文档库 最新最全的文档下载
当前位置:文档库 › 自适应集成极限学习机在故障诊断中的应用_尹刚

自适应集成极限学习机在故障诊断中的应用_尹刚

自适应集成极限学习机在故障诊断中的应用_尹刚
自适应集成极限学习机在故障诊断中的应用_尹刚

极限学习机

1 介绍 我们在这提出一个基于在线极限学习机和案例推理的混合预测系统。人工神经网络(ANN)被认为是最强大和普遍的预测器,广泛的应用于诸如模式识别、拟合、分类、决策和预测等领域。它已经被证明在解决复杂的问题上是非常有效的。然而,神经网络不像其他学习策略,如决策树技术,不太常用于实际数据挖掘的问题,特别是在工业生产中,如软测量技术。这是部分由于神经网络的“黑盒”的缺点,神经网络没能力来解释自己的推理过程和推理依据,不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。所以需要神经网络和其他智能算法结合,弥补这个缺点。 案例推理的基本思想是:相似的问题有相似的解(类似的问题也有类似的解决方案)。经验存储在案例中,存储的案例通常包括了问题的描述部分和解决方案部分;在解决一个新问题时,把新问题的描述呈现给CBR系统,系统按照类似案件与类似的问题描述来检索。系统提交最类似的经验(解决方案部分),然后重用来解决新的问题。CBR经过二十多年的发展,已经成为人工智能与专家系统的一种强有力的推理技术。作为一种在缺乏系统模型而具有丰富经验场合下的问题求解方法,CBR系统在故障诊断、医疗卫生、设计规划集工业过程等大量依赖经验知识的领域取得了很大的成功。但是由于案例属性权值的设定和更新问题,CBR 在复杂工业过程的建模与控制工作仍处于探索阶段,尤其对于预测回归问题,研究的更少。 不同于传统学习理论,2006年南洋理工大学Huang GB教授提出了一种新的前馈神经网络训练方法-极限学习机(ELM),能够快速的训练样本(比BP神经网络训练速度提高了数千倍),为在线学习和权值跟新奠定了基础。我们提出的基于在线极限学习机的案例推理混合系统,能够使用案例来解释神经网络,用在线学习的方法为案例检索提供案例权值和更新案例权值,为在线预测某些工业生产提供了较好的模型。 2使用在线极限学习机训练特征权值的算法 2.1 训练和更新样本特征权值(不是训练样本权值的,要记好,从新选择小题目) 在这一节中我们提出如何使用在线极限学习机确定和更新案例库属性权值。首先使用固定型极限学习机【】对给出的数据进行充分的训练,使训练的样本达到预期的误差范围内。通过训练后的网络和

极限法的应用

极限法的应用 灌云高级中学 田作东 高中物理习题中常会遇到求极值的问题.一个问题是否是极值问题,往往可通过题目中“最大”、“最小”、“最高”、“最低”等表述作出判断.解决极值问题的主要方法有物理分析法和数学方法. 1.物理分析法 极值问题中有一类问题较为简单,可直接通过物理规律求解,例如汽车发动机的输出功率P=Fv,牵引力与速度大小成正比,牵引力最大则速度最小;另一类问题必须利用物理概念、规律分析物理现象、物理过程,寻找问题中的极值条件,才能求解出极值 例1: 在光滑的水平面上有两个质量均为m 的滑块A 和B ,滑块之间用一劲度系数为K 的轻质弹簧相连,开始时两滑块均处于静止状态,如图所示。若A 被质量为 m/4,速度为V 0的子弹水平击中并留在其中,则在A 与B 相互作用过程中,A 的动能最小为多大? 分析:子弹击中A 并留在A 中的过程,子弹 和A 组成的系统动量守恒,有v m 04=(m+4m )v , 所以5 v v = 。 此后A 向右运动,压缩弹簧过程中,A 减速而B 加速,当V A =V B 时,弹簧 压缩到最大限度。接着弹簧将恢复原长,在恢复过程中,A 继续减速而B 继续加速,当弹簧恢复到原长瞬间,A 减速停止而B 加速停止,此时A 具有最小动能。 A 和 B 相互作用过程中动量守恒,有v v v B A m m m +=?4 5 5450 根据机械能守恒定律,又有 2 22 02 14521)5(4521v v v B A m m m +??=?? 所以 05 10452 002 =+-v v v v A A ,解得450v v A =(另一根 5 v 舍去),此时 A 具有最小动能 2 023********mv m v E A K =??= 例2:如图所示,质量为m 的球用线吊在倾角为45o 的斜面体上,线与斜面平行,不计摩擦,求斜面体向右加速的加速度最大不能超过多少,球才不会离开斜面体。 分析:球在斜面上时,受力如下图所示,有 例2

