文档库 最新最全的文档下载
当前位置:文档库 › 控制系统校正实验

控制系统校正实验

控制系统校正实验
控制系统校正实验

实验四、控制系统校正实验

1. 试验目的

1) 学习并掌握Matlab 控制系统的简单使用方法

2) 掌握控制系统校正方法,尤其是相位超前校正、滞后校正

3) 掌握控制系统校正的基本机理,尤其是各种校正方法对控制系统性能的影响。

2. 验仪器系统

安装有matlab 软件的计算机实验系统

3. 实验内容

下图为一控制系统的方框图。

其中G c (s)为调节器;G(s)系统被控部分200()(0.051)(0.01251)

G s s s s =++;H(s)为检测传感器,H(s)=1

设计G c (s)实现:1相位超前校正(要求在原幅值剪切频率处实现60度相位裕量);2.相位滞后校正(要求校正环节转角频率在原幅值剪切频率的1/10和1/100);3根据以上两种校正结果分别求闭环截至频率(见在实验报告中的“给出校正后系统闭环波德图并示出频带宽度”项)。

4. 实验步骤

1)写出系统开环传递函数;

2)打开matlab

3)建立***.m 文件

4)编制程序

(主要指令: tf 、bode 、margin 、bandwidth 、feedback; 注释用“%”开头)

5) 运行所编制程序

6) 运行结果记录

5) 存储所编制程序

5. 结果分析和实验报告

1)给出校正前系统波德图,并分析其稳定性

校正前系统伯德图程序:

s1=tf([200],[0.000625 0.0625 1 0]);

bode(s1)

)

[Gm,Pm]=margin(s1)

margin(s1)

校正前系统伯德图:

由图可知:系统的相位裕量和幅值裕量都小于0,故系统不稳定。

2)进行相位超前校正:

① 给出相位超前校正环节的传递函数及波德图:

相位超前校正环节的传递函数:

1

002365.0113674.0++=s s G 相位超前校正环节程序:

s2=tf([0.13674 1],[0.002365 1])

bode(s2)

[Gm,Pm]=margin(s2)

margin(s2)

相位超前校正环节的伯德图:

②给出校正后系统开环波德图校正程序:

s1=tf([200],[0.000625 0.0625 1 0]);

s2=tf([0.13674 1],[0.002365 1])

s=s1*s2

bode(s)

[Gm,Pm]=margin(s)

margin(s)

校正后系统开环伯德图:

③ 给出校正后系统闭环波德图并示出频带宽度

校正程序:

s1=tf([200],[0.000625 0.0625 1 0]);

s2=tf([0.13674 1],[0.002365 1])

s=s1*s2

s3=s/(s+1)

margin(s3)

fb=bandwidth(s3)

校正后系统闭环伯德图:

频带宽度:fb =285.9917

3)进行相位滞后校正:

① 给出相位滞后校正环节的传递函数及波德图:

相位滞后校正环节的传递函数:

1

s 7985.11s 1798.0++=G 相位滞后校正程序:

s2=tf([0.1798 1],[1.7985 1])

bode(s2)

[Gm,Pm]=margin(s2)

margin(s2)

相位滞后校正环节的伯德图:

②给出校正后系统开环波德图

校正程序:

s1=tf([200],[0.000625 0.0625 1 0]);

s2=tf([0.1798 1],[1.7985 1])

s=s1*s2

bode(s)

[Gm,Pm]=margin(s)

margin(s)

校正后系统开环伯德图:

③给出校正后系统闭环波德图并示出频带宽度校正程序:

s1=tf([200],[0.000625 0.0625 1 0]);

s2=tf([0.1798 1],[1.7985 1])

s=s1*s2

s3=s/(s+1)

margin(s3)

fb=bandwidth(s3)

校正后系统闭环伯德图:

频带宽度:fb =27.3476

4)对比以上实验,对实验结果进行分析:(分析校正后系统稳定性变化、带宽的变化及响应速度变化)

开环:校正前校正后

f=192Hz Pm=2.2 Gm=0.82 f=16.1Hz Pm=22.7 Gm=10.7

闭环:校正前校正后

f=264Hz Pm=-24.5 Gm=-20.1 f=24.4Hz Pm=21.7 Gm=7.72 校正前系统不稳定,相位超前滞后校正后系统变得稳定。超前校正带宽变宽,响应速度变快,滞后校正带宽变窄,响应速度变慢。

自动控制原理实验报告 线性系统串联校正

武汉工程大学实验报告 专业自动化班号 组别指导教师陈艳菲姓名同组者

三、实验结果分析 1.开环传递函数为) 1(4 )(+= s s s G 的系统的分析及其串联超前校正: (1)取K=20,绘制原系统的Bode 图: 源程序代码及Bode 图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; 运行结果: ans = Inf 12.7580 Inf 4.4165 分析: 由结果可知,原系统相角裕度r=12.75800,c ω=4.4165rad/s ,不满足指标要求, 系统的Bode 图如上图所示。考虑采用串联超前校正装置,以增加系统的相角裕度。 确定串联装置所需要增加的超前相位角及求得的校正装置参数。 ),5,,45(0000c m c Φ=Φ=+-=Φ令取为原系统的相角裕度εγγεγγ m m ??αsin 1sin 1-+= 将校正装置的最大超前角处的频率 作为校正后系统的剪切频率 。则有: α ωωω1)(0)()(lg 2000=?=c c c c j G j G j G 即原系统幅频特性幅值等于 时的频率,选为c ω。 根据m ω=c ω ,求出校正装置的参数T 。即α ωc T 1 = 。 (2)系统的串联超前校正:

