文档库 最新最全的文档下载
当前位置:文档库 › household变换

household变换

household变换
household变换

3.2 正交变换

为了给出求解最小二乘问题的更实用的算法,这一节我们来介绍两个最基本的初等正交变换,它们是数值线性代数中许多算法的基础。

3.2.1 Householder变换

使用Gauss变换将一个矩阵约化为上三角形式是基于一个简单的事实:对于任一个给定的向量,可构造一个初等下三角阵,使,这里是的第一列,. 这一节我们来讨论如何求一个初等正交矩阵,使其具有矩阵的

功能。这样,对一个矩阵的上三角化任务,便可以由一系列的初等正交变换来完成。

定义3.2.1设满足,定义为

, (3.2.1)则称为Householder变换。

Householder变换也叫做初等反射矩阵或镜像变换,它是著名的数值分析专家Householder在1958年为讨论矩阵特征值问题而提出来的。下面的定理给出了Householder变换的一些简单而又十分重要的性质。

定理3.2.1设是由(3.2.1)定义的Householder变换,那么满足:

对称性:;

正交性:;

对合性:;

反射性:对任意的,如下图所示,是关于的垂直超平面的镜像反射。

证明(1)显然。(2)和(3)可由(1)导出。事实上,我们有

(4)设,则可表示为

其中利用和可得

这就说明了为关于的镜像反射。

Householder变换除了具有定理3.2.1所述的良好性质外,它的主要用途在于,它能如Gauss变换一样,可能通过适当选取单位向量,把一个给定向量的若干个指定的分量变为零。

引理1 设为两个不相等的向量,且,则存在一个Householder变换满足

证明令,构造Householder变换阵

由于,因此

从而

引理证毕定理3.2.2 设,则可构造单位向量,使由(3.2.1)定义的Householder变换满足

其中

证明由于

故欲使,则应为

对,直接验证可知这样定义的满足定理的要求。

定理3.2.2告诉我们,对任意的都可以构造出Householder矩阵,使的后个分量为零;而且其证明亦告诉我们,可按如下的步骤来构造确定的单位向量:

计算;

计算

构造算法程序时,以注意以下几个问题:

计算时,为避免溢出,可以考虑先将规范化为的向量。

事实上,若,假定Householder变换阵使

那么

也就是说,对于向量集合中的任一个非零向量,由Th3.2.2构造出的Householder变换阵都是一样的,或许最多只相差一个符号。

在实际计算时,前的符号如何选取最好。即

在计算向量的第一个分量时,为了避免两相近数相减,而导致计算结果损失有效数字,可适当做变形处理,即

1)如果时,2)直接计算:;

3)如果时,4)事实上,5)

考虑到实际计算的需要,在最后构造Householder变换阵时,常规定H 具有如下形式

其中:的第一个分量为1;

算法3.2.1(计算Householder变换)

对应的C程序函数如下:

void Householder(double*x,intn,double&bet,double *v)

{

inti;

double alph,norm;

norm=fabs(x[0]);

for(i=1;i

if(norm

norm=fabs(x[i]);

if(norm==0)

{

printf("Fail, because x is zero.\n"); exit(0);

}

for(i=0;i

x[i]/=norm;

norm=0.0;

for(i=1;i

norm+=x[i]*x[i];

v[0]=1.0;

for(i=1;i

v[i]=x[i];

if(norm==0)

bet=0.0;

else

{

alph=sqrt(x[0]*x[0]+norm);

if(x[0]<=0)

v[0]=x[0]-alph;

else

v[0]=-norm/(x[0]+alph);

bet=2.0*v[0]*v[0]/(norm+v[0]*v[0]); alph=v[0];

for(i=0;i

v[i]=v[i]/alph;

}

}

利用Householder变换在一个向量中引入零元素,并不局限于的形式,其实它可以将向量中任何若干相邻的元素化为零。例如,欲在中从至位置引入零元素,只需定义为

即可,其中.

在应用Householder变换约化一个给定矩阵为某一需要的形式时,其主要工

作量是计算一个Householder变换与一个已知矩阵

的乘积。在实际计算时,并不需要以显式给出,而是根据如下的公式来计算

其中,即

计算

计算(即为所求的乘积)。

完成这一计算任务所需的运算量为

算法3.2.1的数值性态是十分令人满意的。假定算法3.2.1的计算结果为和,定义

则可证

详细的误差分析参见[21]。

3.2.2 Givens变换

欲把一个向量中许多分量化为零,可以用Householder变换,例如前面所讲

到的把一个向量中若干相邻分量化为零。如果只将其中一个分量化为零,则就采用Givens变换,它有如下形式:

其中.易证是一个正交阵。

设.令, 则有

因此,若要,只要取

(3.2.2)

便有

从几何上来看,是在坐标平面内将按顺时针方向作了度的旋转。所以Givens变换亦称平面旋转变换。

若利用(3.2.2)计算和,可能会发生溢出。为了避免这种情形的发生,对给定的实数和,实际上是按如下算法所述的方法计算和,使得

的。

算法3.2.2 (计算Givens变换)