极限学习机简介

1 極限學習機 傳統前饋神經網絡采用梯度下降の迭代算法去調整權重參數,具有明顯の缺陷: 1) 學習速度緩慢,從而計算時間代價增大; 2) 學習率難以確定且易陷入局部最小值; 3)易出現過度訓練,引起泛化性能下降。 這些缺陷成為制約使用迭代算法の前饋神經網絡の廣泛應用の瓶頸。針對這些問題,huang 等依據摩爾-彭羅斯(MP )廣義逆矩陣理論提出了極限學習(ELM)算法,該算法僅通過一步計算即可解析求出學習網絡の輸出權值,同迭代算法相比,極限學習機極大地提高了網絡の泛化能力和學習速度。 極限學習機の網絡訓練模型采用前向單隱層結構。設,,m M n 分別為網絡輸入層、隱含層和輸出層の節點數,()g x 是隱層神經元の激活函數,i b 為閾值。設有N 個 不同樣本(),i i x t ,1i N ≤≤,其中[][]1212,,...,,,,...,T T m n i i i im i i i in x x x x R t t t t R =∈=∈,則極限學習機の網絡訓練模型如 圖1所示。 圖1 極限學習機の網絡訓練模型 極限學習機の網絡模型可用數學表達式表示如下: ()1,1,2,...,M i i i i j i g x b o j N βω=+==∑

式中,[]12,,...,i i i mi ωωωω=表示連接網絡輸入層節點與第i 個隱層節點の輸入權值向量;[]12,,...,T i i i in ββββ=表示連接第i 個隱層節點與網絡輸出層節點の輸出權值向量;[]12,,...,T i i i in o o o o =表示網絡輸出值。 極限學習機の代價函數E 可表示為 ()1,N j j j E S o t β==-∑ 式中,(),,1,2,...,i i s b i M ω==,包含了網絡輸入權值及隱層節點閾值。Huang 等指出極限學習機の懸鏈目標就是尋求最優のS ,β,使得網絡輸出值與對應實際值誤差最小,即()()min ,E S β。 ()()min ,E S β可進一步寫為 ()()()111,,min ,min ,...,,,...,,,...,i i M M N b E S H b b x x T ωβ βωωβ=- 式中,H 表示網絡關於樣本の隱層輸出矩陣,β表示輸出權值矩陣,T 表示樣本集の目標值矩陣,H ,β,T 分別定義如下: ()()()()()111111111,...,,,...,,,...,M M M M N N m N M N M g x b g x b H b b x x g x b g x b ωωωωωω?++????=????++? ? 11,T T T T M N M N N N t T t βββ??????????==???????????? 極限學習機の網絡訓練過程可歸結為一個非線性優化問題。當網絡隱層節點の激活函數無限可微時,網絡の輸入權值和隱層節點閾值可隨機賦值,此時矩陣H 為一常數矩陣,極限學習機の學習過程可等價為求取線性系統H T β=最小 範數の最小二乘解?β ,其計算式為 ?H T β += 式中H +時矩陣H のMP 廣義逆。 2實驗結果

极限法在初中物理中的应用

教学内容:极限法初中物理教学中的应用 教学重点:极限法初中物理教学中的应用 教学难点:对极限法的理解与运用 引入:问在雨中,一个人从A走到B,是走的快被淋水多,还是走的慢被淋水多?如果说走的慢被淋的水少的话,一下利用极限法就可以排除了,慢的极限就为0,这个人速度为0,那么相当于这个人一直在雨水中淋着。这是生活对极限法很好的诠释。 进行新课:极限法的实质 有些物理问题涉及的因素较多,过程复杂,我们往往难以洞察其变化规律并对其作出迅速准确的判断.但是,如果我们将问题推想到极端状态或极端条件下进行分析,问题有时会顿时变得明朗而简单. 极限法定义:将问题从一般状态推到特殊状态进行分析处理的解题方法就是极限法,又称极端法. 教学重点:极限法的应用 教学难点:极限法的理解 极限法听起来似乎陌生,但这只是在中学教学中没有对学生具体的给以定义,事实上在初中阶段, 很多地方都应用到了极限法,刚刚接触物理时就将这种方法渗透到教学中, 以便于发展学生的科学思维能力。 教材从第二章《声现象》的第一节就开始渗透极限法 .在探究声音的传播是否需要介质时,用另一个手机拨通玻璃罩内的手机,随着罩内空气的不断抽出,听到手机铃声越来越弱,利用极限法,假设罩内被抽成真空,将不能听到铃声.由此得出结论,声音