源程序代码及Bode图: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0) grid; e=5; r=50; r0=pm1; phic=(r-r0+e)*pi/180; alpha=(1+sin(phic))/(1-sin(phic)); [il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('校正之后的系统开环传递函数为:'); printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('幅值(db)'); title('--Go,-Gc,GoGc'); title(['校正前:幅值裕量=',num2str(20*log10(gm1)),'db','相位裕量=',num2str(pm1),'0']); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('相位(0)'); xlabel('频率(rad/sec)'); title(['校正后:幅值裕量=',num2str(20*log10(gm)),'db','相位裕量=',num2str(pm),'0']); 运行结果: ans = Inf 12.7580 Inf 4.4165 num/den = 0.31815 s + 1

自动控制系统的校正

第五章自动控制系统的校正 本章要点 在系统性能分析的基础上,主要介绍系统校正的作用和方法,分析串联校正、反馈校正和复合校正对系统动、静态性能的影响。 第一节校正的基本概念 一、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指标时,首先可以考虑调整系统中可以调整的参数;若通过调整参数仍无法满足要求时,则可以在原有系统中增添一些装置和元件,人为改变系统的结构和性能,使之满足要求的性能指标,我们把这种方法称为校正。增添的装置和元件称为校正装置和校正元件。系统中除校正装置以外的部分,组成了系统的不可变部分,我们称为固有部分。 二、校正的方式 根据校正装置在系统中的不同位置,一般可分为串联校正、反馈校正和顺馈补偿校正。 1.串联校正 校正装置串联在系统固有部分的前向通路中,称为串联校正,如图5-1所示。为减小校正装置的功率等级,降低校正装置的复杂程度,串联校正装置通常安排在前向通道中功率等级最低的点上。 图5-1 串联校正 2.反馈校正 校正装置与系统固有部分按反馈联接,形成局部反馈回路,称为反馈校正,如图5-2所示。 3.顺馈补偿校正

顺馈补偿校正是在反馈控制的基础上,引入输入补偿构成的校正方式,可以分为以下两种:一种是引入给定输入信号补偿,另一种是引入扰动输入信号补偿。校正装 置将直接或间接测出给定输入信号R(s)和扰动输入信号D(s),经过适当变换以后,作为附加校正信号输入系统,使可测扰动对系统的影响得到补偿。从而控制和抵消扰动对输出的影响,提高系统的控制精度。 三、校正装置 根据校正装置本身是否有电源,可分为无源校正装置和有源校正装置。 1.无源校正装置 无源校正装置通常是由电阻和电容组成的二端口网络,图5-3是几种典型的无源校正装置。根据它们对频率特性的影响,又分为相位滞后校正、相位超前校正和相位滞后—相位超前校正。 无源校正装置线路简单、组合方便、无需外供电源,但本身没有增益,只有衰减;且输入阻抗低,输出阻抗高,因此在应用时要增设放大器或隔离放大器。 2.有源校正装置 有源校正装置是由运算放大器组成的调节器。图5-4是几种典型的有源校正装 置。有源校正装置本身有增益,且输入阻抗高,输出阻抗低,所以目前较多采用有源图5-2 反馈校正 图5-3 无源校正装置 a)相位滞后 b)相位超前 c)相位滞后-超前

控制系统串联综合校正设计

课程设计名称:自动控制原理课程设计 题目:控制系统串联综合校正设计 专业:电气工程及其自动化 班级: 姓名: 学号:

课程设计任务书 一、设计题目:自动控制系统串联综合校正设计 二、设计任务:1.控制系统的性能指标确定 2.串联综合校正的原理分析 3.传递函数及原理公式的推导计算 4.实例系统的校正设计 三、设计计划:第一天选择课程设计题目,确定课程设计任务 第二天根据课程设计任务进行查阅资料 第三天进行整理资料及设计方案选择 第四天进行可行性分析并进行校正分析 第五天进行电脑排版并输出 四、设计要求:通过自动控制系统综合校正的设计更好的掌握和应 用 经典控制理论,并进行可行性分析进行校正设计, 得出设计结论。 指导教师:教研室主任: 时间:2007年 1月 18日

辽宁工程技术大学 课程设计成绩评定表

综合法又称期望特性法。它的基本思想是按照设计任务的性能指标,构造期望的数学模型,然后选择校正装置的数学模型,使系统校正后的模型等于期望的数学模型。虽然综合法得到的校正环节的数学模型一般比较复杂,在应用中受限,但其方法本身简单,仍是一种重要的方法,尤其是对校正装置的选择有很好的指导作用。 这是一种在频域范围进行的校正方法。频域法进行的校正比较简单,但其设计的指标是间接指标,所以它只是一种间接的方法。本设计的重点是要绘制出希望的频域特性曲线,然后得出校正环节的频域特性曲线,进而写出校正环节的传递函数。 需要注意的是这种方法的设计带有经验成分,而且其设计过程一般仅适用于最小相位系统。 关键词:校正装置;数学模型;传递函数;系统指标;特性曲线