如果用一个Givens变换左(或右)乘一个矩阵,则它只改变的第

行(或列)的元素,其余元素保持不变。请读者作为练习写出详细的算法。

Givens变换的数值性态亦是良好的。假定和是由算法3.2.2产生的,则有

边缘检测与Hough变换实验报告----Matlab

边缘检测与Hough变换 实验目的:写一段代码实现一幅图像,其中分为以下两个步骤 1.使用Matlab中的canny算子进行边缘检测,可以让使用者交互式的输入不同 的Sigma的值实现边缘检测。 2.运用Hough变换来找到最突出的边缘,在图像中找到并画出最长的直线。 实验原理: canny算子边缘检测的基本原理是:采用二维高斯函数的任一方向上的一阶方向 导数为噪声滤波器,通过与图像f(x,y)卷积进行滤波,然后对滤波后的图像 寻找图像梯度的局部极大值,以确定图像边缘。 Canny边缘检测算子是一种最优边缘检测算子。其实现步骤如下: 1)用高斯滤波器平滑图像 2)计算滤波后图像梯度的幅值和方向 3)对梯度幅值应用非极大值抑制,其过程为找出图像梯度中的局部极大值点,把其他非局部极大值置零,以得到细化的边缘; 4)再用双阈值算法检测和连接边缘; 使用canny算子的edge函数调用格式为 BW=edge(I,'canny'); BW=edge(I,'canny',thresh,sigma); BW=edge(I,'canny',thresh); [BW,threshold]=edge(I,'canny',…); 2.Hough变换时最常用的直线提取方法,它的基本思想是:将直线上每一个 数据点变换为参数平面中的一条直线或曲线,利用共线的数据点对应的参数 曲线相交于参数空间中一点的关系,使得直线提取问题转化为计数问题。 Hough变换提取直线的主要优点是受直线中的间隙和噪声影响较小。 Hough检测直线的Matlab实现:在Matlab图像处理工具箱中提供了3个与 Hough变换有关的函数,分别为hough函数,houghpeaks函数和houghlines 函数。 hough函数的调用格式为[H,theta,rho]=hough(BW);其中BW为二值图像, H为Hough变换矩阵,theta为变换轴间隔θ,rho为元素个数。 Houghpeaks函数是用来提取Hough变换后参数平面上的峰值点。其调用格 式为peaks=houghpeaks(H,numpeaks),其中,H为Hough函数的输出,参数平 面的技术结果矩阵,参数numpeaks为指定要提取的峰值数目,默认值为1; 输出参数peaks为Q*2维峰值位置矩阵,其中Q为提取的峰值数目,peaks 的第q行分别存储第q个峰值的行和列坐标。 Hough函数用于在图像中提取参数平面上的峰值点对应的直线。其调用格式为lines=houghlines(BW,theta,rho,peaks) Lines=houghlines(…,param1,val1,param2,val2) 其中,BW与Hough函数的BW相同,为二值图象。theta和rho为hough 函数返回的输出,指示θ轴和ρ轴各个单元对应的值。Peaks为houghpeaks 函数返回的输出,指示峰值的行和列坐标,houghlines函数将根据这些峰值 提取直线。Param和val是参数对,用于指定是否合并或保留直线段的相关 参数,其取值有两种。当param=’MinLength’时,bal指定合并后的直线被保 留的门限长度,长度小于val的直线被舍去。当param=’FillGap’时,val指定 直线段被合并的门限间隔。如果两条斜率和截距均相同的直线段间隔小于

(整理)坐标变换的原理和实现方法

由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α 轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7)

数字图像中的Hough变换应用--直线检测

摘要 为能够有效解决实时直线图形提取问题,提出了一种基于Hough变换(HT)的直线提取算法。它所实现的是一种从图像空间到参数空间的映射关系。由于具有一些明显优点和可贵性质,它引起了许多国内外学者和工程技术人员的普遍关注。由于其根据局部度量来计算全面描述参数,因而对于区域边界被噪声干扰或被其他目标遮盖而引起边界发生某些间断的情况,具有很好的容错性和鲁棒性。多年来,专家们对Hough变换的理论性质和应用方法进行了深入而广泛的研究,目前应用于生物医学、自动化和机器人视觉、空间技术和军事防御、办公自动化等各个方面。 本次课称设计首先分析了数字图像中直线边缘的三种结构特征,提出采用基元结构表示目标边缘点,并在约束条件下计算基元结构的基元倾角。在此基础上,结合传统的HT的思想对基元结构进行极角约束HT,以获得最终的直线参数。最后,再用MATLAB软件对该算法进行编程仿真。实验结果表明,对合成图像和自然图像,该算法能够有效的识别图像中的直线段。 关键词:直线提取;Hough变换;MATLAB

