.2 43.2 31.8 14.6 3.9 2.2 蔗渣 4.0 39.2 28.7 19.4 1.6 5.1 油棕榈纤维 5.0 40.2 32.1 18.7 0.5 3.4 1.1 纤维素

我对生物能源前景的看法

我对生物能源前景的看法 摘要 自人类迈进二十一世纪以来,开发新能源成为全世界解决能源问题的共同出路。与化石燃料相比,新能源具有可再生、对环境友好等特点,更符合人类可持续发展的目标。其中,太阳能、风能、地热能、水能和潮汐能,是开发较早的新能源,已在实际生产生活中发挥了重要作用。曾一度被人们看好的核能,有着极高的能量值,可是其高额的研究经费和潜在的巨大毁灭性,令世界大多数国家望而却步。而作为新能源中“排行”靠后的生物能源,却在最近几年内忽然人气锐增,势如破竹,被看作是“新能源家族中可实现度最高的未来能源”。近年来,随着生命科学、生物技术、营养学、现代化工、食品科学等学科的不断发展,对生物资源中的活性成分有了新的认识,为生物资源的开发利用拓宽了思路,注入了新的活力,展示了广阔的前景。 关键词:清洁能源;安全能源;可再生;低碳经济 一、“低碳经济”势在必行 随着汽车的逐渐家庭化,能源的消耗急剧增加,油价的不断攀升,使人类猛然惊醒,不得不开始反思和纠正自身不科学地利用能源的行为。在深刻反思贪婪性消耗能源行为而觉醒的基础上,及时把发展新能源、节约能源、保障能源安全和可持续发展置于经济社会发展的战略地位,建立健全起符合本国实际需要的能源安全保障体系。就我国而言,确保为13亿人口提供安全的、低成

本的“环境友好型”新能源。能源生产和消费量巨大的我国,开拓清洁能源,合理利用能源,千方百计减少“碳排放”、乃至“零排放”,振兴“低碳经济”,已成为势在必行、刻不容缓的重大战略举措。 我国的终极目标是,要逐步实现碳排放低增长、零增长、乃至于负增长,完成由“高碳”向“低碳”的过渡。然而,由各种客观条件决定,我国只能逐步地探求“碳解锁”之道,不断降低单位能源消费量的碳排放量,即降低碳强度。与此相适应,选择适用本国的、包括碳捕捉、碳封存、碳蓄积等多种技术方式;特别是采取化石能源替代、利用“低碳能源”和“无碳能源”等技术途径,以达到控制和降低二氧化碳的排放量和排放速度,最终实现在经济持续增长的同时,碳排放显著下降的目标。与根本转变经济发展方式并行,人们的消费方式也必须革新和改变。经济学意义的消费,包括生产消费和生活消费。要双管齐下,扭转人们的高碳消费倾向和碳偏好,摒弃挥霍无度的高消费行为,提倡科学理智、健康文明的消费风尚,以有效减少化石能源消费量,告别奢华的“高碳生活”,迎接质朴的“低碳生存”。广义而言,低碳生存是一种理智、健康、持续的生存方式。它体现出先进文明的能源消费价值观,并依据“低碳程度”采取低碳消费方式,主要包括:“恒温消费”,即消费过程中温室气体排放量最低;“节约消费”,即消费主体对资源和能源的消耗量最经济;“安全消费”,即消费结果对消费主体和生存环境的损害最小;“可持续消费”,即有利于社

生物质能论文

生物质能的现状及发展 商学院 生物质能的现状及发展 一、生物质能概述 化石资源的过度消耗引发了能源和环境危机, 寻找不可再生资源的替代品成为人类社会生存发展面临的重大问题。生物质能源环境友好, 可再生, 并且有丰富的存量, 且从生物质出发, 获得多种形态的能源成为了研究热点和投资热点。生物质是指由光合作用产生的各种有机体。生物质能则是以生物质为载体的、蕴藏在生物质中的能量, 即绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量形式。它除了可以提供燃烧热, 还可以制成种类繁多的重要化工品及气、液、固的能源形态, 尤其是可以作为交通燃料的制备原料。生物质的研究在推动化学工业和能源燃料可持续发展中已经并将继续发挥重要作用。生物质资源按其来源分类可分为: 一是木材及森林; 二是农业废弃物; 三是水生植物; 四是油料植物; 五是城市和工业有机废弃物; 六是动物粪便。生物质的应用和开发在政策层面上引起了各国的重视, 我国在生物能源产业发展十一五规划中, 突出了五个方面: 1.提高能源植物的数量和质量;2. 从原料到技术发展燃料乙醇工业。3.加快生物柴油产业化的步伐。4.推进生物质发电和供热。5.促进生物质转化为致密成型燃料。利用生物质能方式主要有: 一是热化学转换技术, 获得木炭焦油和可燃气体等高品位的能源产品,分为高温干馏、热解、生物质液化等方法; 二是生物化学转换法, 主要指生物质在微生物的发酵作用下, 生成沼气、酒精等能源产品; 三是利用油料植物所产生的生物油;四是直接燃烧技术, 包括炉灶燃烧技术、锅炉燃烧技术、致密成型技术和垃圾焚烧技术等。 二、生物质资源量 1.全球的生物质资源 生物质能仅次于三大化石能源位列第四, 存量丰富且可再生,具备很大的发展前景。全球每年经光合作用产生的生物质约1700 亿吨, 其能量相当于全球能量年消耗总量的 10 倍, 而作为能源的利用量还不到总量的 1% ,开发潜力巨大。目前来自生物质的能量约占全球消耗能量的14%。其中发达国家每年 3%左右的能源来自生物质能, 发展中国家生物质利用约占这些国家能源消耗的 35%。按照一些国际能源组织测算, 随着化石能源的枯竭和价格的增长, 到 2015 年, 全球总能耗有 40%来自生物质能源。 2.我国的生物质资源 据估计, 我国每年产生的生物质总量有 50 多亿吨(干重), 相当于 20 多亿吨油当量, 约为我国目前一次能源总消耗量的 3 倍,目前我国商品化的生物质能源仅占一次能源消费的 %左右。即使考虑到中国有坚持“不与人争粮、不与粮争地”的原则, 秸秆、