控制系统串联校正课程设计

河南科技大学 课程设计说明书 课程名称控制理论课程设计 题目控制系统串联校正设计 学院 班级 学生姓名 指导教师 日期

控制理论课程设计任务书 设计题目: 控制系统串联校正设计 一、设计目的 控制理论课程设计是综合性较强的教学环节。其目的是培养学生对所学自控理论知识进行综合应用的能力;要求学生掌握自动控制系统分析、设计和校正的方法;掌握应用MATLAB 语言及SIMULINK 仿真软件对控制系统进行分析、设计和校正的方法;培养学生查阅图书资料的能力;培养学生撰写设计报告的能力。 二、设计内容及要求 应用时域法、频域法或根轨迹法设计校正系统,根据控制要求,制定合理的设计校正方案,给出校正装置的传递函数;编写相关MATLAB 程序或设计相应的SIMULINK 框图,绘制校正前、后系统相应图形分析系统稳定性,分析系统性能,求出校正前、后系统相关性能指标;比较校正前后系统的性能指标;编制设计说明书。 三、具体控制任务及设计要求 单位负反馈随动系统的开环传递函数为) 125.0)(11.0()(0++=s s s K s G ,设计系 统串联校正装置,使系统达到下列指标 静态速度误差系数K v ≥4s -1 ;相位裕量γ≥40°;幅值裕量K g ≥12dB 。 四、设计时间安排 查找相关资料(1天);编写相关MATLAB 程序,设计、确定校正环节、校正(2天);编写设计报告(1天);答辩修改(1天)。 五、主要参考文献 1.梅晓榕.自动控制原理, 科学出版社. 2.胡寿松. 自动控制原理(第五版), 科学出版社. 3.邹伯敏.自动控制原理,机械工业出版社 4.黄忠霖.自动控制原理的MATLAB 实现,国防工业出版社 指导教师签字: 2015年11月27日

第6章控制系统的设计与校正参考答案.doc

习题六 1. 在题图6.1(a )(b)中,实线分别为两个最小相位系统的开环对数幅频特性曲线,图中虚线部分表示采用串联校正后系统的开环对数幅频特性曲线改变后的部分,试问: 1)串联校正有哪几种形式: 2)试指出图(a )、(b)分别采取了什么串联校正方法? 3)图(a )、(b)所采取的校正方法分别改善了系统的什么性能? L (ωL (ω 题图6.1 习题1图 答案:1)、相位超前校正、相位滞后校正、相位-超前校正 2)、图(a)串联相位滞后校正,图(b)串联相位超前校正。 3)、相位滞后校正提高了低频段的增益,可减少系统的误差。相位超前校正改善了系统的稳定性,使剪切频率变大,提高系统的快速性。 2. 单位反馈系统的开环对数幅频特性曲线)(0ωL 如题图6.2所示,采用串联校正,校正装置 的传递函数)1100 )(13.0() 110)(13()(++++=s s s s s G c 题图6.2 习题2图 (1)写出校正前系统的传递函数)(0s G ; (2)在图中绘制校正后系统的对数幅频特性曲线)(ωL ; (3)求校正后系统的截止频率c ω和γ。 解:(1))1100 )(110(100 )0++=s s s s G (2)20)1100 )(13.0() 13(100))()(+++==s s s s s G s G s G c ,)(ωL 曲线见答案图。

(3)10=c ω,?=?--?-+?=6.63100 10arctan 23.010arctan 90310arctan 180γ 题2解图 3. 已知最小相位系统的开环对数幅频特性)(0ωL 和串联校正装置的对数幅频特性)(ωc L 如题图6.3所示。 (1)写出原系统的开环传递函数)(0s G ,并求其相角裕度; (2)写出校正装置的传递函数)(s G c ; (3)画出校正后系统的开环对数幅频特性曲线)(ωL ,并求其相角裕度。 1 题图6.3 习题3图 解:(1))105.0)(1.0(100 )(0+= s s s s G ?-=4.33γ (2)1 1001 125.3)(++=s s s G c (3)) 1100)(105.0)(11.0() 1125.3(100)()()(0++++==s s s s s s G s G s G c 125.3=c ω ?=9.57γ

自动控制原理 控制系统串联校正装置的设计

实验六 控制系统串联校正装置的设计 一、实验目的 应用频率校正法,对给定系统进行串联校正设计,并在模拟学习机上加以实现,验证设计的正确性。 二、实验仪器设备 (1)AC -1自动控制综合实验仪 一台 (2)数字计算机(配有AD/D 卡) 一台 (3)数字万用表 一块 三、设计任务与要求 1. 已知单位反馈系统的开环传递函数为: ) 1()(0+=s s K s G 当输入信号r (t) = 1时,要求:稳态误差0.1ss e ≤;开环截止频率4.4'0≥ω(rad/s );相角裕度045'≥γ;幅值裕度dB h 10'≥,试设计系统的串联超前校正装置。 2. 已知单位反馈系统的开环传递函数为: ) 12.0)(11.0()(0++=s s s K s G 要求:校正后系统的静态速度误差等于30(1/s );相角裕0'40≥γ;幅值裕度dB h 10'≥, 开环截止频3.2' 0≥ω(rad/s );试设计系统的串联滞后校正装置。 四、实验内容 (1)为了满足系统给出的开环截止频率和相角裕度的要求,利用数字计算机进行频率特性的计算,选择校正网络的参数、电容和电阻值。 (2)将设计的校正装置接入系统中,观察校正后系统的阶跃响应曲线,并检验是否满足给定的性能指标要求。 (3)若校正后,系统性能指标未达到给定的要求,应适当调节校正装置中的电阻,直至各项性能指标均满足要求为止。如果调节电阻无法达到,则需重新设计。 (4)应用MATLAB 软件的SIMULINK 仿真环境对校正前后的系统进行仿真,计算频率特性,并与实验结果进行比较。 五、实验报告要求 (1)实验完毕,利用实验数据文件,按实验指导老师的要求打印部分实验曲线,以便完成实验报告。 (2)给出校正前后系统的传递函数及其模拟电路; (3)根据校正装置设计的要求给出设计过程;