目录 1. 课程设计的目的 (1) 2. MATLAB简介及应用 (1) 2.1 MATLAB简介 (1) 2.2 MATLAB应用 (1) 2.3 MATLAB特点 (2) 3. Hough变换原理 (2) 3.1 Hough变换的基本原理 (2) 3.2 Hough变换的不足之处 (4) 3.3 Hough变换的应用 (4) 4. Hough变换检测直线设计 (5) 4.1 Hough变换检测直线基本原理 (5) 4.2 Hough变换的几种基本算法 (6) 4.3 Hough变换算法的比较与选择 (7) 4.4 Hough变换检测直线的算法流程图 (9) 4.5 Hough变换检测直线算法的实现 (9) 5. 仿真结果及分析 (11) 5.1 仿真结果 (11) 5.2 结果分析 (14) 结论 (15) 参考文献 (16)

坐标变换就是两种坐标类型

坐标变换就是两种坐标类型、不同参照体系之间的变换 坐标变换因不同的坐标类型、体系变换方法不一样,没有固定的公式 比方说测量地球,就有多种坐标体系: 1。以地心为原点的空间直角坐标 2。经纬度坐标 3。把地球表面分成很多格子,对于一个小格子区,球面接近平面,在这个平面上设一个平面直角坐标系,就是北京54坐标等坐标形式 这些坐标来回转换,比较复杂,甚至是学术性的问题,一般根据不同的观点和精度,有一些小程序,做转换工作 工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m, y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

三相坐标系和二相坐标系转换

交流电动机矢量控制变压变频调速系统(三)第三讲坐标 变换的原理和实现方法 收藏此信息打印该信息添加:李华德来源:未知 由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

坐标转换方法

经纬度转西安80坐标系坐标转换方法 一、分带划分 1.我国采用6度分带和3度分带: 1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。 1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~ 4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为2 0345486,其中20即为带号,345486为横坐标值。 2.当地中央经线经度的计算 六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。 三度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)。 3、如何计算当地的中央子午线? 当地中央子午线决定于当地的直角坐标系统,首先确定您的直角坐标系统是3 度带还是6度带投影公式推算: 6度带中央子午线计算公式:当地经度/6=N;中央子午线L=6 * N (带号)当没有除尽,N有余数时,中央子午线L=6*N - 3 3度带中央子午线计算公式:当地经度/3=N;中央子午线L=3 X N 我国的经度范围西起73°东至135°,可分成 六度带十一个(13号带—23号带),各带中央经线依次为(75°、81°、 (1) 23°、129°、135°); 三度带二十二个(24号带—45号带)。各带中央经线依次为(72°、75°、……132°、135°); 六度带可用于中小比例尺(如1:250000)测图,三度带可用于大比例尺(如1:10000)测图,城建坐标多采用三度带的高斯投影 二、以以下经纬度为例:

Hough变换实例 很清晰的

数字图像处理第八次作业 实验内容 1、拍摄一张包含硬币、橡皮等物品的照片,通过Hough 变换检测出圆形的硬币个数并区分不同半径的硬币。最终计算出照片中的总钱数。 解:Hough 变换的实质是对图像进行坐标的变换,将图像空间的线条变为参数空间的聚集点,从而将原始图像中检测给定形状的曲线问题,变成寻找参数空间中的峰点的问题。 它不仅可以检测直线,而且可以很方便地检测圆、椭圆和抛物线等形状。由于这里需要检测圆形的硬币,所以下面给出检测圆的具体方法: 因为圆的图像空间方程为:222()()x a y b r -+-=, 我们需要通过Hough 变换,将图像空间(,)x y 对应到参数空间(,,)a b r ,然后对其进行累加完成检测。但是显然这种方法的计算量是非常大的,所以一般都是先对灰度图像进行边缘提取,利用边界像素的灰度梯度信息估计出下式中的角度θ,以此来降低计算量: cos cos a x r b y r θ θ=-*??=-*? (1) 一般在检测过程中需要对图像进行预处理,使得检测更加准确和容易。检测过程如下所示: ○ 1真彩色图像转为灰度图像; ○ 2去除噪声,进行中值滤波; ○ 3转为二值图像,利用边缘算子进行图像边缘提取; ○ 4最后进行图像的平滑和填充。 这里处理的图像并没有太多噪声,所以处理的时候略去了中值滤波的步骤,直接对边缘提取后的图像进行Hough 变换检测圆形。 根据式(1),我们需要对半径r 和角度θ进行搜索,所以这里应该首先设置半径和角度方向的搜索步长step_r 和step_angle ,接着给出半径搜索的最大和最小值,当然这两个数值需要根据经验来自己确定。最后就可以根据这些确定半径和角度的最大搜索次数。

