文档库 最新最全的文档下载
当前位置:文档库 › 循环氢压缩机干气密封损坏原因分析及对策正式版

循环氢压缩机干气密封损坏原因分析及对策正式版

循环氢压缩机干气密封损坏原因分析及对策正式版
循环氢压缩机干气密封损坏原因分析及对策正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal.

循环氢压缩机干气密封损坏原因分析及对策正式版

循环氢压缩机干气密封损坏原因分析

及对策正式版

下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过

程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。

200万吨柴油加氢装置循环氢压缩机K-102干气密封系统及干气密封控制系统采用四川日机密封件有限公司的中间带迷宫的串联式集装式干气密封。

干气密封的工作原理

工作原理

干气密封单元一般由一个可以轴向浮动的静环和一个固定在轴套上的动环组成。静环背后有弹簧对其施加贴合作用力,动环随压缩机转子做高速运转。密封的工作原理是流体静压力和流体动压力的平衡。高速旋转的动环产生粘性剪切力带

动流体进入流体动力槽内,由外径向中心运动,密封坝提供流体阻力,节制气体流向低压端,于是气体被压缩压力升高,密封面分开,形成一定厚度的的气膜,(约

3μm)。当流体的静压力和弹簧的闭合力等于气膜内的开启力时,密封端面之间就形成了稳定的间隙,于是密封实现非接触运转。我装置干气密封为中间带迷宫的串联式集装式干气密封,密封气由两种气体组成,分别是1.0MPa氮气、循环氢压缩机出口循环氢。靠压缩机气缸内侧的一级密封,由循环氢密封,用粗滤器和精滤器过滤;中间的二级密封,用1.0MPa氮气进行密封;靠压缩机气缸外侧的隔离气,用氮气密封;气缸内的大量氢气首先被靠内侧

的密封氢气密封,剩余外漏的氢气和密封气靠氮气来密封,为了防止润滑油进入密封腔,在最外侧用氮气进行密封。

实际运行状况

K-102为循环氢压缩机,20xx年11月投用,运行至20xx年6月发现非驱动端干气密封泄漏气量和压力持续上涨,经过流程检查及仪表联校确认非驱动端干气密封泄漏。直至20xx年6月30日装置被迫停工检修。经解体检查发现密封静环有磨损现象(1)。于是,对非驱动端密封进行了更换。重新开启后运行正常。运行至20xx 年6月,再次发现非驱动端干气密封泄漏气量和压力持续上涨,且情况与20xx年相似,6月16日装置再次被迫停工,解体检

查仍发现密封静环有磨损现象,且密封静环上的O型圈断裂。

检修概述

3.1. 20xx年打开干气密封聚结器检查的情况,造成干气密封带液的主要原因就是聚结器的滤芯安装不到位,造成聚结器无法正常脱液。

3.2.20xx年打开干气密封检查的情况,造成干气密封损坏的主要原因就是干气密封带液,造成O环损坏,干气密封带液的主要原因为聚结器设计不合理造成脱液效果差。

干气密封故障原因分析

4.1.干气密封聚结器脱液效果差:从20xx年与20xx年两次检修现场干气密封拆

检情况来看,干气密封一级密封动、静环上滞留的碳粉情况,虽然本次密封系统中滞留的碳粉相对去年来说大幅减少,但是由于一级密封气带液,是造成本次密封失效的主要原因。

4.2.干气密封中O型圈设计不合理:本次检修在拆检一级密封时发现一级静环与推环之间的O型圈损坏,造成干气密封泄漏气量逐渐增大。

4.3.机组运行工况偏离其设计工况:K-102设计额定流量为133000Nm3/h,入口温度为50℃,入口压力为7.5MPa(G),出口温度为76.3℃,出口压力为

9.4MPa(G)。而目前K-102的运行工况为:入口压力7.5MPa(G),入口温度为50℃,

出口压力为8.53MPa(G),出口温度为69℃。运行状况与设计偏差较大。

预防及整改措施

5.1.将介质侧氟橡胶密封圈更新为耐氨腐蚀的全氟醚密封圈,且提高与静环密封圈接触轴套部位的光洁度,以保证静环有良好的补偿能力。

5.2.对聚结器进行跟换或改造。

5.3.车间继续加强对循环氢中各组分的分析和监控,尤其是氨含量。

5.4.将适当增加聚结器、过滤器、循环氢分液罐的脱液频次,以保证干气密封系统一级密封气尽量减少液体的携带。

5.5.加强干气密封一级密封气蒸汽伴热的检查。

5.6.为防止循环氢量大幅波动造成机组运行波动,规定K-102入口循环氢量稳定在130000-140000 Nm3/h,循环氢纯度不低于80%。

5.7.在装置出现紧急停工情况时,要尽可能快的引入高压氮气,减小压缩机干气系统的波动。

5.8.机组出现紧急停车后,立即确认汽轮机速关阀关闭、压缩机出入口阀关闭,机组不会发生低转(转速<800rpm)或倒转,盘车速度不大于10rpm。

5.9.保证干气密封工作流量、压差在设计范围内。

——此位置可填写公司或团队名字——

离心式压缩机干气密封系统浅析

离心式压缩机干气密封系统浅析 1 干气密封简介 目前国内外石油化工行业普遍使用离心式压缩机来输送各种气体,主要是因为运转周期长、性能稳定。实际生产要求离心式压缩机在高转速、大气量、大压力,尤其是在压缩易燃、有害、有毒气体的条件下工作,为了防止这些气体沿压缩机轴端泄漏至大气中,就必须采用各种密封方式,保证压缩机的正常工作,保证人身和设备的安全,防止造成环境污染,同时也决定了密封装置向高密封效率、低能耗的方向发展。 在压缩机领域,轴端干气密封正逐步替代迷宫密封、浮环密封和油润滑机械密封[1]。对密封的基本要求是要保证结合部分的密闭性、工作可靠性、使用寿命长,密封装置的系统简单、结构紧凑、制造维修方便。衡量密封好坏的主要技术指标是泄漏量、寿命和使用条件[2]。 干气密封是一种新型的非接触轴向密封,由它来密封旋转机器中的气体或液体介质。与其它密封方式相比,干气密封具有泄漏量少,寿命长,能耗低,磨损小,维修量低,操作简单可靠,被密封的流体不受油污染等特点。 目前,干气密封主要应用在离心式压缩机上和轴流压缩机、透平膨胀机上。干气密封已经成为离心式压缩机正常运转和操作可靠的重要元件。 2 干气密封工作原理