控制系统串联校正

实验:控制系统串联校正 一、实验目的 1.研究串联校正环节对系统稳定性及过渡过程的影响。 2.熟悉和掌握系统过渡过程的测量方法。 二、实验电路 图1串联超前校正系统模拟电路 图2串联滞后校正系统模拟电路 图3串联滞后-超前校正系统方框图 三、实验步骤 1.串联超前校正 (1)按图1所示模拟电路接线,a断开,输入端r(t)接阶跃信号,并与数字示波器OSC 的CH1连接,CH2连接输出端C(t)。 注:用连续阶跃信号输入时放电短路子接“AUTO”,用手动阶跃信号输入时放电短路子接“HDC”。 (2)打开实验箱电源。 (3)启动计算机,运行“SAC-ZJT-A1”,进入网络实验系统。 (4)选择串口(如不选择,则默认COM1为通讯口)。 (5)选择“自控实验”,点击“连续系统串联校正”。 (6)点击“启动显示”,打开实验界面。 (7)点击“运行”,观察并调整输入阶跃为1V。 (8)观察系统阶跃响应曲线,记录超调量MP%和调节时间tS,填入表1中。

(9)接通a,重复操作步骤,比较a接通和a断开的响应曲线有何差别。 2.串联滞后校正 按图2电路接线,在命令菜单中选择“滞后校正”,其它实验步骤与超前校正类似,结果填入表2. 3.串联滞后-超前校正系统 参考图3设计一个串联滞后-超前校正系统。分析系统闭环传递函数的特征方程根的位置对系统的影响。结果填入表3. 四、实验记录 表1

表2 23.44 3.732s a闭合 表3 五、实验设备1、SAC-ZJⅡ网络智能自控计控实验装置。 2、SAC-ZJT-A1软件(包括与之相适应的并已经安装该软件的计算机)。 3、与实验台板上相配套的导线若干。 4、万用表.

自校正控制系统分析

自校正控制系统分析 摘要:本文介绍了自校正控制系统的基本结构,主要介绍了基于PID 结构的间接自校正控制系统的控制算法,并通过实例仿真结果,表明了自校正PID 控制不仅需要调整的参数少,而且还能够根据对象特性的变化在线修改这些参数,增强了控制器的自适应能力。 关键字:自校正控制系统;PID 控制;自适应能力 1 引言 自校正控制系统主要由参数估计器、控制器设计、控制器和被控对象4部分组成,如图1所示。该系统内环由被控对象和可调控制器组成,外环则由过程模型参数估计器和控制器参数计算器所组成,其任务是辨识过程参数再按选定的设计方法综合出控制器参数,用以修改内环的控制器。这类系统的特点是必须对过程或者被控对象进行在线辨识估计器,然后用对象参数估计值和事先规定的性能指标在线综合出调节器的控制参数,并根据此控制参数产生的控制作用对被控对象进行控制经过多次地辨识和综合调节参数可以使系统的性能指标趋于最优。 图1 自适应控制系统结构图 自适应控制算法对于复杂系统能够达到较好的控制精度跟踪速度以及稳定性,其实时性好,算法简单,易于实现。然而,在PID 控制中,一个至关重要的问题就是PID 参数的整定。典型的PID 参数整定方法是在获取被控对象数学模型的基础上,根据某一整定规则来确定参数。PID 参数整定的优劣,不但会影响到控制质量,而且会影响到控制系统的稳定性和鲁棒性。本文介绍了基于PID 结构的间接自校正控制。 2 基于PID 结构的间接自校正控制 自校正PID 控制算法的设计思想是: 以极点配置控制律为控制器基本形式,引入递推算法估计对象参数,并将估计结果按极点配置法进行控制器参数的设计。下面介绍自校正PID 控制器。 被控对象为 )()()()()(11k e k u z B z k y z A d +=--- (1) 式中,u(k),y(k)表示系统的输入和输出,e(k)为外部扰动,d ≥为纯延迟,且221111)(---++=z a z a z A ,21101)(---+???++=z b z b b z B b n 。 对系统(1)采用PID 控制,此时,对应的PID 控制器可表示为 )()()()()()(1111k y z R k y z R t u z F r ----= (2) ?=--)()(1 11z F z F (3) 过 程过程模型参数估计器 可调控制器 输出控制量输入 过程参数 控制器 参 数 控制器参数 计算器