永磁同步电机的仿真模型

永磁同步电机的仿真模型 1、永磁同步电机介绍 永磁同步电动机(permanent Magnets synchronous Motor, PMSM),转子采用永磁材料,定子为短距分布式绕组,采用三相正弦波交流电驱动,且定子感应电动势波形呈正弦波"定子绕组通过控制功率管(如IGBT)的不同开关组合,产生旋转磁场跟踪永磁转子的位置,自动地维持与转子的磁场有900的空间夹角,以产生最大的电机转矩"旋转磁场的转速则严格地由永磁转子的转速所决定,PMSM具有直流电动机的特性,有稳定的起动转矩,可以自行起动,并可类似直流电动机对电机进行闭环控制,多用于伺服系统和高性能的调速系统。 永磁同步电动机按转子形状可以分为两类:凸极式永磁同步电机和隐极式永磁同步电机。它们的区别在于转子磁极所在的位置,凸极式永磁同步电机转子磁极是突起在轴上的,其直轴和交轴电感参数不相等"而隐极式永磁同步电机的转子磁极是内置在轴内的,直轴和交轴电感参数相等"凸极式转子具有明显的磁极,定子和转子之间的气隙是不均匀的,因此其磁路与转子的位置有关。 2、永磁同步电机的控制方法 目前对永磁同步电机的控制技术主要有磁场定向矢量控制技术(field orientation control,FOC)与直接转矩控制技术(direct torque control,DTC)。在这里我们使用磁场定向矢量控制技术来建立永磁同步电机的仿真模型。 磁场定向矢量控制技术的核心是在转子旋转坐标系中针对激磁电流id和转矩电流iq分别进行控制,并且采用的是经典的PI线性调节器,系统呈现出良好的线性特性,可以按照经典的线性控制理论进行控制系统的设计,逆变器控制采用了较成熟的SPWM、SVPWM等技术。磁场定向矢量控制技术较成熟,动态、稳态性能较佳,所以得到了广泛的实际应用。该方法摒弃了矢量控制中转子磁场定向的思想,采用定子磁场定向,分别对定子磁链和转矩直接进行控制。直接转矩控制的实现方法是:计算得到磁链和转矩的实际值与参考值之间的偏差,通过滞环比较以及当前定子磁链的空间位置确定控制信号,在离线计算的开关表中选取合适的空间电压矢量,再通过离散的bang-bang 控制方式调制产生PWM 信号,以控制逆变器产生合适的电压和电流驱动电机转动。直接转矩控制摒弃了复杂的空间矢量坐标运算,电机的数学模型得到了简化,控制结构也简单,对电机参数变化不敏感,控制系统的动态性能得到了极大提高。然而有利也有弊,直接转矩控制逆变器的开关频率不固定;转矩、电流脉动大;采样频率也非常高。 下图为磁场定向矢量控制技术的原理图。 FOC控制技术的原理:原理图中涉及到双反馈,第一层反馈为转速反馈:设定电机转速初始值作为给定值,然后与反馈的实际值(位置传感器采集到的位移微分得到)进行比较,得到的差值输入PI控制器进行控制,得到交轴电流iq。同时三相绕组输出的电流iA,iB,iC经过clarke变换和park变化得到iq和id的实际值,分别与给定值进行比较,将比较后的值再进行park转换,得到的结果经过SVPWM技术调制之后输入到逆变器,继而可以驱动三相电机。

Hough变换检测直线

数字图像处理实验报告 实验题目:Hough变换检测直线 专业班级:电科1001 学生姓名:赵 学号:201048360102 指导老师:王贵财 时间:2012-2013-2

Hough变换检测直线 一.实验目的 实现用Hough变换检测直线的算法 二.实验要求 (1)找一幅或多幅(两幅以上)包含直线形状的图像,检测出图像中的多条直线; (2)分析并显示各直线的角度、长度。 三.实验原理 Hough变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法。在预先知道区域形状的条件下,利用Hough变换可以方便的得到边界曲线而将不连续的像素边缘点连接起来。Hough 变换的主要优点是受噪声和曲线间断的影响小。利用Hough变换可以直接检测某些已知形状的目标,如直线。 Hough变换的基本思想是点线的对偶性。一方面,图像空间中共线的点对应在参数空间里相交的线;另一方面,在参数空间中相交于同一个点的所有直线在图像空间里都有共线的点与之对应。因此Hough 变换把在图像空间中的直线检测问题转换到参数空间中对点的检测问题,通过在参数空间里进行简单的累加统计完成检测任务。如果参数空间中使用直线方程,当图像空间直线斜率为无穷大时,会使累加

器尺寸和变很大,从而使计算复杂度过大。为解决这一问题,采用直线极坐标方程,变换方程如图1所示。 ρ= xcosθ+ysinθ 根据这个方程,原图像空间中的点对应新参数空间中的一条正弦曲线,即点- 正弦曲线对偶。检测直线的具体过程就是让θ取遍可能的值,然后计算ρ的值,再根据θ和ρ的值对累加数组累加,从而得到共线 点的个数。下面介绍θ和ρ取值范围的确定。设被检测的直线在第一象限,右上角坐标为( m, n) ,则第一象限中直线的位置情况如图1所示。 图一 由图可见,当直线从与x轴重合处逆时针旋转时,θ的值 开始由0°增大,直到180°,所以θ的取值范围为0°~180°。由 直线极坐标方程可知: ,其中Φ= ,所以当且仅当x和y都达到最大且θ+ Φ=±90°时(根据<来调整θ的值) , | ρ| =| ρ| max =