图1 动环端面结构示意图 干气密封是由动环、静环、弹簧、密封圈、弹簧圈和轴套组成。动环和静环配合表面的平面度和光洁度很高,动环面上加工有一系列的螺旋形流体动压槽,槽深仅有几微米,外深内浅,如图1所示。干气密封在非运转状态时,动环与静环的密封面靠弹簧力贴合在一起。运转时,气体随着动环的旋转,被吸入动压槽内,被送到螺旋槽的根部,根部以外的一段无槽区称为密封坝,即动压槽末端没有通道。螺旋槽间为密封堰。密封坝和密封堰起到节流和密封的作用。

循环氢压缩机干气密封损坏原因分析及对策

循环氢压缩机干气密封损坏原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:___________________ 审核:___________________ 单位:___________________

文件编号:KG-A0-2955-22 循环氢压缩机干气密封损坏原因分 析及对策(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 200万吨柴油加氢装置循环氢压缩机K-102干气密封系统及干气密封控制系统采用四川日机密封件有限公司的中间带迷宫的串联式集装式干气密封。 干气密封的工作原理 工作原理 干气密封单元一般由一个可以轴向浮动的静环和 一个固定在轴套上的动环组成。静环背后有弹簧对其施 加贴合作用力,动环随压缩机转子做高速运转。密封的 工作原理是流体静压力和流体动压力的平衡。高速旋转 的动环产生粘性剪切力带动流体进入流体动力槽内,由 外径向中心运动,密封坝提供流体阻力,节制气体流向 低压端,于是气体被压缩压力升高,密封面分开,形成 一定厚度的的气膜,(约3um)。当流体的静压力和弹

簧的闭合力等于气膜内的开启力时,密封端面之间就形成了稳定的间隙,于是密封实现非接触运转。我装置干气密封为中间带迷宫的串联式集装式干气密封,密封气由两种气体组成,分别是 1. OMPa 氮气、循环氢压缩机出口循环氢。靠压缩机气缸内侧的一级密封,由循环氢密封,用粗滤器和精滤器过滤;中间的二级密封,用1. OMPa氮气进行密封;靠压缩机气缸外侧的隔离气,用氮气密圭寸;气缸内的大量氢气首先被靠内侧的密封氢气密封,剩余外漏的氢气和密封气靠氮气来密封,为了防止润滑油进入密封腔,在最外侧用氮气进行密封。 实际运行状况 KT02为循坏氢压缩机,20xx年门月投用,运行至20xx年6月发现非驱动端干气密封泄漏气量和压力持续上涨,经过流程检查及仪表联校确认非驱动端干气密封泄漏。直至20xx年6月30日装置被迫停工检修。经解体检查发现密封静环有磨损现象(Do于是,对非驱动端密封进行了更换。重新开启后运行正常。运行至20xx年6月,再次发现非驱动端干气密封泄漏气量和压

干气密封基本原理及投用步骤Word版

1、干气密封基本原理 干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。 2、干气密封投用步骤 注意事项:a、严禁在不投用干气密封的情况下,打开压缩机的出入口阀。 b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。 c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。 d、必须确保排放火炬和放空的背压小于进入干气密封的密封气 压力。 e、在开机后应尽量避免在干气密封在低于3000转以下长时间 运行。 f、严禁在增压泵活塞杆漏气大于50KPa的情况下启动增压泵。 步骤:干气密封系统安装后,在一级,二级,后置隔离气入口法兰端口处接上洁净的仪表风或低压氮气连续吹扫4~6小时以上,直到用细纱漂白布贴近六个出口吹扫5分钟以上,用眼仔细观察确无灰尘、油污、水分等杂质为合格。吹扫干净后关闭所有阀门,处于待命状态。 打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。 打开低压N气去干气密封系统阀门,充分脱液后进行氮气置换,时间为

四小时,并通过一级密封气和平衡管差压控制阀 调节一级密封高低压端流量不低于117Nm3/h(柴油不低于250Nm3/h) 二级密封高低压端流量不低于2.9Nm3/h(柴油不低于6.5Nm3/h)排放火炬流量7-11Nm3/h,(柴油5-8Nm3/h),并通过自力调节阀使阀后压力不低于0.185MPa(柴油0.1 MPa) 后置隔离气高低压端,流量不低于42.81 Nm3/h,(柴油15 Nm3/h),并通过自力调节阀使阀后压力不低于0.068MPa(柴油不低于0.01 MPa)。待一级密封气高低压流量表为0时,打开压缩机底部排液阀进行置换并气密。在此换过程中

