文档库 最新最全的文档下载
当前位置:文档库 › 小明学习了分子动理论后

小明学习了分子动理论后

小明学习了分子动理论后

题目:

(2012?茂名)小明学习分子动理论后,先在试管底部装一半红墨水,再在水面上注满酒精,加盖密封后静

置,30日后再观察,现象如图所示.小明做的实验说明和

组成.

答案

分子在不停的做无规则运动;分子之间有间隙;中子

高三物理《理想气态的方程及气体分子动理论》教案

理想气态的方程及气体分子动理论 一、学习目标 1、知道什么是理想气体,能够由气体的实验定律推出理想气体状态方程。 2、掌握理想气体状态方程,并能用来分析计算有关问题。 3、知道理想气体状态方程的适用条件。 4、掌握克拉珀龙方程并能利用方程计算有关问题。 5、明确摩尔气体常量,R是一个热学的重要常数,其重要性与阿伏加德罗常数是一样的。 6、应用克拉珀龙方程解题时,由于R=8.31J/(mol· K)=0.082atm·L/(mol· K)。因此p、 V的单位必须与选用的R的单位相对应。 7、明确p-V, p-T, V-T图线的意义。 8、能够在相应的坐标中表达系统的变化过程。 二、重点难点及考点 1、这一节的内容重点在于能够知道用理想气体状态方程解决问题的基本思路和方法,并 能解决有关具体问题,还要注意到计算时要统一单位,难点在于用理想气体状态方程 解题时有时压强比较难找。 2、本节重点是克拉珀珑方程的应用,应用克拉珀龙方程可以解决很多气体问题,如果把 它学习好,对学生的学习气体这一节会有很大帮助,本节难点是对克拉珀龙方程的应用,但本节在高考中所占比例并不是特别大,因为这一节为现行教材中的新增长率加 内容。 3、本节重点是把气体的三个状态量用分子动理论来描述清楚,难点是用分子动理论解释 气体三定律,要从逻辑严谨的理相气体模型出发解释每个气体定律,本节在高考中涉 及的题目不多但出曾出现过。

三、例题分析 第一阶段 [例1]在密闭的容器里装有氧气100g,压强为10×106Pa,温度为37oC,经一段时间后温度 降为27oC,由于漏气,压强降为6.0×105Pa,求该容器的容积和漏掉气的质量。 思路分析: 本题研究的是变质量气体问题,由于容器的容积和气体种类(设氧气摩尔质量为M)仍未变,只是质量变为m2,再由克拉珀龙方程列出一个方程,联解两个方程,即可求得容器的容积和漏掉的氧气,抓住状态和过程分析是解题的关键。根据题意可得: ①② 方程①可得: 将V代入②可求: 所以漏掉的氧气质量△m=m1-m2=38g 答案:该容器的容积8.05×10-3m3,漏掉气的质量是38g, [例2]一个横截面积为S=50cm2竖直放置的气缸,活塞的质量为80kg,活塞下面装有质量m=5g的NH3,现对NH3加热,当NH3的温度升高△T=100oC时,求活塞上升的高度为多少?设大气压强为75cmHg,活塞与气缸无摩擦。 思路分析:本题研究的是定质量气体问题,首先确定定研究对象HN3,确认初态压强与末态压强相等,由于温度升高,NH3变化过程是等压膨胀,体积发生变化。由克拉珀龙方程可列两个状态下的方程,求出体积变化。再由体积变化和横截面积求出活塞上升的高度。确认等压膨胀是解本题的关键。 根据题意:根据克拉珀龙方程得: 所以活塞上升高度

分子动理论 知识点总结

高中物理选修3-3——分子动理论知 识点总结 一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)任何物质含有的微粒数相同 2、对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量: b.分子体积: c.分子数量: 二、分子的热运动 1、分子永不停息的做无规则的热运动(布朗运动扩散现象) 2、扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快

3、布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 4、热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 三、分子间的相互作用力 1、分子之间的引力和斥力都随 分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更 快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。 2、在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。 3、当两个分子间距在图象横坐标距离时,分子间的引力与斥力平衡,分子间作用力为零,的数量级为m,