中国生物质能源开发利用现状及发展政策与未来趋势

一、中国生物质能源开发利用现状20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年,生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。(一)固体生物质燃料固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为 1.2亿千瓦时和 1.56亿千瓦时,年消耗秸秆20万吨。(二)气体生物质燃料气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段。(三)液体生物质燃料液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料 “十五”期间,发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。 在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、

1-中国农村能源政策_回顾与展望

中国农村能源政策:回顾与展望 朱四海 福建省政府发展研究中心 摘 要:农村能源问题的实质是能源公平问题,向农村持续提供高品位的能源服务不仅是发展的需要, 更是农村居民的基本需求和基本权力。改革开放以来,中国农村能源政策经历了从解决农村 居民生活用能、到保障能源可持续发展、再到提高减缓和适应气候变化能力的目标演进。当 前,政策的关键是按照公共服务均等化原则,促进经济发展过程中的能源公平,并在农村可 再生能源的开发利用过程中保障农民的交易权力、提高农民的就业机会、增加农民收入。 关键词:农村能源 问题 政策 改革开放以来,中国农村能源政策的演变基本上是围绕能源问题展开的: 首先,是农村能源问题。中国农村能源政策首先是由农村能源问题引发的 。尽管政府早在上世纪50年代就关注农村能源问题,特别是关于沼气、小水电和地方煤矿的发展,但直到“六五”计划(1982)才最终确立农村能源的政策框架。 其次,是能源安全问题。1994年国务院发布的《中国21世纪议程》确立了新能源和可再生能源在未来能源系统中的战略地位,紧接着又在“九五”计划中明确了农村能源商品化、产业化的发展方向,促进能源可持续发展。农村能源问题让位于国家能源问题。 第三,是全球气候变化问题。能源消费排放的温室气体引发的全球变暖问题使得国家能源问题国际化。中国政府于2007年发布了《中国应对气候变化国家方案》,农村能源被赋予了提高减缓和适应气候变化能力的新使命。 本文从国家层面就政府围绕上述问题出台的相关农村能源政策进行了历史回顾和展望。 一、短缺时代的农村能源政策(1979~1995) 农村能源不是能源分类学上的概念,在能源政策范畴里人们没有“城市能源”的概念却有农村能源的概念,说明农村能源是一个问题。这个问题源于能源建设的长期工业服务倾向和城市偏好、农村地区长期缺乏基本的商品性能源服务,反映了广大农村主要依靠当地可获取的可再生能源(薪柴、秸秆)的“能源贫困”现实。农村能源问题已经长期存在,但在能源短缺时代,受政府政策偏好的制约,国家能源建设优先保障工业和城市的用能需求,农村能源政策手段的选择主要围绕农村地区的资源赋存展开,着力发展沼气、薪炭林、小水电、小煤炭、太阳能以及推广省柴节煤灶。由于政策制定者缺乏为政策执行提供必要的资源及其它相关条件,这一时期的农村能源政策更多表现为导向功能而非分配功能(参见“表一”),其特点有四: ⑴ 政策设计以单项技术经济政策为主,并从试点起步。政策“抓手”主要包括农业部组织的沼气建设试点县、节柴改灶试点县建设,水电部组织的、以发展小水电为主要内容的农村初级电气化试点县建设,以及林业部组织的薪炭林试点县建设。在上述试点的基础上,组建了跨部门的“国家农村能源综合建设县项目领导小组”,开展以县为单元的农村能源综合建设。 ⑵ 政策目标是模糊和多元的。上述设计的政策意图在于缓解农村能源的供应短缺,但到底“能在多大程度上解决农村能源问题”却是不清晰的,政策目标只是一个不十分明确的大方向,具体内容是在政策执行过程中逐步加以明确和修正的。由于农村能源集能源建设、农村经济社会建设、环境建设于一体,具有经济、社会、环境综合效益,政策目标一开始就是多元的。 ⑶ 政策实践是探索性和渐进性的。由于政策目标的模糊,解决农村能源问题的进程也就呈现弹性状态,政策实践没有具体的时间表。决策者只能根据以往的经验审核现有的方案,通过与以往政策的比较、考虑不断变化的客观环境,对以往政策进行局部的、小幅度的调适,在现有政策基础上实现渐进变迁。就农村能源问题本身而言,决策者并不是“不想干”,而是不知道“怎么干”,或者由于客观条件的限制“无法干”。 ⑷ 农村能源游离于国家商品性能源供给体系之外。1982年确立、并经1986年修正的“因地制宜、多能互补、综合利用、讲究效益”的农村能源建设方针,其目标基本上限于解决农村能源问题,试图通过发展沼气、薪炭林,推广省柴节煤灶,以及在有条件的地方发展