坐标变换总结Clark变换和Park变换

一个坐标系的坐标变换为另一种坐标系的坐标的法则。 由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。为了简化电机的数学模型,需从简化磁链入手。 解决的思路与基本分析: 1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120 ω的旋转磁场。 度的三相正弦交流电时,在空间上会建立一个角速度为 1 又知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。此时的电机数学模型有所简化。 2. 还知, 直流电机的磁链关系为: F---励磁绕组 轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。 A---电枢绕组 轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。 由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。 如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。 电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。 关于旋转磁动势的认识: 1) 产生旋转磁动势并不一定非要三相绕组不可。结论是:

坐标转换方法

在工作过程中许多朋友会遇到坐标转换的问题,下面笔者就经常使用的一个坐标转换软件的使用方法做一个稍微详细的说明。 1、坐标系的确定 图1 软件使用界面 图1为软件使用界面,目前我们在工作过程中碰到的XY坐标系大多为全国80(也称西安1980)坐标系,也会有少量的设计会使用北京54坐标系。 图2和图3为同一点转换成全国80和北京54后差别,从两个转换结果来看,两个坐标系相差较小,可能比系统误差还小。(坐标转换过程中会产生系统误差,在不同位置误差也会有差异,所以转换出来的坐标只能是大概位置的参考。有兴趣的可以去研究下大地坐标系和投影坐标系,研究明白了就知道了为啥会有一定程度的误差,而且偏离中心线越远,误差越大)

图2(北京54) 图3(全国80) 2、中央子午线的确定 中央子午线一般为三度带和六度带的中央子午线坐标(至于什么是三度带和六度带,有兴趣的可以自行去研究投影坐标系的由来)。三度带的中央子午线经度为3的整数倍,六度带的中央子午线经度为6的整数倍,以图3中坐标为例,经度为112°30′至115°30′以内的坐标均为以114°为中

央子午线经度的三度带分区内;经度为111°至117°以内的坐标均为以114°为中央子午线经度的六度带分区内。 无法确定所在区域的中央子午线经度,可将区域的经度转换成小数后除3或者6,四舍五入后再乘3或者6即为中央子午线经度,如图中114°30′,转换后为114.5°,除3,四舍五入后再乘3即为114°。 3、经纬度转XY坐标 图4 图4为经纬度转XY坐标方法示意,在确定区域的中央子午线经度后,在BL处填上相应的纬度和经度,点击转换即可转出所需坐标。 4、完整的XY坐标转经纬度 目前国内部分设计单位在设计时,出于某些目的,会省略XY坐标中的某些位数,因此在此处分完整的XY坐标转经纬度和不完整的XY坐标转经纬度。

Hough变换实例

实验内容 1.拍摄一张包含硬币、橡皮等物品的照片,通过Hough 变换检测出圆形的硬币个数并区分不同半径的硬币。最终计算出照片中的总钱数。 解:Hough 变换的实质是对图像进行坐标的变换,将图像空间的线条变为参数空间的聚集点,从而将原始图像中检测给定形状的曲线问题,变成寻找参数空间中的峰点的问题。 它不仅可以检测直线,而且可以很方便地检测圆、椭圆和抛物线等形状。由于这里需要检测圆形的硬币,所以下面给出检测圆的具体方法: 因为圆的图像空间方程为:222()()x a y b r -+-=, 我们需要通过Hough 变换,将图像空间(,)x y 对应到参数空间(,,)a b r ,然后对其进行累加完成检测。但是显然这种方法的计算量是非常大的,所以一般都是先对灰度图像进行边缘提取,利用边界像素的灰度梯度信息估计出下式中的角度θ,以此来降低计算量: cos cos a x r b y r θθ=-*??=-*? (1) 一般在检测过程中需要对图像进行预处理,使得检测更加准确和容易。检测过程如下所示: ○ 1真彩色图像转为灰度图像; ○ 2去除噪声,进行中值滤波; ○ 3转为二值图像,利用边缘算子进行图像边缘提取; ○ 4最后进行图像的平滑和填充。 这里处理的图像并没有太多噪声,所以处理的时候略去了中值滤波的步骤,直接对边缘提取后的图像进行Hough 变换检测圆形。 根据式(1),我们需要对半径r 和角度θ进行搜索,所以这里应该首先设置半径和角度方向的搜索步长step_r 和step_angle ,接着给出半径搜索的最大和最小值,当然这两个数值需要根据经验来自己确定。最后就可以根据这些确定半径和角度的最大搜索次数。 由于Hough 变换需要用到稀疏矩阵,也即首先得找到图像矩阵中的非零量,针对这些非零量进行进一步的处理。这个操作可以直接通过Matlab 中的find 语