习题 气体分子动理论

《大学物理》作业 No.10气体分子动理论 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题 1. 两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等。现将6 J 热量传给氦气,使之升高到一定温度。若使氢气也升高同样的温度,则应向氦气传递热量: [ ] (A) 6 J (B) 10 J (C) 12 (D) 5 J 2. 在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2 121=V V ,则其内能之比21/E E 为: [ ] (A) 21 (B) 35 (C) 65 (D) 10 3 3. 在容积V = 4×10 3 -m 3的容器中,装有压强p = 5×102 P a 的理想气体,则容器中气分 子的平均平动动能总和为: [ ] (A) 2 J (B) 3 J (C) 5 J (D) 9 J 4. 若在某个过程中,一定量的理想气体的内能E 随压强 p 的变化关系为一直线(其延长线过E ~ p 图的原点),则该过程为 [ ] (A)等温过程 (B) 等压过程 (C) 等容过程 (D) 绝热过程 5. 若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(2 12 2 1 v Nf mv v v ? d v 的物理意义是: [ ] (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。 (B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。 (C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。 (D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。

步步高2015一轮讲义:11.1分子动理论 内能

第1课时 分子动理论 内能 考纲解读1.掌握分子动理论的基本内容.2.知道内能的概念.3.会分析分子力、分子势能随分子间距离的变化. 1.[微观量的估算]已知铜的摩尔质量为M (kg/mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数 为N A (mol - 1).下列判断错误的是( ) A .1 kg 铜所含的原子数为 N A M B .1 m 3铜所含的原子数为MN A ρ C .1个铜原子的质量为M N A (kg) D .1个铜原子的体积为M ρN A (m 3 ) 答案 B 解析 1 kg 铜所含的原子数N =1M N A =N A M ,A 正确;同理1 m 3铜所含的原子数N =ρ M N A =ρN A M ,B 错误;1个铜原子的质量m 0=M N A (kg),C 正确;1个铜原子的体积V 0=M ρN A (m 3 ),D 正确. 2.[分子热运动与布朗运动的理解]下列关于布朗运动的说法,正确的是( ) A .布朗运动是指在显微镜中看到的液体分子的无规则运动 B .布朗运动反映了分子在永不停息地做无规则运动 C .悬浮颗粒越大,同一时刻与它碰撞的液体分子越多,布朗运动越显著 D .当物体温度达到0°C 时,物体分子的热运动就会停止 答案 B 解析 布朗运动是指在显微镜中看到的悬浮小颗粒的无规则运动,A 错;布朗运动间接反映了液体分子运动的无规则性,B 对;悬浮颗粒越大,液体分子对它的撞击作用的不平衡性越小,布朗运动越不明显,C 错;热运动在0°C 时不会停止,D 错. 3.[分子间作用力]分子间的相互作用力由引力与斥力共同产生,并随着分子间距的变化而 变化,则( ) A .分子间引力随分子间距的增大而增大 B .分子间斥力随分子间距的减小而增大

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

气体分子运动理论

学科:物理 教学内容:气体分子运动理论 【基础知识精讲】 1.气体分子运动的特点 (1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动. 气体能充满它们所能达到的空间,没有一定的体积和形状. (2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动. (3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性. ①气体分子沿各个方向运动的数目是相等的. ②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的. 在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多. 2.气体压强的产生 (1)气体压强的定义 气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S. (2)气体压强的形成原因 气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的. (3)气体压强的决定因素 ①分子的平均动能与密集程度 从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度. ②气体的温度与体积 从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志. (4)几个问题的说明 ①在一个不太高的容器中,我们可以认为各点气体的压强相等的. ②气体的压强经常通过液体的压强来反映. ③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度

高考物理学霸复习讲义分子动理论-第一部分 分子动理论

一、物体是由大量分子组成的 1.微观量的估算 (1)微观量:分子体积V 0、分子直径d 、分子质量m 0。 (2)宏观量:物体的体积V 、摩尔体积V m 、质量m 、摩尔质量M 、密度ρ。 (3)关系 ①分子的质量:m 0A A V M m N N ρ= =; ②分子的体积:m 0A A V M V N N ρ= =; ③物体所含的分子数:A A m m V m N N N V V ρ==或A A m V N N N M M ρ==。 (4)两种模型 ①球体模型直径为d ②立方体模型边长为30V d = 2.关于分子两种模型理解的四个误区 误区1:误认为固体、液体分子一定是球状的 产生误区的原因是认为分子、原子就像宏观中的小球一样,都是球形的。实际上分子是有结构的,并且不同物质的分子结构是不同的,为研究问题方便,通常把分子看作球体。 误区2:误认为物质处于不同物态时均可用分子的球状模型 产生误区的原因是对物质处于不同物态时分子间的距离变化不了解。通常情况下认为固态和液态时分子是紧密排列的,此时可应用分子的球状模型进行分析。但处于气态时分子间的距离已经很大了,此时就不能用分子的球状模型进行分析了。 误区3:误认为一个物体的体积等于其内部所有分子的体积之和 产生误区的原因是认为所有物质的分子是紧密排列的,其实分子之间是有空隙的,对于固体和液体,分子间距离很小,可近似认为物体的体积等于所有分子体积之和;但对于气体,分子间距离很大,气体的体积远大于所有气体分子的体积之和。