生物质能源的利用方法及发展趋势

生物质能源的利用方法及发展趋势 2013级博士研究生王波 指导老师;陈新德 生物质能源是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。生物质能源具有燃烧容易、污染少、灰分较低等优点,是可再生的清洁能源。目前所使用的化石能源导致环境污染日益严重,是造成臭氧层破坏、全球气候变暖、酸雨等灾难性后果的直接因素,而且地球上现存的化石燃料按消费量推算,在今后50~80年将最终消耗殆尽。根据生物学家估算,地球上每年生长的生物能总量约1400~1800 亿吨(干重),相当于目前世界总能耗的10倍。我国的生物质能源也极为丰富,现在每年农村中的秸秆量约6.5亿吨,到2010年将达7.26亿吨,相当于5亿吨标准煤。因此,利用生物质能源取代化石能源是解决能源问题的良好途径,发展林业生物质能源,凸显国家战略,是我国生物质能源发展的战略重点和优势。生物质能源的开发利用早已引起世界各国政府和科学家的关注。有许多国家都制定了相应的开发研究计划,包括日本的阳光计划、巴西的酒精能源计划、印度的绿色能源工程、美国的生物质产业发展路线图等发展计划。生物质能源可以通过热化学转换技术、物理化学转换技术和生物转换技术制取沼气、燃料乙醇、生物柴油、发电等。我国政府高度重视生物质能源的开发与利用。早在1992年国务院批准的《中国环境发展十大对策》中就明确提出,要“因地制

宜地开发利用和推广太阳能、风能、地热能、生物质能等新能源”。 目前有的生物质能源产业化技术主要包括以下几个方面。 一、沼气利用技术、沼气利用技术指将畜禽粪便、高浓度有机废水、生活垃圾等通过厌氧发酵生成以甲烷为主的沼气的技术,同时生成沼液、沼渣可作为有机肥施用于农田。沼气是热值较高的洁净可燃气,可用作生活和工业燃料或发电,是很好的无公害能源,沼气工程建设可带来环境效益。目前沼气技术在利用中存在有异味、二次污染等难题,另外,我国多数对沼液、沼渣工业化生产有机肥的研究停留在田间施用方法、施用效果上,缺少工程处理及转化为附加值更高的有机肥的方法;在温度较低的北方地区,沼气系统陷入启动难、维护难、微生物选育难的境地,所以该技术虽然已是产业化技术,但在使用率和技术推广工作上仍存在一定的障碍。 二、生物质致密成型技术,生物致密成型是指将木屑、秸秆等生物质经固化成型热挤压制得成型燃料的技术。其原理是利用木质素在200—300℃软化、进而液化等特点,施加一定压力即可使其与纤维素等其他组分紧密粘接,不用任何添加剂、粘接剂,可得到与挤压模具相同形状的成型棒状或颗粒燃料。其缺点是大部分纤维索类生物质在压缩成型之前,一般需要进行粉碎、干燥(或浸泡)等预处理,锯末、稻壳等勿需再粉碎的原料,需清除尺寸较大的异物。 三、生物质燃烧发电,生物质燃烧发电包括直接燃烧发电和混合燃烧发电。直接燃烧发电是指将生物质原料、城市生活垃圾送入适合生物质燃烧的特定蒸汽锅炉中,生产蒸汽,驱动蒸汽轮机进而带动发

新能源发电技术论文

新能源发电技术 学院: 电子信息学院 专业: 电气工程及其自动化 姓名: 学号: 时间: 序论 生物质新能源就是指通过生物资源生产的燃料乙醇与生物柴油,可以替代由石油制取的汽油与柴油,就是可再生能源开发利用的重要方向。受世界石油资源、价格、环保与全球气候变化的影响,20世纪70年代以来,许多国家日益重视生物燃料的发展,并取得了显著的成效。中国的生物燃料发展也取得了很大的成绩,特别就是以粮食为原料的燃料乙醇生产,已初步形成规模。 美国科学家最新的研究成果显示,作为目前应用最广泛的两种生物燃料,生物柴油与乙醇燃料尽管比化石燃料更加优越,但不可能满足社会的能源需求。研究人员发现,即使美国种植的所有玉米与大

豆都用于生产生物能源,也只能分别满足全社会汽油需求的12%与柴油需求的6%。而玉米与大豆首先要满足粮食、饲料与其她经济需求,不可能都用来生产生物燃料。在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,生物质新能源大有可为。 新能源与生物质能 通过新能源--生物质能的概述,初步展示其性质特点。同时,结合当提出了几点对策。当下时事,论述其在新农村建设中起到的作用来证明新农村的建设离不开生物质能的应用与发展,重点讲述了秸秆在实际应用中的途径与意义。而生物质能作为一种无污染,效益高的新性能源,通过查阅相关文献了解到其发展过程中存在的主要问题进行分析研究,进而生物质能,新农村建设,秸秆应用,现状分析生物质而所谓生物质能(biomass energy ),就就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态与气态燃料,取之不尽、用之不竭,就是一种可再生能源,同时也就是唯一一种可再生的碳源依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水与工业有机废水、城市固体废物与畜禽粪便等五大类。 尽快全面启动替代能源战略,加快再生能源的产业化。事实上,近