离心压缩机干气密封系统原理及泄漏原因分析

密封系统为串联式双端面干气密封,由连续放置的两组单端面干气密封组成。经过滤的纯净合成气作为主密封气进入一级密封腔,其压力比工艺气体压力高0.2-0.3MPa,起到阻隔作用,有少量密封气会进入缸内,但其为纯净的合成气,故不会产生污染。另一部分气体经过两级干气密封之间的梳齿密封分为两路,一部分作为一级泄漏(也称一次泄漏)直接排至火炬系统,另一部分进入二级密封腔充当二级密封气。然后再经梳齿密封由二级泄漏管道与隔离气一起排出引至火炬系统。隔离气(氮气)起着最后一道密封作用,其压力略高于二级密封气,确保二级密封气不会泄漏至大气侧。通过离心压缩机合成气泄漏事例,分析装备干气密封系统的离心压缩机发生气体泄漏情况,如干气密封的一级泄漏气和主密封气通过中分面泄漏至轴承箱。 1导言随着石油、化工行业的快速发展,低能耗、高效益、零污染、长周期的发展方向已成为石油化工行业的发展趋势。大型压缩机组是石化行业的关键设备,其密封性能的好坏决定装置能否平稳安全运行。干气密封以其低泄漏、经济实用性好、密封寿命长和运行可靠等特点脱颖而出。干气密封是一种新型的旋转轴用非接触密封,它是在气体润滑轴承的基础上,由接触型液膜机械密封改进而来。上世纪60年代末,约翰克兰公司研制出首套干气密封并应用于离心压缩机。随着密封行业以及流体动力学的快速发展,已经衍生出各种型式的干气密封。目前,干气密封已在石油、化工、冶金、航空等行业中广泛使用。因此在本文之中,主要是对离心压缩机干气密封系统原理

及泄漏原因进行了全面的分析研究,并且也是在这基础之上提出了下文中的一些内容,希望能够给予相同行业进行工作的人员提供出一定价值的参考。 2.干气密封工作原理干气密封是一种新型非接触式密封,其利用流体动力学原理,通过开设在密封端面上的动压槽来达到密封端面的非接触运行。由旋弹簧、旋转环、静环、密封圈以及弹簧座和轴套组成。旋转环密封面经过研磨、抛光处理,并在其上面加工出有特殊作用的流体动压槽。干气密封旋转环旋转时,将密封气体吸入动压槽内,沿着密封堰流动。在密封堰的节流作用下,气体被压缩,压力升高,将密封面推开,在两个密封面间形成一层很薄的气膜。气体动力学研究表明,当干气密封两端面的气膜厚度在2-3微米时,气体流动层最为稳定,因此,干气密封气膜厚度设计值选定在2-3微米。当气体静压力、弹簧力形成的闭合力与气膜反力相等时,气膜厚度保持恒定,干气密封稳定运转。当外部存在干扰,气膜厚度减小,而气膜反向力增大,此时开启力大于闭合力,在开启力的作用下,密封面间隙增加,随着密封间隙的增加,开启力相应减小,直至开启力与闭合力相等时,此时密封间隙恢复到正常值。若密封气膜受外部干扰而厚度增大,此时气膜反向力减小,闭合力大于开启力,在闭合力的作用下,密封间隙减小,随着密封间隙的减小,闭合力也相应减小,直至闭合力与开启力相等时,密封面恢复至正常值。因此,只要保证在安装时密封间隙处于设计范围内,当外部干扰消失以后,密封系统就会恢复稳定。

循环氢压缩机干气密封的改造与应用

循环氢压缩机干气密封的改造与应用 王超!尹宏伟 "中国石化股份有限公司北京燕山分公司炼油厂!北京#$%&$$’ 摘要(简单阐述了循环氢压缩机组)*%$#的干气密封改造及应用情况!对原浮环密封实际应用中存在的问题作了分析!并对干气密封的原理+结构及系统工艺流程作了简单介绍, 关键词(螺旋槽端面密封-气膜-旋转环-静止环 中图分类号(./012文献标识码(3文章编号(#$$4*55$&"%$$#’$6*$$&0*$6 7前言 目前!石化行业普遍应用透平压缩机来输送各种气体!为了防止或限制这些气体沿压缩机旋转轴端部泄漏!必须采用轴端密封装置,对于输送危险性工艺气体的压缩机则必须采用密封性能良好的密封形式8#9, 随着高速机械密封技术的日趋成熟!透平压缩机采用的传统的浮环密封正在逐步被先进的机械密封所取代!因为机械密封的泄漏率明显低于浮环密封,这不仅减少了密封油的消耗!更重要的是减少了密封油对工艺回路的污染,机械密封的润滑和控制系统更简单+操作更方便且安全可靠,尽管机械密封比浮环密封的成本高!但从总的技术经济特性分析!其优越性是十分明显的,北京燕山分公司炼油厂重整加氢联合装置于#004年建成投产!循环氢压缩机由沈阳鼓风机厂制造,氢压机采用浮环密封!投运后一直存在污油量过大+腐蚀严重+氮气消耗量大等问题!而且封油窜进系统造成对反应器中催化剂的腐蚀失效!给装置造成很大的经济损失,#001年#%月!决定将浮环密封改造为.:$%3型双端面干式气体密封, ;.:<;系列干气密封特点 .:$%干式气体密封为天津鼎名公司生产的螺旋槽端面密封!该密封是一种气膜润滑的非接触式机械密封,旋转环或静止环端面上"或者同时在这两个端面上’开有螺旋槽!如图#所示,运转时!在密封端面间形成气膜!使之脱离接触!因而端面间几乎无磨损!还具有可靠性高+使用寿命长+泄漏量小+功耗极低+无油污染等特点!该密封取消了庞大的密封油供给及测控系统!占地面积小+重量轻+运行维护费用低 , 图#动环螺旋槽 =螺旋槽密封原理 动环旋转时将密封气体吸入螺旋槽内!径向分量朝着密封堰流动!而密封堰节制气体流向中心!于是气体被压缩引起压力升高形成气膜,此次密封改造采用了人字形或八字形螺旋槽,如图%所示,这样就使得密封气在螺旋槽内的压力分布线较普通形状增加了面积!即在同样的工况条件下!.:$%3型干气密封开启力比普通形状螺旋线的开启力大!形成的两环间隙大+气膜厚,因此!适应的工况变化广!使用寿命更长, >干气密封系统改造 ?’)*%$#密封改造的主要参数 该机组的两套密封!每套干气密封的耗氮量 "标准状态’@#A#B5C6D E!向机内漏氮量"标准状态’@ %A$B0C6D E, 两套密封总耗氮量"标准状 收稿日期(%$$#*$%*%& 作者简介(王超"#01#F’!河南太康人,#00&年毕业于西北大学化工机械与设备专业!获学士学位,#000年至今在读研究生!现在燕山石化公司炼油厂从事设备管理工作!工程师, 密封技术石油化工设备技术!%$$#!%%"6’G&0G H I J K L*M E I C N O?P/Q R N S C I T J.I O E T L P L U V 万方数据