不能在真空中传播。只不过在这时,我们给它定义为“理想化模型法”,或“建立在实验基础上的推理法”而已。 教材第八章第一节《牛顿第一定律》实验“探究阻力对物体运动的影响”时发现,小车受到的阻力越小,小车运动的路程越远,应用极限法,设想小车在绝对光滑的水平面上运动,即不受到阻力作用小车将永远沿直线运动下去。著名的物理学家牛顿在伽利略等科学家研究的基础上,多次试验,深入研究,最终总结出著名的“牛顿第一定律”。 教材第十二章第三节《机械效率》中,在探究影响斜面机械效率的因素时,先让学生猜想,斜面的机械效率与斜面的倾斜程度有什么关系?由于学生的知识有限很难进行合理的猜想。不妨引导学生利用极限法的思想,让斜面无限制的倾斜以至于水平,将发现总功无限大,机械效率将减小。 教材第十八章《电学》中,实际上也应用到了极限法,就如何认识电路的串联和并联时,由于电压表的内阻很大,将电压表的内阻看作无限大,致使电流无法通过,相当于断路,而电流表的内阻很小,则趋向于零,电流表相当于纯导线,从而使一个既有电压表,又有电流表的复杂电路简化为只有用电器的电路。 1.极限法在速度中的应用 一艘小船以速度V I从上游A点到B点再返回A点用时为t1(河水流动速度为V2),若河水静止,这艘船还是以速度V1从A 点到B点再返回A点用时为t2,则t1与t2的关系是:() At1t2 Ct1=t2 D无法判断 常规解题:t1=s/(V I+V2)+s/(V I-V2) t2=s/V I+s/V I=2s/V I 若利用极限法假设V I与V2相同,则船逆水向上时速度为0,将永远向上运动,故t1

极限法在化学计算中的应用

极限法在化学计算中的应用 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围,以此来做计算或确定混合物的组成。 1.把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300mg,则 该氯化镁中的杂质可能是() A.氯化钠B.氯化铝C.氯化钾D.氯化钙 2.取 3.5 g某二价金属的单质投入50g溶质质量分数为18.25%的稀盐酸中,反应结束后,金属仍有剩余;若2.5g 该金属投入与上述相同质量、相同质量分数的稀盐酸中,等反应结束后,加入该金属还可以反应。该金属的相对原子质量为( ) A.24 B.40 C.56 D.65 3.在一定条件下,气体A可发生如下反应:2 A(g) B(g)+3 C(g)。若已知所得混合气体对H2的相对密 度为4.25。则A的式量可能是() A.8.5 B.16 C.17 D.34 4.取 5.4 g由碱金属(R)及其氧化物(R2O)组成的混合物,使之与足量水反应,蒸发反应后的溶液,得到8 g无水晶体。通过计算判断此金属为哪一种碱金属。 5.某混合物含有KCl、NaCl、Na2CO3,经分析知含Na 31.5%,含氯为27.08%(质量百分含量)。则该混合物 中含Na2CO3为( ) A.25% B.50% C.80% D.无法确定 6.0.03mol铜完全溶于硝酸,产生氮的氧化物(NO、NO2、N2O4)混合气体共0.05mol。求该混合气体的平均 相对分子质量的取值范围。 7.常温下A和B两种气体组成的混合气体(A的分子量大于B的分子量),经分析混合气中只含有氮和氢两种元素,而且,不论A和B以何种比例混合,氮和氢的质量比总大于14/3。由此可确认A为①____,B为②____,其理由是③____。若上述混合气体中氮和氢的质量比为7:1,则在混合气中A和B的物质的量之比为④____;A在混合气中的体积分数为⑤____。 8.等物质的量的NaHCO3和KHCO3的混合物9.20g与100mL盐酸反应。 (1)试分析,欲求标准状况下生成的CO2的体积时,还需什么数据(用a、b等表示,要注明单位)。 (2)利用所确定的数据,求标准状况下生成的CO2的体积: 所需数据的取值范围生成CO2的体积(标准状况) 盐酸不足时 盐酸过量时 (3)若NaHCO3和KHCO3不是等物质的量混合,则9.2g固体与盐酸完全反应时,在标准状况下生成CO2气体的体积大于L,小于L 。

极限学习机简介

1 极限学习机 传统前馈神经网络采用梯度下降的迭代算法去调整权重参数,具有明显的缺陷: 1) 学习速度缓慢,从而计算时间代价增大; 2) 学习率难以确定且易陷入局部最小值; 3)易出现过度训练,引起泛化性能下降。 这些缺陷成为制约使用迭代算法的前馈神经网络的广泛应用的瓶颈。针对这些问题,huang 等依据摩尔-彭罗斯(MP )广义逆矩阵理论提出了极限学习(ELM)算法,该算法仅通过一步计算即可解析求出学习网络的输出权值,同迭代算法相比,极限学习机极大地提高了网络的泛化能力和学习速度。 极限学习机的网络训练模型采用前向单隐层结构。设,,m M n 分别为网络输入层、隐含层和输出层的节点数,()g x 是隐层神经元的激活函数,i b 为阈值。设有N 个 不同样本(),i i x t ,1i N ≤≤,其中[][]1212,,...,,,,...,T T m n i i i im i i i in x x x x R t t t t R =∈=∈,则极限学习机的网络训练模型如 图1所示。 图1 极限学习机的网络训练模型 极限学习机的网络模型可用数学表达式表示如下: ()1,1,2,...,M i i i i j i g x b o j N βω=+==∑