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

永磁同步电动机三相坐标系的数学模型.docx

4.2 永磁同步电动机三相坐标系的数学模型 为方便分析起见, 将三相永磁的同步电动机看作是理想的电机, 也就是说它符合下列假设: (1) 转子上面没有阻尼绕组;定子中各个绕组的电枢电阻、电感值相等,三相定子的绕组按对称的星形分布; (2) 其气隙磁场服从正弦分布而且各次谐波忽略不计,感应电动势也服从正弦分布; (3) 永磁体的等效的励磁电流恒定不改变;电机中的涡流、趋肤效应、电机铁芯饱和和磁滞损耗的影响均忽略不计;温度与频率不影响电机的参数。 坐标系正方向的选取: (1) 转子逆时针方向旋转为正; (2) 正向电流生出正向磁链; (3) 电压,电流的正方向按照电动机的惯例。 则静止三相坐标系里永磁同步电动机的定子侧电压方程 u 3s R 3 s i 3 s p 3s (4-1) 静止三相坐标系里永磁同步电动机的定子侧磁链方程 3 s L 3 s i 3s f F 3s ( ) (4-2) 式中, i A R 0 0 A i 3s i B , R 3s 0 R 0 , 3s B i C 0 0 R C u A sin u 3s u B , F 3s ( ) sin( 120 ) u C sin( 120 ) 1 cos120 cos240 1 0 0 L 3s L m3 cos120 1 cos120 L l 3 0 1 0 cos240 cos120 1 0 0 1 电机统一理论和机电能量转换告诉我们,电机的电磁力矩 [37] T e n p Im( s i s* ) (4-3) 式中, * 代表取共轭复数, Im 代表取虚部。

一种基于改进Hough变换的直线快速检测算法_段汝娇

第31卷 第12期2010年12月 仪器仪表学报 Ch i nese Journa l o f Sc ientific Instru m ent V o l 131N o 112D ec .2010 收稿日期:2010-07 R ece i ved D ate :2010-07 *基金项目:铁道部-清华大学科技研究基金(J 2008X011)资助项目 一种基于改进H ough 变换的直线快速检测算法 * 段汝娇,赵 伟,黄松岭,陈建业 (清华大学电机系电力系统国家重点实验室 北京 100084) 摘 要:针对传统H ough 变换计算量大、耗费内存空间、参数空间峰值点被次峰值点包围、易造成漏检或误检等缺陷,提出一种改进的H ough 变换直线快速检测算法。首先检测图像中相邻的像素点并进行聚类,形成一些相连的像素点的集合,然后将聚类后的像素点进行感知编组,细分成比原聚类线段更接近直线的线段,最后对每段近似直线用随机H ough 变换进行检测,从而精确地检测出图像中相应的直线。实验表明,与传统H ough 变换相比,改进后的算法计算量小,节省内存,无需先验知识,且抗干扰性有显著提高,并降低了误检率和漏检率。 关键词:像素点聚类;感知编组;随机H ough 变换;直线检测;快速检测 中图分类号:TP391.41 文献标识码:A 国家标准学科分类代码:510.4050 Fast line detecti on al gorith m based on improved H ough transformati on Duan Rujiao ,Zhao W e,i H uang Song li n g ,Chen Jianye (State K ey Lab of P o w er Syste m,D e p ar t m ent of Electrical E n g ineer i ng,T singhua Uni ver sity,Beijing 100084,China) Abst ract :H ough transfor m (HT)is a popu l a r too l for li n e detecti o n due to its r obustness to noise and m issi n g data . H o w ever ,the co m putati o na l cost and m e m ory space consu m ption assoc i a ti n g w ith its voting sche m e have prevented its applicati o ns .H ere an i m pr oved HT algo rithm is proposed to so lve these pr oble m s .Firstly the neighbor pixels are clustered ,and then the c l u sters are subd i v ided i n to sets ofm ost perceptua ll y si g nificant stra i g ht li n e seg m ents .For each seg m en,t its best fitting line can be found usi n g rando m H ough transfor m (RHT ).Co m pared w ith trad itional HT algor ithm ,the proposed approach can not on ly accelerate the co m puting speed and save m e m ory space ,but a lso produce a m uch cleaner vo ti n g m ap and m ake the transfor m m ore robus.t K ey w ords :pixel cluster ;perceptua l organ izati o n ;RHT;li n e detecti o n ;fast detection 1 引 言 自动识别图像中的直线,是图像处理和计算机视觉领域的一个重要课题。Hough 变换是处理此问题的一种有效工具,具有良好的鲁棒性和抗干扰能力,在许多领域得到了应用[1-6] 。H ough 变换算法的主要思想是,先将参数平面按一定步长离散化为许多小格,然后采用/多对一0映射,计算图像空间中共线的多个像素点在参数平面中对应的参数值,若计算结果落在参数平面某一小格内,就使该小格的累加器加1,累积值最大的小格即为图像 空间中直线的参数。这种从图像域/投票0到参数域的 穷尽式搜索模式,不仅计算量大,占用内存多;同时,参数 域中得票最多的小格被得票数次多的小格所包围,容易对检测造成干扰,导致对直线的误检或漏检。 针对H o ugh 变换的上述缺陷,一些学者提出了改进 措施。K ir yati 等人提出了概率Hough 变换(P HT )[7] ,具体是将图像数据映射到参数域中具有更大概率的单元,而非所有单元。Due 等人提出了随机H ough 变换(也称RHT )[8-11] ,即通过对像素点的随机采样,避免传统H ough 变换需庞大计算量,且降低了内存需求;但其处理复杂图