控制系统串联校正课程设计

控制系统串联校正课程设计

河南科技大学 课程设计说明书 课程名称控制理论课程设计 题目控制系统串联校正设计 学院 班级 学生姓名 指导教师 日期

控制理论课程设计任务书 设计题目: 控制系统串联校正设计 一、设计目的 控制理论课程设计是综合性较强的教学环节。其目的是培养学生对所学自控理论知识进行综合应用的能力;要求学生掌握自动控制系统分析、设计和校正的方法;掌握应用MATLAB 语言及SIMULINK 仿真软件对控制系统进行分析、设计和校正的方法;培养学生查阅图书资料的能力;培养学生撰写设计报告的能力。 二、设计内容及要求 应用时域法、频域法或根轨迹法设计校正系统,根据控制要求,制定合理的设计校正方案,给出校正装置的传递函数;编写相关MATLAB 程序或设计相应的SIMULINK 框图,绘制校正前、后系统相应图形分析系统稳定性,分析系统性能,求出校正前、后系统相关性能指标;比较校正前后系统的性能指标;编制设计说明书。 三、具体控制任务及设计要求 单位负反馈随动系统的开环传递函数为) 125.0)(11.0()(0++=s s s K s G ,设计系 统串联校正装置,使系统达到下列指标 静态速度误差系数K v ≥4s -1;相位裕量γ≥40°;幅值裕量K g ≥12dB 。 四、设计时间安排 查找相关资料(1天);编写相关MATLAB 程序,设计、确定校正环节、校正(2天);编写设计报告(1天);答辩修改(1天)。 五、主要参考文献 1.梅晓榕.自动控制原理, 科学出版社. 2.胡寿松. 自动控制原理(第五版), 科学出版社. 3.邹伯敏.自动控制原理,机械工业出版社 4.黄忠霖.自动控制原理的MATLAB 实现,国防工业出版社

自动控制原理_线性系统串联校正

或施二佥2罟 W口h;u 】Institute of Technology 线性系统串联校正 专业班级______________________________________ 学号_________________________________________

姓名_________________________________________ 任课老师______________________________________ 学院名称___________ 电气信息学院_____________

、实验目的 1 ?熟练掌握用MATLAB?句绘制频域曲线。 2 ?掌握控制系统频域范围内的分析校正方法。 3 ?掌握用频率特性法进行串联校正设计的思路和步骤 、基础知识 控制系统设计的思路之一就是在原系统特性的基础上,对原特性加以校正, 使之达到要求的性能指标。最常用的经典校正方法有根轨迹法和频域法。而常用 的串联校正装置有超前校正、滞后校正和超前滞后校正装置。本实验主要讨论在 MATLAB^境下进行串联校正设计。 、实验内容 校正装置,使校正后系统的静态速度误差系数 K v 20s 1 ,相位裕量 50°,增 益裕量 20lgK g 10dB 解:(1)根据题意,则校正后系统的增益 K 20, 20 取 GS ) E 求出现系统的相角裕度 num0=20; den 0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margi n(num 0,de n0); [mag1,phase1]=bode (num 0,de n0 ,w); [gm1,pm1,wcg1,wcp1] margi n(num 0,de n0) 运行结果: ans = Inf 12.7580 Bode 图如下: 1 ?某单位负反馈控制系统的开环传递函数为 G(s) 中,试设计一超前 Inf 4.4165

控制系统的校正

基于MATLAB 控制系统的校正设计 1实验目的 ① 掌握串联校正环节对系统稳定性的影响。 ② 了解使用SISO 系统设计工具(SISO Design Tool )进行系统设计。 2 设计任务 串联校正是指校正元件与系统的原来部分串联,如图1所示。 图1串联校正图 图中,()c G s 表示校正部分的传递函数,()o G s 表示系统原来前向通道的传递函数。()()111c aTs G s a Ts +=>+,为串联超前校正;当()()111o aTs G s a Ts +=<+,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MATLAB 命令窗口中输入 sisotool 命令, 可以打开一个空的 SISO Design Tool , 也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 所示。

图2 SISO系统的图形设计环境 (2)将模型载入 SISO设计工具 通过file/import命令,可以将所要研究的模型载入SISO设计工具中。点击该菜单项后,将弹出Import System Data对话框,如图3所示。 图3 Import System Data对话框 (3)当前的补偿器(Current Compensator) 图2中当前的补偿器(Current Compensator)一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和Bode图中添加零极点或移动曲线,该栏将自动显示补偿器结构。(4)反馈结构 SISO Design Tool 在缺省条件下将补偿器放在系统的前向通道中,用户可以通过“+/-”按钮选择正负反馈,通过“FS”按钮在如下图4几种结构之间进行切换。

自动控制原理_线性系统串联校正

线性系统串联校正 专业班级 学号 姓名 任课老师 学院名称电气信息学院

一、实验目的 1.熟练掌握用MATLAB 语句绘制频域曲线。 2.掌握控制系统频域范围内的分析校正方法。 3.掌握用频率特性法进行串联校正设计的思路和步骤。 二、基础知识 控制系统设计的思路之一就是在原系统特性的基础上,对原特性加以校正,使之达到要求的性能指标。最常用的经典校正方法有根轨迹法和频域法。而常用的串联校正装置有超前校正、滞后校正和超前滞后校正装置。本实验主要讨论在MATLAB 环境下进行串联校正设计。 三、实验内容 1.某单位负反馈控制系统的开环传递函数为) 1(4 )(+= s s s G ,试设计一超前 校正装置,使校正后系统的静态速度误差系数120-=s K v ,相位裕量050=γ,增益裕量dB K g 10lg 20=。 解:(1)根据题意,则校正后系统的增益20K =, 取20 ()(1) G s s s = +求出现系统的相角裕度。 num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0)