发展生物质能源的财政政策解读(doc 12页)

发展生物质能源的财政政策解读(doc 12页)

发展生物质能源的财政政策解读 黑色的石油是近代以来工业社会的核心能源,如同普罗米修斯的圣火,它给人类提供了生存和发展的巨大动力源。然而,作为化石能源,它又无比吝啬,能为人类再作奉献的时间已经屈指可数。据权威专家预计,世界石油在40-60年内将消耗完毕。同时,作为一种重要的战略商品,由于受到地缘政治以及人为炒作等复杂因素的影响,石油的供给波动不稳。 进入21世纪,寻找新能源,实施石油替代的新战略,成了世界的新潮流。 中国也一直没有停止发展新能源的努力。近日,国家财政部等五部委联合发布的《关于发展生物能源和生物化工财税扶持政策的实施意见》,使中国的生物能源发展战略正式浮出水面。记者通过对财政部经济建设司的采访,对这项关系中国未来可持续发展的战略性政策寻踪解读……

促进生物能源发展财税政策的原则导向 近年来,我国积极支持燃料乙醇的试点及推广工作,已取得明显成效。目前国内四家定点企业已形成102万吨的燃料乙醇生产能力,在推广使用中,按8-12%的添加比例,车用燃料乙醇汽油销量达到1000万吨左右,占全国汽油消费量的20%左右。中央财政支持措施主要包括,国家投入国债资金,支持河南、安徽、吉林三省燃料乙醇企业建设;实施税收优惠政策,对国家批准的四家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;建立并优化财政补贴机制,在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。可以说,在国务院总体部署下,财政积极发挥职能作用,为燃料乙醇试点工作顺利开展做出了很大努力。 今年以来,根据国务院领导的指示,经济建设司组织力量先后赴十余个省市进行调研,召开20余次座谈会,听取

生物质能源应用研究现状与发展前景

综述评论 生物质能源应用研究现状与发展前景 Ξ J IAN G J C 蒋剑春(中国林业科学研究院林产化学工业研究所,江苏南京210042) 摘 要: 生物质能是可再生能源的重要组成部分。生物质能的高效开发利用,对解决能源、生态环境问题将 起到十分积极的作用。进入20世纪70年代以来,世界各国尤其是经济发达国家都对此高度重视,积极开展 生物质能应用技术的研究,并取得许多研究成果,达到工业化应用规模。本文概述了国内外研究和开发进展, 涉及到生物质能固化、液化、气化和直接燃烧等研究技术。从我国实际情况出发,提出研究开发前景和建议。 关键词: 生物质能源;研究与发展 中图分类号:T K6 文献标识码:A 文章编号:025322417(2002)022******* 1 生物质能源的地位 生物质能源是人类用火以来,最早直接应用的能源。随着人类文明的进步,生物质能源的应用研究开发几经波折,在第二次世界大战前后,欧洲的木质能源应用研究达到高峰,然后随着石油化工和煤化工的发展,生物质能源的应用逐渐趋于低谷。到20世纪70年代中期,由于中东战争引发的全球性能源危机,可再生能源,包括木质能源在内的开发利用研究,重新引起了人们的重视。人们深刻认识到石油、煤、天然气等化石能源的资源有限性和环境污染问题。有关资料介绍[1],根据现已探明的储量和需求推算,到21世纪中叶,世界石油、天然气资源可能枯竭,而煤炭的大量使用,不仅自身贮量有限,而且由于燃烧产生大量的SO 2、CO 2等气体,严重污染环境。日益严重的环境问题,已引起国际社会的共同关注,环境问题与能源问题密切相关,成为当今世界共同关注的焦点之一。有资料表明,化石燃料的使用是大气污染的主要原因。“酸雨”、“温室效应”等等都已给人们赖以生存的地球带来了灾难性的后果。而使用大自然馈赠的生物质能,几乎不产生污染,使用过程中几乎没有SO 2产生,产生的CO 2气体与植物生长过程中需要吸收大量CO 2在数量上保持平衡,被称之为CO 2中性的燃料。生物质能源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。 林业薪炭林和农作物秸杆同属于生物质能源。在目前世界的能源消耗中,生物质能耗占世界总能耗的14%,仅次于石油、煤炭和天然气,位居第4位[2]。而在发展中国家,生物质能耗占有较大比重,达到50%以上。 我国是一个农业大国,农业人口占总人口70%以上,农村生活用能主要是依靠秸杆和薪材。据统计资料介绍,农村总能耗的65%以上为生物质能,其中薪材消耗量约占总能耗的29%。为了解决农村用能紧缺的问题,我国正在大力发展薪炭林,目前薪炭林总面积已达429万hm 2,年产生物量达到2.2亿t 左右[3]。生物质是一种可以与环境协调发展的能源,具有巨大的发展潜力。用包括生物质能在内 Ξ收稿日期:2001-04-11  作者简介:蒋剑春(1955-),男,江苏溧阳人,研究员,从事林产化学加工研究。 第22卷第2期 2002年6月林 产 化 学 与 工 业Chemistry and Industry of Forest Products Vol.22No.2 J une 2002