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理 一、干气密封概述 早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。 干气密封图 二、干气密封与机械密封性能比较

机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。其缺点是泄漏率高,故障频发。 干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势: 1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。 2)采用干气密封技术,能源消耗较小。 3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。 4)采用干气密封技术,泄漏量较少,应用效果良好。 三、干气密封工作原理 一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。静环位于弹簧座内,用副密封O形圈密封。弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合。 这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。动环与静环配合表面具有很高的平面度和光洁度,通常在动环表面上加工有一系列的特种槽。随着转动,气体被向内泵送到槽的根部,根部以外的无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。配合表面之间产生的压力,使静环表面与动环脱离,保持一个很小的间隙。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。在有效确保动力平衡的基础上,密封中产生的作用力状况。 闭合力Fc,即弹簧力与气体压力之间的总和。其中,开启力Fo通过端面之间分布的压力,对端面的面积形成积分。在平衡状态下,Fc=Fo;其中运行的间隙约3微米。如果由于受到干扰作用,造成密封的间隙逐渐降低,此时端面之间的压力就会有所升高,此时Fc>Fo,端面之间的间隙也会有所降低,则密封就会达到一种全新平衡状态。通过该机制的运行,可在动环组件与静环组件之间形成较

干气密封的工作原理和特点

干气密封的工作原理和特点 干气密封是一种新型的非接触式轴封。干气密封在结构上与普通的机械密封基本相同,重要的区别在于干气密封其中的一个密封环上面加工有均匀分布的流体动压槽。运转时进入槽中的气体受到压缩,在密封环之间形成局部的高压区,使密封面开启,从而能在非接触状态下实现密封。 干气密封与普通的机械密封相比主要有以下的优点: (1)省去了普通密封油系统以及用于驱动密封油系统运转的附加功率负荷。 (2)大大减小了计划外维修费用和生产停车。 (3)避免了工艺气体被油污染的可能性。 (4)密封气体泄漏量小。 (5)维护费用低,经济实用性好。 (6)密封驱动功率消耗小。 (7)密封寿命长,运行可靠。 该压缩机采用的是GCTL01/L99型带中间迷宫的串联式干气密封,是干气密封中安全性、可靠性最高的一种结构。这种结构可保证工艺介质不会泄漏至大气环境中,同时可以保证干气密封引入的外部气源氮气不会漏入工艺介质中。 串联式干气密封相当于前后串联布置的两组单端面干气密封。第一级干气密封为主密封,基本上承受全部压差;第二级干气密封为辅助安全密封,正常运行时在很低的压力下工作,当第一级密封失效时,第二级密封可以迅速承受较大的压差,起到密封作用,同时可防止一级密封失效时工艺气体大量向大气环境中泄漏,保证机组安全停车。大气端的隔离密封可避免轴承箱中的润滑油汽进入干气密封区域,保证干气密封在洁净、干燥的环境中运行。 为了保证干气密封运行的可靠性,每套密封系统都配有与之相匹配的监测、控制系统,其作用是一方面为干气密封提供干净、干燥的气源。另一方面对干气密封的运行状况进行实时监测,使密封工作在最佳状态,当密封失效时系统能及时报警。监控系统对密封是否正常运行的监测主要是通过对泄漏气体的流量及相关压力的监测来进行的。

加氢裂化装置循环氢压缩机干气密封介绍

干气密封 一、干气密圭寸的工作原理 (一)、概述 干气密封是一种新型的非接触式轴封,其中以螺旋槽密封最为典型。经过数年的研究,美国约翰?克兰公司率先推出干气密封产品并投入工业使用。由于干气密圭寸属于非接触式密圭寸,基本上不受PV值的限制,因此干气密封特别适合作为在高速高压条件下的大型离心压缩机轴圭寸。干气密圭寸的出现,是密圭寸技术的一次革命,气体密圭寸的难题从此得以解决,而不再会受到密封润滑油的限制。其所需的气体控制系统比油膜密封的油系统要简单得多。 与浮环密封相比,干气密封有以下主要优点: 省去了密封油系统及用于驱动密封油系统运转的附加功率负 荷。 大大减少了计划外维修费用和生产停车。 避免了工艺气体被油污染的可能性。 密封气体泄漏量小。 维护费用低,经济实用性好。 密封驱动功率消耗小。 密封寿命长,运行可靠。 (二)、干气密圭寸的工作原理 与其它机械密封相比,干气密封在结构方面基本相同。其主要区 别在于,干气密圭寸的一个密圭寸环上面加工有均匀分布的浅槽,干气密圭寸能在非接触状态下运行就是靠这些浅槽在运转时产生的流体动压效应使密封面分开。 干气密封端面的槽形主要分单旋向和双旋向两大类。 单旋向槽型只可使用于单向旋转的机组,在要求的旋向下才可产

生开启力,如反转则产生负的开启力而可能导致密封的损坏。但相对于双旋向的槽型,它可形成更大的开启力和气膜刚度,产生更高的稳定性而更可靠的防止端面接触。故在很低的转速下和较大的振动下也 可使用。在目前的压缩机组上使用最多。常见的主要有以下几种: 双旋向槽型无旋向要求,正反转皆可使用。机组的反转不会造成密封的损坏。其使用范围较单旋向槽宽,但其稳定性、抗干扰能力较单旋向差。常见有以下几种: 通过对干气密封各种槽型的反复试验,对比研究,最终确认在同 样的工作参数下,以螺旋线设计的槽型具有最大的气膜刚度的同时仅有较小的泄漏量。即具有最大的刚漏比。下面主要介绍这种槽型。