hough变换提取直线(Matlab实现)

Hough变换提取直线 一、实验目标 实现用Hough变换检测直线的算法 二、实验内容 1、读入图像 选取有较多直线及部分曲线以作对比的图像作为实验素材,这里我们必须使用彩色图像(有些看似灰度图像的实际属性也是彩色图像),原因下面有详解。 2、检测图像边缘 如果一个像素落在图像中某一个物体的边界上,那么它的邻域将成为一个灰度级变化的带。对这种变化最有用的两个特征是灰度的变化率和方向,他们分别用梯度向量的幅度和方向来表示。 边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。有若干种算子可以使用,大多数是基于方向导数掩模求卷积的方法。如Roberts算子,Sobel算子,Prewitt算子,Log算子等。这里采用Log算子提取图像边缘,再用均值滤波去除边缘图像噪声。 3、实现Houg变换,检测出图像中的直线 Hough变换是一种利用图像的全局特征将特定形状的边缘连接起来,形成连续平滑边缘的一种方法。它通过将源图像上的点影射到用于累加的参数空间,实现对已知解析式曲线的识别。 这里先对边缘图像进行二值化处理,然后再用hough变换提取直线,最后用红色标记之。因为处理过程中需使用灰度图像,但最后无法给灰度图像赋颜色(会出错或效果不好),只能给彩色图像赋颜色,故最初输入时请使用彩色图像。

4、Matlab代码如下: f=imread('3.png');%读入彩色图像,注意不能使用灰度图像 o=f; %保留彩色原图 f=rgb2gray(f);%将彩色图像转换为灰度图像, f=im2double(f); figure(); subplot(2,2,1);imshow(o);title('原图'); [m,n]=size(f);%得到图像矩阵行数m,列数n for i=3:m-2 for j=3:n-2%处理领域较大,所以从图像(3,3)开始,在(m-2,n-2)结束l(i,j)=-f(i-2,j)-f(i-1,j-1)-2*f(i-1,j)-f(i-1,j+1)-f(i,j-2 )-2*f(i,j-1)+16*f(i,j)-2*f(i,j+1)-f(i,j+2)-f(i+1,j-1)-2*f (i+1,j)-f(i+1,j+1)-f(i+2,j);%LoG算子 end end subplot(2,2,2);imshow(l);title('LoG算子提取图像边缘'); [m,n]=size(l); for i=2:m-1 for j=2:n-1 y(i,j)=l(i-1,j-1)+l(i-1,j)+l(i-1,j+1)+l(i,j-1)+l(i,j)+l(i,j+1)+l( i+1,j-1)+l(i+1,j)+l(i+1,j+1); y(i,j)=y(i,j)/9; %LoG算子提取边缘后,对结果进行均值滤波以去除噪 声,为下一步hough变换提取直线作准备 end end subplot(2,2,3);imshow(y);title('均值滤波器处理后') q=im2uint8(y); [m,n]=size(q); for i=1:m for j=1:n if q(i,j)>80; %设置二值化的阈值为80 q(i,j)=255; %对图像进行二值化处理,使图像边缘更加突出清晰 else q(i,j)=0; end end end subplot(2,2,4);imshow(q);title('二值化处理后');

Hough变换原理要点

摘要 人类对物体的识别最主要是对物体外形的识别,图像的形状检测在图像处理以及模式识别中是十分重要的。Hough变换作为目标形状特征提取的有效方法得到了广泛的应用。但Hough变换算法主要应用于二值图像(即边缘图像),因此在对灰度图像进行Hough变换前需要对其进行预处理(包括图像的滤波与边缘检测)。图像预处理作为Hough变换目标检测过程中重要的前期工作,其结果将直接影响检测结果的好坏。文中介绍了图像中常见的两种噪声,对图像的空间域噪声滤波做了一些研究,分析了高斯滤波与中值滤波的局限性,在双边滤波的基础上提出了一种基于多次中值抽取的双边滤波方法,该方法兼顾了空间邻域的相关性和像素强度的相似性,通过伪中值滤波选取强度滤波器的参考像素值,在平滑高斯噪声和椒盐噪声的同时更好地保护了边缘,与针对某一类特定噪声设计的传统滤波方法相比,该方法能够处理混有混合噪声(高斯噪声和椒盐噪声)的图像,并能够得到很好的滤波效果。同时,本文分析了几种经典的边缘检测算子,用迭代的双边滤波方法代替Canny算子中的高斯滤波过程或自适应滤波过程,在一定程度上避免了滤波过程给边缘带来的模糊,得到了更好的边缘检测结果。Hough变换作为图形目标检测的有效方法,能够检测直线、圆、椭圆和抛物线等众多解析图形,广义Hough变换对该方法做了一些推广,不