农村能源发展现状调研报告

农村能源发展现状调研报告 当农村出现能源短缺、用能矛盾突出时,贯彻“因地制宜、多能互补、综合利用、讲求效益”和“开发与节约并举”的工作方针显得尤为重要。坚持“群众自愿、节约优先、清洁生产、安全第一”的原则,大力推广沼气、省柴灶、节煤炉、地火垅改造等可再生能源和技术,促进农村能源经济发展,更好发挥农业的基础支撑作用,不仅是农村能源自身的现实要求,更是事关经济社会发展的重大课题。 一、我区农村能源发展现状及分析 截止年底,全区累计发展农村户用沼气6500口,占全区总农户的XX%,全区XXX个自然村,现有XXX个村用上了沼气,、突破千口大关,乡建沼气675口,占总农户的XX%,,普及率居全区榜首。新建生态卫生学校5个,新建50至100立方米小型沼气工程4处。推广节煤炉1万余个,省柴灶7XXX户,太阳能利用面积5000平方米。农村能源结构明显改善,利用效益显著提高,取得了较好的经济、社会和生态效益。全区生产沼气约200万立方米,折标煤200余吨,减少二氧化碳排放3000吨,年保护森林植被5万亩,化肥、农药使用量逐步减少,提高了农产品品质、增加了产量,每年实现增收节支2XXX万元。 (一)户用沼气普及率较高,但发展不平衡

实施天保工程和退耕还林后,耕地由原来21.6万亩下降到9.3万亩,人平由原来3.7亩下降到1.7亩。种养结构调整,劳动力大量转移,、、、和城镇化进程加快,以及大九湖湿地公园建设,致使大量煤燃料和天然气向农村延伸。在1.3万户农民中,已建沼气6XXX户,集中分布在1200米以下,占适宜建池农户的XX%。不适宜建池的有6000余户(包括生态移民、无建池宅基地、孤寡老人等)占总农户的XX%左右。低山少数村因基层组织弱化普及率低,其次因村级公路通户率低,建池成本过大,部分困难户无法享受国家优惠政策。虽然户用沼气总体需求旺盛,但区域发展不平衡。 (二)山区中小型沼气工程需求迫切 随着新农村建设发展标准的提高,在农村环境建设中,畜禽养殖以户为基础的小农经济受到了冲击,由分散养殖逐步向养殖小区过度。目前,全区中小型养殖小区100多处,每天直接排放粪尿达到20吨左右,不仅严重污染环境,而且浪费了大量的沼气资源。现已建中小型沼气工程6处,仅占规模化养殖场的3%。 当前,中小型养殖规模化生产是山区畜牧业的发展方向之一,但养殖场大多集中在水源较好、人户集中的城郊周围。大量的粪便未经处理而直接排放,给水体、农田、农户造成污染,从而出现了政府担心、百姓恼火、企业着急的尴尬局面。矛盾不断涌现,纠纷处处发生,这些都是因为“废物”没有得到有效利用而造成的。如原宋洛养殖小区、果园养殖小区等。其次是业主能源环保意识差,无长远打算。

生物质能源综合利用项目

生物质能源综合利用项目 项目建议书 东平京鲁时代生物科技发展有限公司 二零一七年五月

目录 第一章拟建项目概述 (1) 1.1项目名称 (1) 1.2 建设单位情况 (1) 1.3拟成立公司 (1) 1.4建设规模与内容 (1) 1.5投资估算及资金筹措 (2) 1.6建设周期 (2) 1.6.1初步计划 (2) 1.6.2一期工程设计 (3) 第二章项目建设的重大意义 (4) 2.1当前秸秆粪便污染情况 (4) 2.2解决污染物的有效途径 (4) 2.3本项目对当地农业发展的意义 (5) 第三章项目建设的政策性依据 (6) 第四章项目地址选择 (9) 4.1选址原则 (9) 4.2地址选择 (9) 4.3项目用地规模 (10) 4.4项目建设地基本情况 (11) 4.4.1地理位置 (11)

4.4.2气候条件 (11) 4.4.3交通条件 (12) 4.4.4农林牧情况 (12) 4.4.5旅游资源 (12) 4.4.6产业优势 (12) 第五章技术路线 (13) 第六章项目资金平衡估算 (14) 6.1投资组成估算 (14) 6.2产品年度销售收入估算 (14) 6.3年度运营成本估算 (14) 6.4投资经济性分析 (15) 6.5影响项目经济效益的主要因素 (15) 第七章项目实施计划 (15) 7.1总体计划 (15) 7.2一期工程实施思路 (15) 第八章项目实施关键点 (16) 8.1产业链规划是否完整 (16) 8.2政府支持是否到位 (18) 8.3企业的投资行为是否坚定 (19)