循环氢压缩机干气密封损坏原因分析及对策正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 循环氢压缩机干气密封损坏原因分析及对策正式版

循环氢压缩机干气密封损坏原因分析 及对策正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过 程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 200万吨柴油加氢装置循环氢压缩机K-102干气密封系统及干气密封控制系统采用四川日机密封件有限公司的中间带迷宫的串联式集装式干气密封。 干气密封的工作原理 工作原理 干气密封单元一般由一个可以轴向浮动的静环和一个固定在轴套上的动环组成。静环背后有弹簧对其施加贴合作用力,动环随压缩机转子做高速运转。密封的工作原理是流体静压力和流体动压力的平衡。高速旋转的动环产生粘性剪切力带

动流体进入流体动力槽内,由外径向中心运动,密封坝提供流体阻力,节制气体流向低压端,于是气体被压缩压力升高,密封面分开,形成一定厚度的的气膜,(约 3μm)。当流体的静压力和弹簧的闭合力等于气膜内的开启力时,密封端面之间就形成了稳定的间隙,于是密封实现非接触运转。我装置干气密封为中间带迷宫的串联式集装式干气密封,密封气由两种气体组成,分别是1.0MPa氮气、循环氢压缩机出口循环氢。靠压缩机气缸内侧的一级密封,由循环氢密封,用粗滤器和精滤器过滤;中间的二级密封,用1.0MPa氮气进行密封;靠压缩机气缸外侧的隔离气,用氮气密封;气缸内的大量氢气首先被靠内侧

干气密封工作原理

干气密封工作原理及结构布置 山东省东营市油田分公司油气集输总厂东营压气站 王玉军 [摘 要]详尽阐述了干气密封的工作原理,端面结构。指出根据现场实际工况及环境保护法要求,可分别采用的三种 典型布置,以及干气密封在使用时的维护,为用户在干气密封选择上提供指导。[关键词]机械密封 干气密封 螺旋槽 零泄漏 零溢出 作为一种非接触式机械密封,干气密封以其使用寿命长、无泄漏、节能、环保、运行维护费用低等一系列技术优势,逐渐在石油、化工以及冶金等工业的大型离心式压缩机和转子泵上得到广泛应用[1-2]。本文主要论述了干气密封,特别是螺旋槽干气密封的工作原理,结构特征以及使用时的维护,可为用户在干气密封选择、使用及维护方面提供借鉴。 1、工作原理 干气密封是基于现代流体动压润滑理论的一种新型非接触式气膜密封。气膜密封动环或静环端面上通常开出微米级流槽,主要依靠端面相对运转产生的流体动压效应在两端面间形成流体动压力来平衡闭合力,实现密封端面非接触运转。工程实际中使用较为广泛的流槽形式有雷列台阶式、斜平面式和螺旋槽面式, 其中尤以螺旋槽面式密封性能最佳。 螺旋槽干气密封工作原理如图1所示。动环端面上开有螺旋槽,整个端面分为槽区、台区和坝区。槽区主要提供必需的流体动压力,坝区主要阻挡气体向内侧流动以实现气体被压缩形成动压效应,增大气膜刚度,还可在密封停车时起密封作用。干气密封工作原理为:当动环按图示逆时针方向旋转时,由于粘性作用气体以速度V 进入螺旋槽;速度V 可分解为垂直于螺旋槽速度和与螺旋槽相切速度,其中主要提供流体动压力,而气流以速度运动到坝区后被压缩体积减小压力升高使密封面打开,从而实现非接触运转。干气密封正常工作时,端面间气膜一方面提供开启力来平衡闭合力,另一方面可起润滑冷却作用,因而省去复杂的封油系统 。图示干气密封为泵入式(气体从上游向下游流动)结构。 理想设计工况下,密封端面气膜开启力等于闭合力(密封介 质压力和弹簧力)。若密封受到外界扰动端面间隙减小,则流体动压效应增强,开启力大于闭合力,密封增大间隙重新恢复原来工作状态;反之,如果在外界干扰下间隙增大,则流体动压效果减弱,开启力小于闭合力,密封减小间隙并恢复到设计工作状态。如果设计合理,密封受到外界扰动可以自行恢复到原来工作状态,可见螺旋槽干气密封对外界扰动不敏感。 2、典型端面 近年来,国内外学者对螺旋槽干气密封端面结构形式作了 大量研究工作,以期能从结构形式改变来改善密封性能,其研究主要集中于如图2所示的螺旋槽及其组合结构形式[3-4]。 图2中黑色部分为螺旋槽。图2a 为外径侧开槽泵入式结构,当密封环逆时针旋转时,外径侧高压阻塞气体被泵入到端面间并形成一层稳定气膜从而使端面分离,阻塞气体既可润滑密封表面,又可防止工艺气体向外径侧泄漏。 图2b 为内径侧开槽泵出式结构,当端面顺时针旋转时,端面螺旋槽像一个个小容积泵一样,可将内径低压流体泵送到外径高压侧,从而实现工艺流体零泄漏或零逸出。 图2c 与图2a 不同之处在于密封坝上设置均匀分布的节流孔。节流孔可以将开槽环背面高压流体引入密封端面间,利用高压流体在密封端面间形成的静压效应提高端面气膜承载能力并增大气膜刚度。 图2d 所示密封环中间开槽,内外径侧均设置密封坝。其特点是可以实现端面双向旋转:当密封环顺时针旋转时就像图2b 所示螺旋槽泵出式结构,而当密封环逆时针旋转时就如图2a 中所示螺旋槽泵入式结构。内外径侧密封坝既可减少工艺气体泄漏,又可增大气膜刚度。 此外,还有Y 形槽和人字形槽等组合结构以及内外径开槽中间设置密封坝等多种结构形式。通常,通过在密封端面设计不同形式流槽以期改善端面流体流动状况,增强气体动压效应,促进端面热循环,保证密封动力学稳定性及挠性安装环具有良好追随性,从而获得性能优越并能适应特殊工况的密封端面结构。 3、结构布置 螺旋槽干气密封结构布置主要取决于密封工况条件(包括被密封气体组分、压力、温度,轴的转速等)、安全性以及环保要 — 072—