式中,[]12,,...,i i i mi ωωωω=表示连接网络输入层节点与第i 个隐层节点的输入权值向量;[]12,,...,T i i i in ββββ=表示连接第i 个隐层节点与网络输出层节点的输出权值向量;[]12,,...,T i i i in o o o o =表示网络输出值。 极限学习机的代价函数E 可表示为 ()1,N j j j E S o t β==-∑ 式中,(),,1,2,...,i i s b i M ω==,包含了网络输入权值及隐层节点阈值。Huang 等指出极限学习机的悬链目标就是寻求最优的S ,β,使得网络输出值与对应实际值误差最小,即()()min ,E S β。 ()()min ,E S β可进一步写为 ()()()111,,min ,min ,...,,,...,,,...,i i M M N b E S H b b x x T ωβ βωωβ=- 式中,H 表示网络关于样本的隐层输出矩阵,β表示输出权值矩阵,T 表示样本集的目标值矩阵,H ,β,T 分别定义如下: ()()()()()111111111,...,,,...,,,...,M M M M N N m N M N M g x b g x b H b b x x g x b g x b ωωωωωω?++????=????++? ? 11,T T T T M N M N N N t T t βββ??????????==???????????? 极限学习机的网络训练过程可归结为一个非线性优化问题。当网络隐层节点的激活函数无限可微时,网络的输入权值和隐层节点阈值可随机赋值,此时矩阵H 为一常数矩阵,极限学习机的学习过程可等价为求取线性系统H T β=最小 范数的最小二乘解?β ,其计算式为 ?H T β += 式中H +时矩阵H 的MP 广义逆。 2实验结果

爆炸极限及氧浓度相关参数素材资料

爆炸极限相关参数素材资料 一.CH4 1.瓦斯爆炸基础介绍 瓦斯通常指甲烷,是一种无色、无味的气体。在标准状态(气温为0℃、大气压为101361.53Pa)下,1m3甲烷的质量为0.7168kg,而1m3空气的质量为1.293kg,甲烷比空气轻,其相对密度为0.554。甲烷的扩散性很强,扩散速度是空气的1.34倍。 甲烷无毒,但空气中甲烷浓度的增高会导致氧气浓度的降低。当空气中甲烷浓度为43%时,氧气浓度降至12%,人会感到呼吸困难;当空气中甲烷浓度为57%时,氧气浓度降至9%,人会处于昏迷状态。甲烷在空气中达到一定浓度后,遇到高温热源能燃烧和爆炸。 在煤矿资源开采过程中,发生瓦斯爆炸造成的后果极其严重。瓦斯爆炸时产生的高温高压,通过气浪以极大的速度向外冲击,给人民的生命财产安全造成巨大的损失,并且对巷道和设备器材造成重大的损坏。 在瓦斯爆炸的过程中,掀起的大量煤尘并参与瓦斯爆炸,进而在一定程度上增加了破坏的力度,其危害可想而知。 爆炸温度 根据权威机构研究表明,当瓦斯浓度超过9.5%,遇到明火时发生爆炸,爆炸产生的瞬时温度,在自由空间内高达1850℃,在封闭的空间甚至达到2650℃。由于井下巷道属于半封闭的空间,所以巷道内发生瓦斯爆炸,其爆炸温度超过1850℃,在这种高温的环境下,瓦斯爆炸产生的高温会对人员和设备造成重大伤害和损失,甚至引发井下火灾,扩大火情等灾害。 爆炸压力 矿井内发生瓦斯爆炸产生的高温,使得巷道内的气体在短时间内急剧膨胀,并且在连续爆炸以及爆炸产生的冲击波相互叠加的作用下,巷道内的压力骤然增大,爆炸产生的冲击压力会不断增加。根据权威机构测定,瓦斯爆炸产生的压力约是爆炸前的10倍,在高温高压的作用下,爆炸源处的气体以极高的速度向前冲击。 有毒有害气体 瓦斯爆炸后,将产生大量有毒有害气体。根据研究分析,瓦斯爆炸后巷道内气体的主要成份为:氧气(O2)6%~10%、氮气(N2)82%~88%、二氧化碳(CO2)4%~8%、一氧化碳(CO)2%~4%。爆炸后生成大量的一氧化碳是造成人员伤亡的重要原因。如果瓦斯爆炸时掀起煤尘,并且煤尘参与爆炸,那么产生的一氧化碳会更多、其浓度会更大,造成的危害更严重。根据相关资料统计,在瓦斯、煤尘爆炸事故中,因一氧化碳中毒而死亡的人数占总死亡人数的70%以上。按照《规程》的相关规定,入井人员要配备自救器。

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

ELM极限学习机相关

简单易学的机器学习算法——极限学习机(ELM) 一、极限学习机的概念 极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。 ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。 二、极限学习机的原理 ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输出权重。

(选自黄广斌老师的PPT) 对于一个单隐层神经网络(见Figure 1),假设有个任意的样本,其中,。对于一个有个隐层节点的单隐层神经网络可以表示为 其中,为激活函数,为输入权重,为输出权重,是第个隐层单元的偏置。表示和的内积。