第一章拟建项目概述 1.1项目名称 生物质能源综合利用项目 1.2建设单位情况 建设单位:东平京鲁时代生物科技发展有限公司 法定代表人:魏光 1.3拟建设地点 山东省东平县接山镇姜庄村 1.4建设规模与内容 本项目为生物新能源项目,规划总用地200亩,利用秸秆、畜禽粪便农业废弃物,产沼气30万m3,年生产沼气9000万立方,年发电1.2亿度,年提纯燃气4500万m3,年产15万吨生物有机肥和有机无机复混肥;同时,发展无公害、绿色、有机农产品,通过有机农业示范,带动周边50公里半径内的农户共同进行有机农业种植,延伸农副产品加工和冷链物流,创建“绿色”、“生态”品牌,打造生态循环农业产业链。 主要建设内容: 1、原料仓储和预处理系统:秸秆原料仓储和预处理设施、配备运输车。 2、沼气生产系统:进出料、厌氧发酵、增温保温和搅拌等设施设备。 3、沼气净化系统:脱硫脱水设备。 4、储存系统:大型沼气存储罐。 5、沼气发电及上网单元:余热回收、上网设备与监控等。 6、天然气提纯系统:燃气提纯装备、气柜和管网等储存输配系统。

对我国生物质能源发展现状和趋势的分析

对我国生物质能源发展现状和趋势的分析 ◎王朝华 摘要:本文在介绍国际生物质能发展趋势和特点的基础上,分析我国生物质能发展和利用的现状以及发展过程中存在的主要问题。最后,从增加农民收入和优化能源利用结构的角度,提出我国生物质能进一步发展的建议。 关键词:生物质能源替代农民收入 生物质(bioma ss)是所有的土地和水生植物以及有机废物的总和。工业革命以来,大部分发达国家的能源需求通过燃烧煤、石油、天然气等化石燃料来满足。但是,生物质仍然是欠发达国家的主要能量来源。再生能源和新能源都有一个共同特征,即皆为物理态能量和仅能用于转化热与电的产品。生物质能则与众不同,它是太阳辐射能经植物加工转化的、唯一的一种化学态能量,以植物为载体,具有良好的稳定性和储能性。它既含能量,又有物质性载体,可以生产能源和非能源的物质性产品,具有原料上的多样性,如作物秸秆、林业剩余物、畜禽粪便、加工业的有机废水废渣、城市垃圾等有机废弃物以及利用低质土地种植的各种能源植物等等。除此以外,它还具有产品上的多样性,其能源产品既有物理态的热与电,又有液态的生物乙醇和生物柴油、固态的成型燃料、气态的沼气等,还有非能源的生物塑料等材料以及系列生物化工产品。生物质能生产过程也是有机废弃物和有机污染源的无害化和资源化过程,故兼有环保及资源循环利用的双重功能,生产与消费过程中的全部生命物质和能量均可进入地球生物圈循环系统,就连释放的二氧化碳也可重新被植物吸收,是真正意义上的“零碳”,可以促进农村经济发展,增加农民收入,因此,对发展中国家有特殊意义。 一、国际生物质能源的发展趋势和特点 近几年的高能源价格刺激和能源安全的考虑使生物质能真正为各国政府高度重视。各国对发展生物质能源的主要考虑有不同的侧重,但两个主要原因相同,即能源替代和环境保护。根据2007世界可再生能源报告,全球生物乙醇产量从2005年的330亿公升增长到2006年的390亿公升;其中,美国的产量为183亿公升,增幅达22%,超过巴西。巴西的燃料乙醇消费量从2005年的150亿公升增长到2006年的175亿公升,燃料乙醇供应了非柴油机动车燃料的41%,巴西机动车中有70%左右采用“混合燃料”。欧盟的燃料乙醇产量增长迅速,2006年增长了77.8%,但绝对数相对于巴西和美国仍然较少。 2006年生物柴油产量的增长幅度远远高于乙醇。生物柴油的产量从2005年的39亿公升增长到2006年的60亿公升,增幅达53.9%;其中,欧盟的生物柴油占了世界总量的75%,产量从2005年的3.6亿公升增长到2006年的4.5亿公升,增长了25%,其增长主要由德国、法国、意大利和波兰引导。2006年德国的生物柴油产量为2.8亿公升,占近一半的全球总产量。 2006年全球生物质能电力装机容量达到45GW,比2005年增加约2.3%。其中,德国、匈牙利、荷兰、波兰和西班牙等国家生物质能电力生产的年增长率在50%-100%之间;澳大利亚、奥地利、比利时、丹麦、意大利、韩国、新西兰和瑞典的年增长率在10%—30%之间。生物质能电力装机容量主要在欧盟和美国,各自占了世界生物质能装机容量的22.2%和16.9%。但发展中国家也有一些小项目在进行,例如泰国的“小电力生产商’’计划让泰国至2005年底建成50个生物质电力项目,总装机容量达到1GW。甘蔗渣电厂在其他一些国家,如菲律宾和巴西的制糖工业中得到发展。世界范围内生物质发电站,预计到2020年将会增加30000MW以上。 生物质产业已成为投资的一个热门领域,华尔街的投资商们已经接受生物乙醇是一种相对安全的长期投资项目的观点。世界自富比尔·盖茨投资8400万美元购买了太平洋乙醇股票,年产30万吨的乙醇厂就设在加州旧金山附近;硅谷阳光微软系统(Sun Microsystems)的创始人V inod K hosla的风险投资和以Ma ra thon为代表的石油、能源工业界也大举进入燃料乙醇生产领域。自1999年13134号总统令发布后,美国的森林工业即开始了与电力、石油、化工公司合作,利用林木废弃物生产能源及化工产品,美国国际石油公司等也开始剥离石油资产,用于生物质能源产品开发。B P、C a rgill、杜邦、壳牌等世界许多化学工业和石油工业在内的许多公司都在开发新的工艺技术,并建设生产厂,以便在快速增长的燃料乙醇汽油和生物柴油等领域占有一席之地。 生物质产业不仅是对化石能源的替代,有效地保护环境, 12 --