运行结果: ans = Inf 12.7580 Inf 4.4165 Bode 图如下: M a g n i t u d e (d B )10 10 10 10 10 P h a s e (d e g ) Bode D iagram Frequency (rad/sec) 由图像可知可知,原系统在满足静态速度误差之后,幅值裕度为无穷大,相角裕度0012.8γ=, 4.42/c rad s ω=,不满足指标要求,因此采用串联超前校正装置,以增加系统的相角裕度。 (2)确定串联装置所需要增加的超前相位角及求得的校正装置参数。 程序代码: %****************求出校正前系统相角裕量********************% num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1]; margin(num0,den0); %****************求出a 的值*******************************% e=7.8; r=50; r0=pm1; phic=(r-r0+e)*pi/180; alpha=(1+sin(phic))/(1-sin(phic));

【实验报告】控制系统的串联校正

实验名称:控制系统串联校正

目录 (一)实验目的 (3) (二)实验内容 (3) (三)实验设备 (3) (四)实验原理 (3) (五)实验结果 (4) (六)数据分析的 (7) 附页: (9) Matlab模拟波特图程序: (9) 图片目录 图片 1 系统结构图 (3) 图片 2 系统模拟电路 (3) 图片 3 无校正阶跃响应曲线 (4) 图片 4 无校正时波特图 (5) 图片 5 超前校正阶跃响应曲线 (5) 图片 6 超前校正时波特图 (6) 图片7 滞后校正阶跃响应曲线 (6) 图片8 滞后校正波特图 (7) 表格目录 表格 1 稳定裕度和截止频率 (7) 表格 2 阶跃响应数据 (7)

控制系统串联校正 (一) 实验目的 (1) 了解和掌握串联校正的分析和设计方法; (2) 研究串联校正环节对系统稳定性及过度过程的影响; (二) 实验内容 (1) 设计串联超前校正,并验证; (2) 设计串联超前校正,并验证; (三) 实验设备 (1) HMNN 电子模拟机一台 (2) PC 机一台 (3) 万用表一块 (四) 实验原理 图片1系统结构图 其中()C G s 为校正环节,在本实验中利用系统模型实现; 不加校正环节时,系统的开环传递函数为: 4()(1) G s s s = + 图片2系统模拟电路 K1 T1 K2 T2 K3 (1) 未加校正环节时()1C G s = (2) 加串联超前校正环节时,传递函数:1()1C T s G s T s α+= +,其中: 2.55α=,0.26T =: 10.63()10.26C s G s s += + (3) 加串联止滞后校正环节时,传递函数:1()1C bT s G s T s += +,其中:0.12b =,83.33T =:

实验4 控制系统校正

实验4 控制系统的校正 1、主要内容 控制系统的校正及设计上机实验 2、目的与要求 熟悉应用 MATLAB 软件设计系统的基本方法 熟悉应用 SISO Design Tool 进行系统设计的基本方法 通过学习自行设计完成一个二阶系统串联校正设计任务 3、重点与难点: 自行设计完成一个二阶系统串联校正设计任务 自行设计完成一个二阶系统并联校正设计任务 一、实验目的 1、掌握串联校正环节对系统稳定性的影响; 2、了解使用 SISO 系统设计工具(SISO Design Tool )进行系统设计。 二、设计任务 串联校正是指校正元件与系统的原来部分串联,如图 1 所示。 图 中 ,()c G s 表 示 校 正 部 分 的 传 递 函 数 , 0()G s 表 示 系 统 原 来 前 向 通 道 的 传 递 函 数 。 当 1()(1)1c aTs G s a Ts +=>+时,为串联超前校正;当1()(1)1c aTs G s a Ts +=<+时,为串联迟后校正。 我们可以使用 SISO 系统设计串联校正环节的参数,SISO 系统设计工具(SISO Design Tool )是用于单输入单输出反馈控制系统补偿器设计的图形设计环境。通过该工具,用户可以快速完成以下工作:利用根轨迹方法计算系统的闭环特性、针对开环系统 Bode 图的系统设计、添加补偿器的零极点、设计超前/滞后网络和滤波器、分析闭环系统响应、调整系统幅值或相位裕度等。 (1)打开 SISO 系统设计工具 在 MA TLAB 命令窗口中输入 sisotool 命令,可以打开一个空的 SISO Design Tool ,也可以在 sisotool 命令的输入参数中指定 SISO Design Tool 启动时缺省打开的模型。注意先在 MATLAB 的当前工作空间中定义好该模型。如图 2 为一个 DC 电机的设计环境。 (2)将模型载入 SISO 设计工具 通过 file/import 命令,可以将所要研究的模型载入 SISO 设计工具中。点击该菜单项后,将弹出 Import System Data 对话框,如图 3 所示。 (3)当前的补偿器(Current Compensator ) 图 2 中当前的补偿器(Current Compensator )一栏显示的是目前设计的系统补偿器的结构。缺省的补偿器增益是一个没有任何动态属性的单位增益,一旦在跟轨迹图和 Bode 图中添加零极点或移动曲线,该栏将自动显示补偿器结构。