单隐层神经网络学习的目标是使得输出的误差最小,可以表示为 即存在,和,使得 可以矩阵表示为 其中,是隐层节点的输出,为输出权重,为期望输出。 , 为了能够训练单隐层神经网络,我们希望得到,和,使得 其中,,这等价于最小化损失函数 传统的一些基于梯度下降法的算法,可以用来求解这样的问题,但是基本的基于梯度的学习算法需要在迭代的过程中调整所有参数。而在ELM 算法中, 一旦输入权重和隐层的偏置被随机确定,隐层的输出矩阵就被唯一确定。训练单隐层神经网络可以转化为求解一个线性系统。并且输出权重可以被确定

其中,是矩阵的Moore-Penrose广义逆。且可证明求得的解的范数是最小的并且唯一。 三、实验 我们使用《简单易学的机器学习算法——Logistic回归》中的实验数据。 原始数据集 我们采用统计错误率的方式来评价实验的效果,其中错误率公式为: 对于这样一个简单的问题,。 MATLAB代码 主程序 [plain]view plain copy

一种新型学习算法极限学习机当前研究

大连大学 论文题目:一种新型学习算法极限学习机当前研究 姓名:邹全义 学科、专业:计算机科学与技术 年级: 2015级 日期: 2016年7月

摘要 机器学习是当今大数据时代的核心研究方向,机器学习的研究成果被广泛应用到模式识别、计算机视觉、数据挖掘、控制论等领域当中,并渗透到人们日常生活的方方面面当中。而在机器学习的研究当中,预测、分类的研究占据着重要的地位,预测、分类模型的性能往往是一个应用成果与否的关键。数据挖掘,如支持向量机(SVM)、极限学习机(ELM)等,的潜力已经成为了当今机器学习的主流研究方向。传统前馈神经网络采用梯度下降的迭代算法去调整权重参数,具有明显的缺陷;(1)学习速度缓慢,从而计算时间代价增大;(2)学习率难以确定且易陷入局部最小值;(3)易出现过度训练,引起泛化性能下降。这些缺点制约迭代算法的前馈神经网络的广泛应用。针对这些问题,近几年来,许多学者研究极限学习(ELM)算法,该算法仅通过一步计算即可解析求出学习网络的输出权值,同迭代算法相比,极限学习机(ELM)算法提高了神经网络的学习速度。 关键词:神经网络;极限学习机;分类;回归;数据挖掘

目录 摘要 (1) 目录 (2) 1. ELM 算法概述 (3) 3.当前ELM的研究状况 (6) 4.几种ELM结构选择方式的对比 (8) 总结 (11) 参考文献 (12)

1. ELM 算法概述 虽然神经网络研究经过五十多年的发展,已经取得了诸多显着的理论成果,但由于大规模系统中大数据量,高维度的数据中包含的高不确定性,都使得神经网络辨识速度缓慢而难于满足实际要求。例如在数据挖掘、智能控制领域,使用神经网络控制方法虽然可以辨识高度复杂和非线性系统,解决被控对象复杂和高不确定时的建模问题,但神经网络的实时性是非常差,学习时间过久。 此外,对于大中型数据集的系统辨识和分类、回归问题,传统神经网络方法如BP网络、RBF网络、SVM算法等不仅需要大量的训练时间,还会出现“过 饱和”、“假饱和”和最优化隐含层节点数目难以确定等各种问题。2004年南洋 理工大学Huang G.B.教授等人提出了ELM算法。极限学习机(ELM Extreme Learning Machine)是一种快速的单隐含层神经网络(SLFN)[1,2]。ELM神经网络和BP神经网络、RBF神经网络一样,都是SLFN(single-hidden layer feed forward neural network)。近几年来相继提出了基于极限学习的多种神经网络学习算法, 将神经网络研究又推进了一步。在传统的人工神经网络中,网络的隐含层节点参数是通过一定的迭代算法进行多次优化并最终确定的。这些迭代步骤往往会使参数的训练过程占用大量的时间,并且,例如BP算法很容易产生局部最优解,从而使网络训练过程的效率得不到保证,同时迭代耗时比较多。 图1.1 为增强构建网络的整体性能,ELM神经网络的隐含层到输出层的之间的连接不需要迭代,该算法的特点是在网络参数的确定过程中,隐含层节点参数随机选取,在训练过程中无需调节,只需要设置隐含层神经元的个数,便可以获得唯一的最优解;而网络的外权(即输出权值)是通过最小化平方损失函数得到的最