燃料乙醇的发展前景

燃料乙醇的发展前景 当前,正值国际油价上涨、能源紧张时期,各国政府都在大力发展和推广生物能源。日前,全球著名咨询机构科尔尼公司发布的《中国燃料乙醇产业现状与展望--产业研究白皮书》显示,目前我国燃料乙醇产业存在一定问题,主要表现为成本过高、生产效率偏低。对此,业内专家和企业家表示,目前我国燃料乙醇产业面临资源短缺和相关政策不明朗的问题。 十一五期间,我国将生产600万吨生物液态燃料,其中燃料乙醇500万吨。日前,国家发改委的一位官员介绍,8年前我国上马燃料乙醇项目,意在解决过剩陈化粮问题。经过1999-2005年的不懈努力,国家首批4家燃料乙醇定点生产企业已完成规划建设的102万吨产能,基本实现了十五提出的拉动农业、保护环境、替代能源三大战略目标。 粮食安全成瓶颈 目前我国是继巴西、美国之后全球第3大生物燃料乙醇生产和消费国。据悉,随着燃料乙醇的逐步推广,我国以陈化粮为原料的燃料乙醇产量从2003年的7万吨一路飙升至2006年的132万吨,如果按每3.3吨玉米产1吨燃料乙醇折算,仅2006年就消耗玉米436万吨。然而,近期作为燃料乙醇主要原料的玉米正处于供不应求状态,玉米库存的骤减使国内玉米价格猛涨,燃料乙醇出现与民争食的隐患,保障国家粮食安全成为摆在政府面前的严峻课题。业内专家分析,我国人口众多,人均耕地少,用大量粮食生产燃料乙醇必然要和人争食、争土地,造成人类生存空间越来越小,不符合我国国情。 针对部分地区发展生物乙醇燃料的过热倾向和盲目势头,2006年12月,国务院下发了《国家发展改革委关于加强玉米加工项目建设管理的紧急通知》及《国家发展改革委、财政部关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知》,要求各地不得盲目发展玉米加工乙醇燃料,同时对玉米加工项目进行清理。从这两个通知可以看出,坚持非粮为主是根本,是今后中十一'国生物燃料乙醇的发展方向。国家出台的《生物燃料乙醇及车用乙醇汽油. 五'发展专项规划》以及相关的产业政策也明确提出因地制宜,非粮为主的原则。实践证明,以粮食为原料生产燃料乙醇不符合国情,探索非粮能源资源是大势所趋。目前燃料乙醇发展规模处于前列的巴西是用甘蔗生产燃料乙醇,美国是用玉米生产燃料乙醇。但我国不具备大规模使用甘蔗或玉米的条件,随着政策限制玉米加工项目的上马,业界必须寻找玉米以外的生物质资源来生产燃料乙醇。 其实,不仅玉米可以生产乙醇,某些纤维质类原料也同样可以生产乙醇。有关专家指出。据介绍,纤维质原料主要包括草、红薯等作物及秸秆、农作物壳皮、树枝、落叶、林业边脚余料等。用非粮原料生产燃料乙醇具有重要性和可行性,既不与粮食和其他有关国计民生的作物争地、争水,且单位面积产出率高。但是,目前在我国用这些原料生产乙醇燃料还存在原材料大规模收集和运输的问题,且纤维素生产燃料乙醇的技术还有待完善。 政策尚不明朗