控制理论实验报告线性定常系统的串联校正.docx

实验报告 课程名称:控制理论(乙)指导老师:成绩:__________________实验名称:线性定常系统的串联较正实验类型:______________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过实验,理解所加校正装置的结构、特性和对系统性能的影响; 2.掌握串联校正几种常用的设计方法和对系统的实时调试技术。 二、实验设备 1.THBDC-2型控制理论·计算机控制技术实验平台; 2.PC机一台(含“THBDC-2”软件)、USB数据采集卡、37针通信线1根、16芯数据排线、USB接口线。 三、实验内容 1.观测未加校正装置时系统的动、静态性能; 2.按动态性能的要求,分别用时域法或频域法(期望特性)设计串联校正装置; 3.观测引入校正装置后系统的动、静态性能,并予以实时调试,使之动、静态性能均满足设计要求; 4.利用上位机软件,分别对校正前和校正后的系统进行仿真,并与上述模拟系统实验的结果相比较。 四、实验原理 图6-1为一加串联校正后系统的方框图。图中校正装置G c(S)是与被控对象Go(S)串联连接。 图6-1 加串联校正后系统的方框图 串联校正有以下三种形式: 1) 超前校正,这种校正是利用超前校正装置的相位超前特性来改善系统的动态性能。 2) 滞后校正,这种校正是利用滞后校正装置的高频幅值衰减特性,使系统在满足稳态性能的前提下又能满足其动态性能的要求。 3) 滞后超前校正,由于这种校正既有超前校正的特点,又有滞后校正的优点。因而它适用系统需要同时改善稳态和动态性能的场合。校正装置有无源和有源二种。基于后者与被控对象相连接时,不存在着负载效应,故得到广泛地应用。 下面介绍两种常用的校正方法:零极点对消法(时域法;采用超前校正)和期望特性校正法(采用滞后校正)。 1. 零极点对消法(时域法) 所谓零极点对消法就是使校正变量G c(S)中的零点抵消被控对象G o(S)中不希望的极点,以使系统的动、静态性能均能满足设计要求。设校正前系统的方框图如图6-2所示。 图6-2 二阶闭环系统的方框图 1.1性能要求 静态速度误差系数:K V=25 1/S,超调量:;上升时间:。

自动控制系统的校正

自动控制系统的校正 摘要:在工业上、农业、交通运输和国防各个方面,凡要求较高的场合,都离不开自动控制。所谓自动控制,就是在没有人直接参与的情况下,利用控制装置,对生产过程、工艺参数、目标要求进行自动的调节与控制,使之按照预定的方案达到要求的指标。自动控制系统性能的优劣,将直接影响到产品的产量、质量、成本、、劳动条件和预期目标的完成。因此,自动控制越来越受人们的重视,使控制理论和技术应用方面因此也获得了飞速的发展。 关键词:自动控制校正 1.自动控制系统的组成 为了表明自动控制系统的组成以及信号的传递情况,通常把系统各个环节用框图表示,并用箭头标明各做用量的传递情况。框图可以把系统的组成简单明了地表达出来,而不必画出具体线路 自动控制的分类 实际生产过程中采用的自动控制系统的类型是多种多样的,从不同的角度出发,可以进行不同的分类。 按输入量变化的规律分类有恒指控制系统、随动系统过程控制系统;按系统传输信号分类有连续控制系统、离散控制系统;按系统的输出量和输入量间的关系分类有线性系统、非线性系统;按系统中的参数对时间的变化情况分类有定常系统、时变系统。 对自动系统进行分析研究,首先是对系统进行定性分析。所谓定性分析,主要是搞清各个单元及各个组件在系统中的地位和作用,以及它们之间的相互联系,并在此基础上搞清系统的工作原理。然后,在定性分析的基础上,可以建立系统的数字模型;再应用自动控制理论对系统的稳定性、稳态性能和动态性能进行定量分析。在系统分析的基础上就可以找到改善系统性能、提高系统技术指针的有效途径,这也就是系统的校正、设计和现场调试。 2.自动控制系统的校正 当自动控制系统的稳态性能或动态性能满足所要求的性能指针时,首先可以考虑调整系统中的可以调整的参数;若通过调整参数仍是不能满足要求时,则可以在原有的系统中,有目的的添加一些装置和组件。,认为的的改变系统的结构和性能,使之满足所要求的性能指针,我们把这种方法称为“系统校正”。增添的装置和组件称为校正装置和校正组件。 1、校正的概念 当控制系统的稳态、静态性能不能满足实际工程中所要求的性能指针时,首先可以

实验3:控制系统的校正与设计

实验三控制系统的校正与设计 一、实验目的 1. 加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。 二、实验仪器 1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台 三、实验内容 1.串联超前校正 (1)系统模拟电路图如图5-1,图中开关S断开对应未校情况,接通对应超前校正。 图5-1 超前校正电路图 (2)系统结构图如图5-2 图5-2 超前校正系统结构图 图中 Gc1(s)=2 2(0.055s+1) Gc2(s)= 0.005s+1 2.串联滞后校正 (1)模拟电路图如图5-3,开关s断开对应未校状态,接通对应滞后校正。

图5-3 滞后校正模拟电路图 (2)系统结构图示如图5-4 图5-4 滞后系统结构图 图中 Gc1(s)=10 10(s+1) Gc2(s)= 11s+1 3.串联超前—滞后校正 (1)模拟电路图如图5-5,双刀开关断开对应未校状态,接通对应超前—滞后校正。 图5-5 超前—滞后校正模拟电路图 (2)系统结构图示如图5-6。 图5-6超前—滞后校正系统结构图 图中 Gc1(s)=6