循环氢压缩机干气密封损坏原因分析及对策(正式版)

文件编号:TP-AR-L5322 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 循环氢压缩机干气密封损坏原因分析及对策(正 式版)

循环氢压缩机干气密封损坏原因分 析及对策(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 200万吨柴油加氢装置循环氢压缩机K-102干气 密封系统及干气密封控制系统采用四川日机密封件有 限公司的中间带迷宫的串联式集装式干气密封。 干气密封的工作原理 工作原理 干气密封单元一般由一个可以轴向浮动的静环和 一个固定在轴套上的动环组成。静环背后有弹簧对其 施加贴合作用力,动环随压缩机转子做高速运转。密 封的工作原理是流体静压力和流体动压力的平衡。高 速旋转的动环产生粘性剪切力带动流体进入流体动力

槽内,由外径向中心运动,密封坝提供流体阻力,节制气体流向低压端,于是气体被压缩压力升高,密封面分开,形成一定厚度的的气膜,(约3μm)。当流体的静压力和弹簧的闭合力等于气膜内的开启力时,密封端面之间就形成了稳定的间隙,于是密封实现非接触运转。我装置干气密封为中间带迷宫的串联式集装式干气密封,密封气由两种气体组成,分别是1.0MPa氮气、循环氢压缩机出口循环氢。靠压缩机气缸内侧的一级密封,由循环氢密封,用粗滤器和精滤器过滤;中间的二级密封,用1.0MPa氮气进行密封;靠压缩机气缸外侧的隔离气,用氮气密封;气缸内的大量氢气首先被靠内侧的密封氢气密封,剩余外漏的氢气和密封气靠氮气来密封,为了防止润滑油进入密封腔,在最外侧用氮气进行密封。 实际运行状况

干气密封基本原理及使用分析

压缩机干气密封基本原理及使用分析 一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。 目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩机、齿轮传动压缩机和透平膨胀机上。干气密封已经成为压缩机正常运转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取代浮环密封、迷宫密封和油润滑密封。 本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、使用要求和制造等方面的内容。 二、干气密封工作原理分析 干气密封的一般设计形式是集装式,图1表示出了压缩机干气密封的具体结构。 图1压缩机干气密封示意图 干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。端面材料可采用碳化硅、氮化硅、硬质合金或石墨。 干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气

体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。 气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。 动环密封面分为两个功能区(外区域和内区域)。气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。为了获得必要的泵效应,动压槽必须被开在高压侧。密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。 干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。 密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的闭合。 选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。对于压缩机的某些操作点,如启动和停车时,一套串联密封在低速或无压操作的情况下,旋转的动压槽必须在密封面之间产生一个合适的压力。此力靠特殊措施——三维的、弧形的槽来获得。 压缩机干气密封设计和使用为两种槽型:双向的(U形)和单向的(V形)槽型。两种槽型的特性见表1。 表1 V形槽和U形槽的特性 *注意:DGS在低于那些被采用的值以下操作仍能被保证,但是一个分离层是必要的。 三、密封材料分析 1.端面材料 干气密封的操作极限与密封各个元件的许用载荷有关。温度和压力极限由所用的辅助密封橡胶和端面材料决定。使用的端面材料对干气密封的工作起着决定

压缩机干气密封基本原理及使用分析_图文.

2000年1月5日收到大连市116000 压缩机干气密封基本原理及使用分析 B a s ic P rinc ip le A nd Us e A na lys is Fo r D ry G a s S e a l O f C om p re s s o r L i G uiq in e t a l 李桂芹王玉华 大连博格曼有限公司沈阳鼓风机股份有限公司 【摘要】针对德国博格曼公司的干气密封产品进行了 研究,结合压缩机的工作特点,重点论述了压缩机干气密封的原理,结构特点,密封材料,使用要求和制造等方面的内容。 关键词:透平式压缩机干气密封结构应用 Abstract :R esearch is carried ou t again st the p roduct of dry gas seal of Germ an B u rgm ann Com p any ,com b in ing the op erating p erfo rm ance of com p resso r ,con ten ts of p rinci p le of com p resso r dry gas seal ,structu ral featu re ,seal m aterial ,service requ irm en t and m anufactu re etc .are m ain ly discu ssed . Key words :Turboco m pressor D ry ga s sea l Structure Appl ica tion 一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。

泵用干气密封的原理及特点

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/9594525.html,)泵用干气密封的原理及特点 泵用干气密封主要应用于离心压缩机等高速流体设备上。随着甭、反应釜等设备的出现,干气密封技术逐渐在低转速设备上进行了推广,从而形成了泵用干气密封技术。 一、泵用干气密封的工作原理 泵用干气密封是一种高性能、长寿命的新型密封型式,在结构上它与普通机械密封显著不同的是:动、静环密封端面较宽;在动环或静环端面上加工出特殊形状的流体动压槽,如螺旋槽,槽深一般在3-10pm之间。 当动环高速旋转时,动环或静环端面上的螺旋槽将外径处的高压气体向下泵入密封端面间,气体由外径向中心流动,而密封坝节制气体流向中心,于是气体被压缩引起压力升高,在槽根处形成高压区。端面气膜压力形成形成开启力,在密封稳定运转时,该开启力与由作用在补偿环背面的气体压力和弹簧力形成的闭合力平衡,密封保持非接触、无磨损运转,其气膜厚度一般维持在2-3pm。如果出现某些扰动因素使密封间隙减小,引起开启力减小,而闭合力不变,密封间隙将减小,密封将很快再次恢复平衡。 干气密封的这种抵抗气膜间隙变化的能力称之为气膜刚度。虽然泵用干气密封的气膜间隙很小,但气膜刚度很大,比液膜润滑机械密封的膜刚度要大得多。 二、泵用干气密封的主要优点 与传统的接触式机械密封相比,在离心泵中采用干气密封有以下几个方面的优点: (1)摩擦功耗低