再受图形解析表达式的限制,通过预先设置的查找表,能够检测任何图形目标。文中对这些方法都做了介绍,并对这些方法做了仿真。由于受到图像空间和参数空间离散化的影响,以及Hough变换自身的计算过使得传统Hough变换方法也有一些局限性,比如在高强度噪声下检测的结果不佳,计算量大,存储资源需求大等。文中分析了传统Hough变换的投票过程,指出传统方法对参数单元进行1值累加是不合理的,并且传统方法没有区分图像中的噪声点和直线上的点,介于此,提出了基于直线连接度量的Hough变换,既考虑了图像的全局信息,也考虑了图像中像点邻域的局部信息,使得参数空间中的峰值不再受到噪声的影响,同时也避免了图像中具有线性关系的特征点投票带来的虚假峰值。通过对传统Hough变换定义方式的修改,提出了基于模板匹配的Hough变换检测方法,在该方法中,每一个参数单元都确定了图像空间中的一个模板,通过该模板主动搜索图像空间中符合条件的特征点,特征点的个数作为参数单元的值,并记录图像中线段的端点坐标,完成图像中线段的检测与定位,能够节省大量的存储资源。 关键词:特征提取;Hough变换 Hough变化检测直线 Hough变换的基本思想是利用点—线的对偶性,即图像空间共线的点对应在参数空间里相交的线,反过来,在参

第三章 坐标变换

第三章 坐标变换 3.1 时空矢量图 根据电路原理,凡随时间作正弦变化的物理量(如电动势、电压、电流、磁通等)均可用一个以其交变频率作为角速度而环绕时间参考轴(简称时轴t )逆时针旋转的时间矢量(即相量)来代替。该相量在时轴上的投影即为该物理量的瞬时值。我们这里介绍的时空矢量图表示法是一种多时轴单相量表示法,即每相的时间相量都以该相的相轴作为时轴,而各相对称的同一物理量用一根统一的时间向量来代表。如图3-1所示,只用一根统一的电流相量1I (定子电流)即可代表定子的对称三相电流。不难证明,1I 在A 上的投影即为该时刻A i 瞬时值;在B 上的投影即为该时刻B i 瞬时值;在C 上的投影即为该时刻C i 瞬时值。 有了统一时间相量的概念,我们就可以方便地将时间相量跟空间矢量联系起来,将他们画在同一矢量图中,得到交流电机中常用的时空矢量图。在图3-2所示的时空矢量图中,我们取各相的相轴作为该相的时轴。假设某时刻 m A I i +=达到正最大,则此时刻统一相量A I 应 与A 重合。据旋转磁场理论,这时由定子对称三相电流所生成的三相合成基波磁动势幅值应与A 重合,即1F 应与A 重合,亦即与1I 重合。由于时间相量1I 的角频率ω跟空间矢量1F 的电角速度1ω相等,所以在任何其他时刻,1F 与1I 都始终重合。为此,我们称1I 与由它所生成的三相合成基波磁动势1F 在时空图上同相。在考虑铁耗的情况下,1B 应滞后于1F 一个铁 耗角Fe α,磁通相量m Φ 与1B 重合。定子对称三相电动势的统一电动势相量1 E 应落后于m Φ 为90度。 由电机学我们知道,当三相对称的静止绕 组A 、B 、C 通过三相平衡的正弦电流A i 、B i 、 c i 时产生的合成磁势F ,它在空间呈正弦分布,并以同步速度ω(电角速度)顺 着A 、B 、C 的相序旋转。如图3-3-a 所示,然而产生旋转磁势并不一定非要三相电流不可,三相、四相等任意多相对称绕组通以多相平衡电流,都能产生旋转磁势。如图3-3-b 所示,所示为两相静止绕组α、β,它们在空间上互差90度,当它们流过时间相位上相差90度的两相平衡的交流电流αi 、βi 时,也可以产生旋转磁动势。当图3-3-a 和图3-3-b 的两个旋转磁动势大小和转速都相等时,即认为图3-3-a 中的两相绕组和图3-3-b 中三相绕组等效。再看图3-3-c 中的两个 图3-2 时空矢量图

相关文档
相关文档 最新文档