极限学习机的回归拟合及分类

极限学习机的回归拟合及分类 单隐含层前馈神经网络(single-hidden layer feedforward neural network)以其良好的学习能力在许多领域中得到了广泛的应用。然而,传统的学习方法(如BP算法等)固有的一些缺点,成为制约其发展的主要瓶颈。前馈神经网络大多采用梯度下降方法,该方法主要存在以下几方面的缺点: (1)训练速度慢。由于梯度下降法需要多次迭代以达到修正权值和阈值的目的,因此训练过程耗时较长。 (2)容易陷入局部极小点,无法达到全局最小。 (3)学习率η的选择敏感。学习率η对神经网络的性能影响较大,必须选择合适的η,才能获得较为理想的网络。若η太小,则算法收敛速度很慢,训练过程耗时长; 反之,若η太大,则训练过程可能不稳定(收敛)。 因此,探索一种训练速度快,获得全局最优解,且具有良好的泛化性能的训练算法是提升前馈神经网络性能的主要目标,也是近年来的研究热点和难点。 本文将介绍一个针对SLFN的新算法——极限学习机(extreme learning machine,ELM),该算法随即产生输入层和隐含层的连接权值及隐含层神经元的阈值,且在训练过程中无需调整,只需要在设置隐含层神经元的个数便可以获得唯一的最优解。与传统的训练方法相比,该方法具有学习速度快、泛化性能好等优点。 1.1ELM的基本思想 典型的单隐含层前馈神经网络结构如图1所示,该网络由输入层、隐含层和输出层组成,输入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有n个神经元,对应n个输入变量;隐含层有l个神经元;输出层有m个神经元,对应m个输入变量。 图1 不是一般性,设输入层与隐含层的连接权值W为

极限曲率法及其应用

石 油学报 1997年7月ACT A PETROLEI SINICA 第18卷 第3期*苏义脑,1976年毕业于武汉钢铁学院机械系,分别于1982年、1988年获硕士、博士学位。现为石油勘探开发科学研究院教授级高级工程师,博士生导师。通讯处:北京学院路910信箱。邮政编码:100083。 极限曲率法及其应用 苏义脑* (石油勘探开发科学研究院 北京) 摘 要 水平井井眼轨道预测和控制问题的技术关键是准确计算各种造斜工具的造斜能力。在综合分析定向井轨道预 测方法和水平井预测控制特点的基础上,提出了一种计算导向动力钻具和各种转盘钻钻具组合造斜能力的新方法—— “极限曲率法”,并对国际上当前流行的“三点定圆法”及极限曲率法作了讨论和对比;给出了极限曲率法在计算工具造斜 能力和工具选型、系列工具的总体设计和井眼轨道的预测控制这三方面的应用实例,表明该方法是一种与实践相符程度 较高、实用性较好的新方法。 主题词 水平井 轨道控制 轨道预测 分析研究 1 前 言 井眼轨道预测是井眼轨道控制技术的基础和重要组成部分。对定向井井眼轨道的预测方法,目前国内外主要有[1]:(1)根据经验评选钻具组合的造斜率并以此预测井斜变化;(2)把钻头侧向力作为定量指标来预测井斜变化;(3)把钻头合力方向作为实际钻进方向;(4)把钻头轴线方向作为实际钻进方向;(5)把“平衡曲率”作为钻进曲率以确定钻进方向;(6)用岩石—钻头的相互作用模型确定钻进方向;(7)用力—位移模型确定钻进方向。 钻井实践表明,在上述几种方法中,如(6)、(7),固然可以作为精确的预测方法和手段,但预测程序中要用到地层、钻头的很多特征参数以作为输入参数,而这些参数在实际中较难准确地加以确定,因此其实际应用受到限制;如(2)、(3)、(4),因未考虑地层因素的影响,其预测结果往往误差较大;如(5),井眼实钻轨道并不会遵循“平均曲率”,在理论上和实践上均有一定问题;对(1),由于是根据经验,将使这种方法应用的普遍性受到较大限制。 水平井井眼的轨道预测是定向井井眼轨道预测的进一步扩展。从预测方法本质上没有根本的区别。但由于水平钻井本身的特殊性,有可能把上述几种不同的方法加以综合研究和发展,以形成一套在水平井中实用的轨道预测方法。 在长、中半径水平井钻井过程中,有两个突出特点:(1)在钻进过程中较普遍地采用各种弯壳体导向动力钻具,尤其在中半径水平井中,由于结构原因,钻头侧向力往往较常规定向井钻进过程中的钻头侧向力明显增大;(2)在井斜角从0°到90°的渐增过程中,地层力经历了由正变负(跨越零值)的过程。因动力钻具允许使用的钻压较小,则与钻压成正比的地层力与钻具组合产生的钻头侧向力相比是一个小量。 基于上述两个特点可知,在水平钻井中,钻具组合的造斜能力基本上确定了井眼曲率。问题的关键在于寻求一种新的方法,一方面可以通过理论分析和计算定量确定工具或下部钻具组合的造斜能力,另一方面避免输入钻井过程中很难确定的地层特性参数和钻头切削异性指数,从而使方法简单实用。这一方法正是本文提出的极限曲率法,又称K c 法。 国外目前普遍采用“三点定圆法”(Three point geometry )来确定导向钻具组合的造斜能力。但这种方法由于建立在简单的几何关系基础上,其计算结果往往与实际钻进结果误差较大,本文将对这种方法作出分析和