生物质能论文

生物质能的现状及发展 商学院

生物质能的现状及发展 一、生物质能概述 化石资源的过度消耗引发了能源和环境危机, 寻找不可再生资源的替代品成为人类社会生存发展面临的重大问题。生物质能源环境友好, 可再生, 并且有丰富的存量, 且从生物质出发, 获得多种形态的能源成为了研究热点和投资热点。生物质是指由光合作用产生的各种有机体。生物质能则是以生物质为载体的、蕴藏在生物质中的能量, 即绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量形式。它除了可以提供燃烧热, 还可以制成种类繁多的重要化工品及气、液、固的能源形态, 尤其是可以作为交通燃料的制备原料。生物质的研究在推动化学工业和能源燃料可持续发展中已经并将继续发挥重要作用。生物质资源按其来源分类可分为: 一是木材及森林; 二是农业废弃物; 三是水生植物; 四是油料植物; 五是城市和工业有机废弃物; 六是动物粪便。生物质的应用和开发在政策层面上引起了各国的重视, 我国在生物能源产业发展十一五规划中, 突出了五个方面: 1.提高能源植物的数量和质量;2. 从原料到技术发展燃料乙醇工业。3.加快生物柴油产业化的步伐。4.推进生物质发电和供热。5.促进生物质转化为致密成型燃料。利用生物质能方式主要有: 一是热化学转换技术, 获得木炭焦油和可燃气体等高品位的能源产品,分为高温干馏、热解、生物质液化等方法; 二是生物化学转换法, 主要指生物质在微生物的发酵作用下, 生成沼气、酒精等能源产品; 三是利用油料植物所产生的生物油;四是直接燃烧技术, 包括炉灶燃烧技术、锅炉燃烧技术、致密成型技术和垃圾焚烧技术等。 二、生物质资源量 1.全球的生物质资源 生物质能仅次于三大化石能源位列第四, 存量丰富且可再生,具备很大的发展前景。全球每年经光合作用产生的生物质约1700 亿吨, 其能量相当于全球能量年消耗总量的 10 倍, 而作为能源的利用量还不到总量的1% ,开发潜力巨大。目前来自生物质的能量约占全球消耗能量的14%。其中发达国家每年 3%左右的能源来自生物质能, 发展中国家生物质利用约占这些国家能源消耗的 35%。按照一些国际能源组织测算, 随着化石能源的枯竭和价格的增长, 到 2015 年, 全球总能耗有 40%来自生物质能源。 2.我国的生物质资源 据估计, 我国每年产生的生物质总量有 50 多亿吨(干重), 相当于 20 多亿吨油当量, 约为我国目前一次能源总消耗量的 3 倍,目前我国商品化的生物质能源仅占一次能源消费的 0.5%左右。即使考虑到中国有坚持“不与人争粮、不与粮争地”的原则, 秸秆、畜禽粪便等农业农村废弃物和林木枝桠等林业废弃物发展生物质能源的存量仍然很大。据 2003 年不完全统计, 我国每年仅可收集的农业废弃物及禽畜粪便资源就可达 10 亿吨, 其中农作物秸秆总量则有 6.5 亿吨,除部分作为造纸原料、炊事燃料、饲料肥料和秸杆还田之外, 可作为能源用途的秸秆约 3.5 亿吨,折合 1.8 亿吨标准煤, 可以转化为 1 亿吨燃料酒精

世界生物质能源发展现状及方向

世界生物质能源发展现状及方向 国土资源部油气资源战略研究中心 车长波等.世界生物质能源发展现状及方向.天然气工业,2011,31(1):104-106. 摘要 20世纪90年代以来,以燃料乙醇和生物柴油为代表的第一代生物质能得以发展。目前,美国为第一大燃料乙醇生产国,巴西位居第二,欧盟各国则是最主要的生物柴油生产地,其他国家也都在积极发展生物质能。生物质能的发展带来粮食种植结构偏重玉米、粮食供应总量下降、粮食(油料)价格振荡上升、粮食危机引发动荡等一系列问题。因此开发第二代、第三代生物燃料(即非粮生物燃料)成为世界各国关注的重要课题。但由于麦秆、草和木材等农林废弃物为主要原料(第二代生物燃料)的技术成本较高,真正商业化的项目较少;而第三代生物燃料是以微藻为原料生物燃料的油脂很难提炼,从海藻中提炼生物燃料的研究正处于实验室阶段,距离商业化阶段还比较远。因此,第一代生物质能短期内不会被第二、三代生物燃料所替代,第二、三代生物质能将是人类的理性选择,也是生物燃料必然的发展方向。关键词全世界生物质能源现状面临问题发展趋势燃料乙醇生物柴油 DOI:10.3787/j.issn.1000-0976.2011.01.025 20世纪90年代以来,美欧等能源消费大国和巴西等农产品贸易大国开始大力发展新型可再生能源)))生物质能[1]。当前,生物质能为以燃料乙醇和生物柴油为代表的第一代生物质能,其发展建立在对

农业资源大量占用和对农产品大量消耗基础之上,能源与农业及农产品被直接联系在一起,有可能过度开发而引发一系列问题。 1 开发现状 21世纪以来,由于国际能源价格基本上维持在高价位区间,为这一阶段的生物燃料产业发展提供了极大的支撑。玉米、甘蔗等粮食的能源化在全球很多地方得以推广[2]。随着2008年食用商品价格的高企,人们开始指责燃料乙醇的生产导致了全球粮食价格的高升,但全球生物燃料近年来却依然保持快速增长。根据Clean Edge的数据,2008年全球生物燃料(主要指 燃料乙醇和生物柴油)的产值达到348亿美元,较2007年的产值254亿美元增加37%。 1.1 美国 2005年,美国替代巴西跃升为世界头号燃料乙醇生产国,为美国经济带来了丰厚利益[3]。从2001)2006年,美国燃料乙醇产业为联邦政府和地方州政府分别增加税收19亿美元和16亿美元;同时,美国相应减少石油进口1.7亿桶,减少支出外汇87亿美元。2008年,美国燃料乙醇的生产能力增加了27亿加仑(1美加仑U3.785 L,下同),比2007年增加34%;燃料乙醇加工厂增加31家,总数达到170家,总产能为105.69亿加仑/a;燃料乙醇产量达到90亿加仑,年增长率为38.5%。美国可再生燃料协会(RFA)认为,美国燃料乙醇近年来的快速增长主要得益于乙醇的新型生产技术以及纤维素转化技术的商业化应用[4]。美国2007年出台的5能源独立和安全法6规定,到2022年前,要求国

相关文档
相关文档 最新文档