由于干气密封的两密封端面被一薄层稳定的气膜所隔离而且密封腔内为低粘度的气体介质,因此干气密封的端面摩擦功耗和动环组件的搅拌摩擦损失要比液体润滑的密封装置的摩擦功耗小很多,一般两者消耗的功率之比约为1:10-20。 (2)无磨损运转、使用寿命长 对干气密封,由于两个相对旋转的端面是非接触的,在正常使用条件下,一般都可达到3年以上。 (3)无封液系统、能实现泵送介质的零泄漏或零溢出 封液系统时常是复杂的和昂贵的,并存在不可避免的故障危险。泵送介质的外泄漏和封液冷却密封都依赖于封液系统的完善化。干气密封避免了所有这些复杂因素,它利用干燥洁净的氮气源作为密封气,很容易实现泵送介质的零泄漏或零溢出,对泵送介质没有任何污染,而且系统比较简单、可靠性非常高。 三、泵用干气密封的技术难点 与高速透平压缩机用干气密封相比,离心泵用干气密封存在三个方面的难点:

离心压缩机干气密封用气需求及保障措施

离心压缩机干气密封用气需求及保障措施 利用干气密封装置,能够保障离心压缩机在工作的时候达到最佳状态。本文旨在阐明干气密封工作原理及在离心压缩机中优势的基础上,分析离心压缩机中的工作原理与用气需求,最后对离心压缩机中干气密封的使用提出相应的保障措施,来保障离心压缩机的稳定运行。 标签:离心压缩机;干气密封;用气需求;保障措施 随着社会经济的发展,石油化工企业对于离心压缩机密封性的要求越来越高。在这种大环境下,干气密封凭借着寿命长、泄漏量少、磨损小、耗能低、操作可靠简单、被密封的流体不受油污染、维修量低等优点,在离心压缩机中有着重要的应用。通过对离心压缩机干气密封用气需求及相关保障措施的研究,来确保离心压缩机处于正常的工作状态,保证其能发挥出应有的效率,从而实现最佳的输气目的。 一、干气密封技术内涵及优势 (一)干气密封技术的内涵 干气密封是从上世纪70年代开始出现的一种新型轴端密封技术,是一种非接触密封技术。这种非接触轴向密封技术主要用于对那些旋转型机器中的液体或是气体介质进行密封,同过去传统的浮环油膜密封技术以及机械接触式密封技术相比较,干气密封技术并不需要密封油系统,并且还能够避免一些不必要问题的产生。干气密封的剖面外形同机械接触式密封比较相似,其密封作用主要是在同转动相垂直的平面内实现的【1】。一般来讲,干气密封的公用面结构主要有台阶形密封块、扁平密封块、楔形密封块以及螺旋槽表面这四个方面。 (二)干气密封技术的优势 干气密封技术的优势主要体现在以下四个方面:一是表现在干气密封技术的重量相对较轻、占地面积小,这是因为干气密封技术不需要庞大的控制系统以及密封油供给系统;二是运行过程的可靠性高、密封气泄漏量很少、功耗比较低,应用效果良好;三是干气密封技术所应用的辅助系统较为可靠,并且操作简单,在使用过程中不需要其他的维护手段;四是能够有效提高密封的使用时间与质量,确保设备可靠、安全以及稳定运行。 二、干气密封技术在离心式压缩机中的工作原理 本文以螺旋槽式结构的干气密封作为例子,来分析干气密封在离心式压缩机中的工作原理。这一干气密封的主要工作原理是借助流体动力与流体静力之间的平衡来实现的。具体来看,将密封气体注入到密封装置内,使静环、动环都感受到流体静压力的作用,此时不管配对环是否发生转动,这种静力的作用是真实存

循环氢压缩机干气密封损坏原因分析及对策通用范本

内部编号:AN-QP-HT152 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 循环氢压缩机干气密封损坏原因分析 及对策通用范本

循环氢压缩机干气密封损坏原因分析及 对策通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 200万吨柴油加氢装置循环氢压缩机K-102干气密封系统及干气密封控制系统采用四川日机密封件有限公司的中间带迷宫的串联式集装式干气密封。 干气密封的工作原理 工作原理 干气密封单元一般由一个可以轴向浮动的静环和一个固定在轴套上的动环组成。静环背后有弹簧对其施加贴合作用力,动环随压缩机转子做高速运转。密封的工作原理是流体静压力和流体动压力的平衡。高速旋转的动环产生