极限学习机elm代码

%与传统的学习算法不同,单隐层前馈神经网络(SLFNs)——极限学习机(ELM)对输入权值进行动态选择 %%清空环境变量 elm clc clear close all format compact rng('default') %% 导入数据 % [file,path] = uigetfile('*.xlsx','Select One or More Files', 'MultiSelect', 'on'); % filename=[path file]; filename='CPSO优化ELM实现分类\最终版本训练集.xlsx'; M=xlsread(filename); input=M(:,1:end-1); output=M(:,end); %% 数据预处理 [inputn,maps]=mapminmax(input',0,1); % 输出标签转换为one—hot标签 outputn=one_hot(output); n_samples=size(inputn,2); n=randperm(n_samples); m=floor(0.7*n_samples); Pn_train=inputn(:,n(1:m)); Tn_train=outputn(:,n(1:m)); Pn_valid=inputn(:,n(m+1:end)); Tn_valid=outputn(:,n(m+1:end)); %% 节点个数

inputnum=size(Pn_train,1);%输入层节点 hiddennum=160; %隐含层节点 type='sig';%sin %hardlim %sig%隐含层激活函数 %% tic [IW,B,LW,TF] = elmtrain(Pn_train,Tn_train,hiddennum,'sig'); TY2 = elmpredict(Pn_valid,IW,B,LW,TF); toc % 计算分类概率 prob0=prob_cal(TY2);%第一行为属于0(不滑坡)的概率第二行为属于1(滑坡)的概率,上下两个概率和为1 % 看看准确率 % 验证集分类结果 [~,J]=max(Tn_valid); [~,J1]=max(prob0); disp('优化前') accuracy=sum(J==J1)/length(J) TY2 = elmpredict(Pn_train,IW,B,LW,TF); % 计算分类概率 prob0=prob_cal(TY2);%第一行为属于0(不滑坡)的概率第二行为属于1(滑坡)的概率,上下两个概率和为1 % 看看准确率 % 验证集分类结果

特征值 标准值 极限值

特征值标准值极限值 设计值根据最新的桩基规范JGJ94-xx:极限值一般是由桩的静载实验得出的,是桩最大所能承受的极限荷载,根据一定数量的静载实验的统计结果计算。规范称为极限承载力标准值。特征值是上述标准值除以安全系数,规范中一般为2。桩数量的确定是直接以特征值为依据计算的。设计值是上海市地基基础规范中特有的。在上海规范中,不使用特征值,而用设计值代替,设计值也是标准值除以安全系数得来的,不过安全系数取值与国家规范不一样。单桩竖向承载力特征值按《建筑桩基技术规范》JGJ94xx 规范中第5、3、5条公式5、3、5计算:式中:Qsk 总极限侧阻力标准值;Qpk 总极限端阻力标准值;u 桩身周长;li 桩周第i 层土的厚度;Ap 桩端面积;qsik 桩侧第i层土的极限侧阻力标准值;参考JGJ94-xx规范表5、3、5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取qsik=0;qpk 极限端阻力标准值,参考JGJ94-xx规范表5、3、5-2取值,用户需在地质资料土层参数中设置此值;对于摩擦桩取qpk=0;2、大直径人工挖孔桩(d≥800mm)单桩竖向极限承载力标准值的计算此方法适用于大直径(d≥800mm)非预制混凝土管桩的单桩。按JGJ94-xx规范第5、3、6条公式5、3、6计算:式中:Qsk 总极限侧阻力标准值;Qpk 总极限端阻力标准值;qsik 桩侧第i层土的极限侧阻力标准值,可按JGJ94-xx规范中表5、3、5-1取值,用户需1取

值,用户需在地质资料土层参数中设置此值;对于扩底桩变截面以上2d范围不计侧阻力;对于端承桩取qsik=0;qpk 桩径为 800mm极限端阻力标准值,可按JGJ94-xx规范中表5、3、6-1取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取 qpk=0;ψs i,ψp 大直径桩侧阻、端阻尺寸效应系数,按JGJ94-xx表5、3、6-2取值;u 桩身周长。3、钢管桩单桩竖向极限承载力标准值的计算按JGJ94-xx规范第5、3、8条公式5、3、8-1计算:式中:Qsk 总极限侧阻力标准值;Qpk 总极限端阻力标准值;qsik 桩侧第i层土的极限侧阻力标准值,可按JGJ94-xx规范中表5、3、5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取qsik=0;qpk 极限端阻力标准值,可按JGJ94-xx规范中表5、3、5-2取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取 qpk=0;li 桩周第i层土的厚度;u 桩身周长;Aj 空心桩端净面积面积;Ap1 空心桩敞口面积;λp 桩端土塞效应系数。

高中物理极限法的应用

极限法的应用 一. 本周教学容: 物理解题方法复习专题——极限法的应用 二. 重点、难点: (一)物理思想 在物理问题中,有些物理过程虽然比较复杂,但这个较为复杂的物理过程又包含在一个更复杂的物理过程中。若把这个复杂的物理过程分解成几个小过程,且这些小过程的变化是单一的。那么,选取全过程的两个端点及中间的奇变点来进行分析,其结果必然可以反映所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维法的物理思想。 极限法是一种直观、简捷的科学方法。在我们已学过的物理规律中,常能看到科学家们利用这种思维方法得到的物理规律。例如伽利略在研究从斜面上滚下的小球的运动时就运用了极限思维法将第二斜面外推到极限——水平面;开尔文把查理定律外推到压强为零这一极限制,而引入了热力学温标……这些例子说明,在物理学的发展和物理问题的研究中,极限思维法是一种重要的方法。(二)如何应用极限法解决问题 应用极限思维法时,特别要注意到所选取的某段物理过程研究的物理量的变化应是单一的。如增函数或减函数。但不能在所选过程中既包含有增函数,又包含有减函数的关系,