6(1.2s+1)(0.15s+1) Gc2(s)= (6s+1)(0.05s+1) 四、实验步骤 1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 2.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信 正常后才可以继续进行实验。 超前校正: 3.连接被测量典型环节的模拟电路(图5-1)。电路的输入U1接A/D、D/A卡的DA1输出, 电路的输出U2接A/D、D/A卡的AD1输入,将将纯积分电容两端连在模拟开关上。检查无误后接通电源。 4.开关s放在断开位置。- 5.在实验项目的下拉列表中选择实验五[五、连续系统串联校正]。鼠标单击按钮, 弹出实验课题参数设置对话框。在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果,并记录超调量 p和调节时间ts。 6.开关s接通,重复步骤5,将两次所测的波形进行比较。并将测量结果记入下表中:

第6章控制系统的设计习题解答共6页

第6章 控制系统的设计 6.1 学习要点 1 控制系统校正的概念,常用的校正方法、方式; 2 各种校正方法、方式的特点和适用性; 3各种校正方法、方式的一般步骤。 6.2 思考与习题祥解 题6.1 校正有哪些方法?各有何特点? 答:控制系统校正有根轨迹方法和频率特性方法。 根轨迹法是一种直观的图解方法,它显示了当系统某一参数(通常为开环放大系数)从零变化到无穷大时,如何根据开环零极点的位置确定全部闭环极点的位置。因此,根轨迹校正方法是根据系统给定的动态性能指标确定主导极点位置,通过适当配置开环零极点,改变根轨迹走向与分布,使其通过期望的主导极点,从而满足系统性能要求。 频率特性是系统或元件对不同频率正弦输入信号的响应特性。频域特性简明地表示出了系统各参数对动态特性的影响以及系统对噪声和参数变化的敏感程度。因此,频率特性校正方法是根据系统性能要求,通过适当增加校正环节改变频率特性形状,使其具有合适的高频、中频、低频特性和稳定裕量,以得到满意的闭环品质。由于波德图能比较直观的表示改变放大系数和其他参数对频率特性的影响,所以,在用频率法进行校正时,常常采用波德图方法。 系统校正要求通常是由使用单位和被控对象的设计单位以性能指标的形式提出。性能指标主要有时域和频域两种提法。针对时域性能指标,通常用根轨迹法比较方便;针对频域性能指标,用频率法更为直接。根轨迹法是一种直接的方法,常以超调量%δ和调节时间s t 作为指标来校正系统。频域法是一种间接的方法,常以相位裕量()c γω和速度误差系数v k 作为指标来校正系统。 题6.2 校正有哪些方式?各有何特点? 答:校正有串联校正方式和反馈校正方式。 校正装置串联在系统前向通道中的连接方式称为串联校正。校正装置接在系统的局部反馈通道中的连接方式称为反馈校正。如图6.1所示。 图6.1 串联校正和反馈校正 串联校正方式因其实现简单而最为常见。反馈校正除能获得串联校正类似的校正效果外,还具有串联校正所不具备的特点:(1)在局部反馈校正中,信号从高能级被引向低能级,因此不需要经过放大;(2)能消除外界扰动或反馈环内部系统参数波动对系统控制性能的影响,提供系统更好的抗干扰能力。 题6.3 串联超前、串联滞后与串联滞后–超前校正各有何适应条件? 答: (1)串联超前校正通常是在满足稳态精度的条件下,用来提高系统动态性能的一种校正方法。从波德图来看,为满足控制系统的稳态精度要求,往往需要增加系统的

温度控制系统校正环节设计

题 目: 温度控制系统校正环节设计 初始条件: 传递函数为) )(s/)(s .(s/K KG(s)121150+++= 的三阶系统描述了一个 典型的温度控制系统。用超前补偿和滞后补偿设计满足给定性能指标的补偿环节。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个超前补偿环节,使系统满足9=P K 和相角裕度 25≥PM 的 性能指标; (2) 画出系统在(1)校正前后的奈奎斯特曲线和波特图 (3) 设计滞后补偿环节,使系统满足9=P K 和相角裕度 40≥PM 的性能 指标; (4) 画出系统在(3)校正前后的奈奎斯特曲线和波特图; (5) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (6) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写

时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日 温度控制系统校正环节设计 1 无源超前校正和无源滞后校正的原理 1.1 无源滞后网络校正的原理 无源滞后网路电路图如下: 1 R 图1-1无源滞后网络电路图 如果信号源的内部阻抗为零,负载阻抗为无穷大,则滞后网络的传递函数为 s T s Ts Ts s U s U s G c 11 1 1)()()(12++ ? =++==ααα

分度系数 时间常数 图1-2无源滞后网络特性图 由图可知,滞后网络在: T 1 <ω时,对信号没有衰减作用; T T a 11<<ω时,对信号有积分作用,呈滞后特性; T 1 >ω时,对信号衰减作用为a lg 20,a 越小,这种衰减作用越强; 最大滞后角,发生在aT T 1 1与几何中心,称为最大滞后角频率,计算公式为: a T w m 1= b b m +-=11arcsin ? 采用无源滞后网络进行串联校正时,主要利用其高频幅值衰减的特性,以降低系统的开环截止频率,提高系统的相角裕度。 在设计中力求避免最大滞后角发生在已校系统开环截止频率''c ω附近。如图1-2所示,选择滞后网络参数时,通常使网络的交接频率1/(a T )远小于''c ω一般取1/(a T )=''c ω/10 10 10 10 10 10 101010 C R R T R R R )(12 1 212 +=<+=α1 ,1.0a ==T

相关文档