离心压缩机干气密封故障原因分析与处理潘冬明

离心压缩机干气密封故障原因分析与处理潘冬明 发表时间:2019-07-18T09:06:26.730Z 来源:《科技尚品》2019年第3期作者:潘冬明郭景涛[导读] 大型机压缩机停车过程出现倒转,造成动环密封槽为螺旋槽形式的干气密封出现损坏,将干气密封动环密封槽改型后,彻底解决了因停车时压缩机倒转造成干气密封损坏的问题,保证机组长周期稳定运行,减少机组干气密封故障检修次数,为装置带来巨大经济效益。 易高清洁能源管理服务(西安)有限公司引言 随着石油、化工行业的快速发展,低能耗、高效益、零污染、长周期的发展方向已成为石油化工行业的发展趋势。大型压缩机组是石化行业的关键设备,其密封性能的好坏决定装置能否平稳安全运行。干气密封以其低泄漏、经济实用性好、密封寿命长和运行可靠等特点脱颖而出。干气密封是一种新型的旋转轴用非接触密封,它是在气体润滑轴承的基础上,由接触型液膜机械密封改进而来。上世纪60年代末,约翰克兰公司研制出首套干气密封并应用于离心压缩机。随着密封行业以及流体动力学的快速发展,已经衍生出各种型式的干气密封。目前,干气密封已在石油、化工、冶金、航空等行业中广泛使用。 1概述 1.1离心式压缩机工作原理 离心式压缩机的主要作用是压缩气体,以此达到人们在工作中的某种需求的目的。工作中,离心压缩机通过其叶轮进行高速旋转,而且叶轮在旋转中会带动通管中的空气进行高速旋转,这样能够不断加速通道内部的空气旋转,通过气理性作用形成一种扩压器。通常,离心式压缩机的工作原理是通过其叶轮转动,再产生空气的推动力。在空气的作用下,将叶轮及扩压器产生的空气在流通通道内进行压缩,并且合理运用离心原则及降速原理等等,把离心机产生的机械性能转换为空气的压力功能。此外,空气在扩压器的作用下日益压缩的过程中,会使得空气的流通速度迅速上升,从而造成通道底部空气加速度减少,而空气也会降低速度,后方的空气仍旧是不断前进和挤压的,这样就会让空气的动量势能转化为静态压能,最终达到压缩空气的目标。本文通过研究离心压缩机的轴系整体结构,如图1所示,维修检测人员在日后的实践工作中应该增强对压缩机组整体结构的检测与维修,保证压缩机设备的正常运行。 图1压缩机组的轴系整体结构图 1.2干气密封工作原理 典型的干气密封结果主要是由五个部分组成,分别是密封圈、旋转环、弹簧、弹簧座以及静环。旋转环密封面受到研磨抛光处理后,在其上面加工出具有特殊功能的流体动压槽。干气密封摩擦面的槽型中具有代表性的T型槽、单向螺旋等等,在实际使用中单向旋转槽型可以保证流体通畅运行。气膜具有较强的刚度,在强压下可以保持其最初的形态。处于这种情况下。其载荷轴承能力就可以在以往的基础上把瞬态工况,或者变动工况期间的长动态表明基础的风险减少到最校一般来说,完善该性能的重点是螺旋槽的内泵动效应。在整个干气密封过程中,瞬态工况对离心式压缩机而言具有重要的意义,并且这项技术也是干气密封的关键。 2故障分析 2.1低压侧主密封气流量表故障 主密封气流量监测表一个为就地表,一个为远程控制表。发生故障时,两块表的流量趋势基本相同,两块表同时发生故障的概率很校当时流量达到满量程5Nm3/h后,我们将流量计更换为大量程的流量计,监测泄漏量为11Nm3/h,所以基本排除流量表故障的原因。 2.2密封气源压力波动 密封气源采用氮气,经过滤器过滤后,由自力式调节阀调节压力分为两路,一路作为前置密封气,一路作为主密封气。前置密封气经迷宫密封随介质气一起进入压缩机内部。主密封气进入主密封腔内,一级密封腔内的大部分密封气随前置密封器一起经迷宫密封进入压缩机内部,二级密封腔内的密封气经室外放空排放至大气。若密封气源压力发生波动,则前置密封气与主密封气的压力与流量都会相应波动,实际情况是前置密封气流量保持正常值20Nm3/h,压力保持正常值200kPa。所以排除密封气源压力波动引起的主密封气压力波动。 2.3密封气源带液 如果密封气源带液,干气密封动静环之间的气膜厚度会发生变化,进而引起主密封气压力与流量变化。故障发生后,打开密封气源排液导淋,并未发现有液体排出,过滤器处排液也并无液体,所以排除密封气源引起的故障。 2.4压缩机轴振动及位移增大 低压端干气密封动环安装在转子轴上,静环固定在压缩机壳体上,当转子轴振动及位移发生变化时,干气密封动环跟着转子轴同步变化,而静环在补偿弹簧作用下调整动环与静环之间间隙,当转子轴位移及振动变化过大,静环补偿弹簧调整不及时或无法补偿时,此时动静环间隙变大,进而引起主密封气泄漏量增大,从压缩机控制系统可以看出,正常运行时,压缩机轴低压端轴振动在7.8um左右,报警值为63.5um,轴位移在-0.297mm左右,报警值为±0.5。干气密封发生故障时,轴振动与位移基本无变化,所以排除压缩机轴振动与位移的变化引起干气密封泄漏。 2.5干气密封材质与安装质量问题 大修期间更换压缩机高低压端干气密封。回装前,去制作厂家仔细核对干气密封材质,确保所用材质无质量问题。干气密封安装时周向位置对准键槽,轴向位置、锁紧螺母位置以及剪切环位置,每一步都经认真检查,确认安装数据,防止干气密封安装不到位,动环与静环之间相对位置发生变化,影响静环轴向补偿能力而引起干气密封主密封气流量与压力变化。 3故障处理 故障发生后,判断为一级密封端面被污染,动静环间隙变大,造成主密封气泄漏量变大。通过逐步排除后发现,故障前期富气杂质含量较多,初步判断为富气通过前置密封气迷宫密封泄漏至一级密封腔内,富气杂质污染一级密封端面,造成间隙变大,泄漏量变大。处理措施如下:增大前置密封气压力,确保前置密封气压力大于介质气经迷宫密封减压后的压力,使前置密封气进入介质侧,冲洗迷宫密封处的杂质,防止其进入一级密封端面。同时相应地增大主密封气的压力,并注意主密封气与前置密封气的差压大于150kPa,防止差压联锁。通过主密封气将一级密封端面杂质冲洗干净,利用动环轴向自动补偿,进而将一级密封端面间隙恢复至正常值。通过处理措施5个小时后,主密封气流量恢复至正常值。

相关文档
相关文档 最新文档