这种题目的解答是不能应用极限法的。因此,在解题时,一定要先判定物理量间的变化关系是否为单调变化。若物理量间的变化关系为单调变化,可假设某种变化的极端情况,从而得出结论或作出判断。 极限法常见用于解答定性判断题和选择题,或者在解答某些大题时,用极限法确定“解题方向”。在解题过程中,极限法往往能化难为易,达到“事半功倍”的效果。 【典型例题】 例1. 如图所示电路中,当可变电阻R的阻值增大时() A. A、B两点间的电压U增大 B. A、B 两点间的电压U减小 C. 通过R的电流I增大 D. 通过R 的电流I减小 分析: 可变电阻R的变化围在零到无穷大之间连续变化。当R=0 ;当R→∞时,R断路,时,A、B间短路,此时U=0,I E R r =+ () 1 ,()。可见,当R的阻值增大时,U增大而I ==++ I U ER R R r 212 减小,因此A、D选项正确。 点拨:

极限参数

极限参数:Vcc=11V,耗散功率(不带散热器)为1.2W,带散热器的条件下为2.25W。工作温度-20—70℃,适合于小型便携式收录音机及音响设备作功率放大器。 BA313 带ALC录放音电路 自动电平控制范围宽,工作电压范围宽(3—12V),高增益,低失真,低噪声。 BA328 立体声前置放大电路 BA328极限参数如下:最高电源电压18V,最大功耗:540mW,工作温度:-25-70℃。

BA532音频功率放大电路 在电源电压为13.8V时,8Ω负载阻抗,THD=10%时,输出功率可达5.8W,纹波抑制比高达40dB,引脚与BA511A、BA521相同。常用于汽车立体声收录音机,收音机、电视机和磁带录音机中作功率输出电路。

BA536 4.5W双声道功率放大电路 输出功率每声道4.5W(4Ω负载阻抗,12V电源电压时),5.5W(3Ω负载阻抗,12V电源电压时)。纹波抑制比55dB,失真度:THD=1.5%(Po=0.5W时),串音小于57dB,工作电压5-12V,可以方便地构成BTL电路。 极限参数:Vcc=18V,功耗:工作温度:-20-75℃。 HA1377是日本日立公司生产的功率放大集成电路,在一块硅片上有两组功放电路,具有较高的输出功率,13.2V电源电压下,在4Ω负载THD=10%时可获得5.8W输出功率。在BTL连接时,在以上相同条件可获得17W的输出功率。适合于便携式、台式单声道及立体声双声道录音机等音响设备,采用12引线单列直插式塑料封装结构,外形如图1。 [1].谐波失真小,在100Hz-10kHz下不大于1%。 [2].电路内部具有耐浪涌保护电路。 [3].内部设有热切断保护电路。 [4].外接元件少。

夹逼准则在求极限中的应用.

夹逼准则在求极限中的应用 数学学院数学与应用数学(师范)专业 2008级敖欢 指导教师刘学文 摘要:极限的思想方法贯穿于整个数学分析中,一些基本概念如微分、积分的定义都与极限有密不可分的联系。极限是高等数学的理论基础和重要工具。不同形式的极限求解的方式各不相同,解题思路不同所得到的效果也是不一样的。本文主要举例讨论并分析夹逼准则的应用,特别是其在求极限中的应用。 关键词:极限;夹逼准则;函数;数列 Abstract:The thinking method of limit throughout the mathematical analysis, some basic concepts such as differential, integral and limit are inseparable links. Limit of higher mathematics is the theoretical foundation and important tool. Different forms of the solution to the limit the way is also different, different thoughts of solving the effect is not the same.This paper mainly discussed by examples and analysis of squeeze rule applications, especially in the limit of application. Key words:Limit;Squeeze rule;Function;Series 极限是从初等数学跨向高等数学的一座重要桥梁。在青少年阶段或者更早吸收了解极限先进思想和概念,无疑对他们的人生发展有着不可估量的影响。极限理论是数学分析的入门和基础,是人们把握无限的金钥匙。不论是函数的连续性、导数、定积分还是无穷级数这些数学分析的核心内容,无一例外地都是通过极限来定义和推演的。鉴于其在高等数学中的特殊重要地位,极限亦成为数学考研的必考内容之一。 极限概念最初产生于求曲边形的面积与求曲线在某一点处的切线斜率这两个基本问题。我国古代数学家刘徽利用圆的内接正多边形来推算圆面积的方法—割圆术,就是用极限思想研究几何问题。刘徽说:“割之弥细,所失弥少。割之又割,

相关文档