误区4:误认为只能把分子看成球状模型 其原因是经常出现分子直径的说法,其实在研究物体中分子的排列时,除了球状模型之外,还经常有立方体模型等。建立模型的原则是使研究问题的方便。 二、扩散现象 1.对扩散现象的认识 (1)扩散现象:不同物质能够彼此进入对方的现象。 (2)产生原因:由物质分子的无规则运动产生。 (3)发生环境:物质处于固态、液态和气态时,都能发生扩散现象。 (4)意义:证明了物质分子永不停息地做无规则运动。 (5)规律:温度越高,扩散现象越明显。 (6)应用:在高温条件下通过分子的扩散在纯净的半导体材料中掺入其他元素来生产半导体器件。 2.影响扩散现象明显程度的因素 (1)物态 ①气态物质的扩散现象最快、最显著。 ②固态物质的扩散现象最慢,短时间内非常不明显。 ③液态物质的扩散现象的明显程度介于气态与固态之间。 (2)温度:在两种物质一定的前提下,扩散现象发生的明显程度与物质的温度有关,温度越高,扩散现象越显著。 (3)浓度差:两种物质的浓度差越大,扩散现象越显著 3.分子运动的两个特点 (1)永不停息:不分季节,也不分白天和黑夜,分子每时每刻都在运动。 (2)无规则:单个分子的运动无规则,但大量分子的运动又具有规律性,总体上分子由浓度大的地方向浓度小的地方运动。 三、布朗运动 1.对布朗运动的认识 (1)概念:悬浮在液体(或气体)中的微粒不停地做无规则运动。 (2)产生的原因:大量液体(或气体)分子对悬浮微粒撞击的不平衡造成的。 (3)布朗运动的特点:永不停息、无规则。 (4)影响因素:微粒越小,布朗运动越明显,温度越高,布朗运动越激烈。 (5)意义:布朗运动间接地反映了液体(气体)分子运动的无规则性。 2.影响因素 (1)微粒越小,布朗运动越明显:悬浮微粒越小,某时刻与它相撞的分子数越少,来自各方向的冲击

高中物理人教版选修气体分子动理论单元测试题

物理同步测试—分子运动理论能量守恒气体 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的) 1.下列说法中正确的是() A. 物质是由大量分子组成的,分子直径的数量级是10-10m B. 物质分子在不停地做无规则运动,布朗运动就是分子的运动 C. 在任何情况下,分子间的引力和斥力是同时存在的 D. 1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数 2.关于布朗运动,下列说法正确的是( ) A.布朗运动是在显微镜中看到的液体分子的无规则运动 B.布朗运动是液体分子无规则运动的反映 C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显着 D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性 3.以下说法中正确的是( ) A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和 B.分子的热运动是指物体内部分子的无规则运动 C.分子的热运动与温度有关:温度越高,分子的热运动越激烈 D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的

4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于() A.水分子和碳分子间引力与斥力的不平衡造成的 B.碳分子的无规则运动造成的 C.水分子的无规则运动造成的 D.水分子间空隙较大造成的 5.下列关于布朗运动的说法中正确的是() A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映 B.布朗运动是否显着与悬浮在液体中的颗粒大小无关 C.布朗运动的激烈程度与温度有关 D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性 6.下面证明分子间存在引力和斥力的试验,错误的是() A.两块铅压紧以后能连成一块,说明存在引力 B.一般固体、液体很难被压缩,说明存在着相互排斥力 C.拉断一根绳子需要一定大小的力说明存在着相互吸引力 D.碎玻璃不能拼在一起,是由于分子间存在着斥力 7.下列叙述正确的是()A.悬浮在液体中的固体微粒越大,布朗运动就越明显B.物体的温度越高,分子热运动的平均动能越大 C.当分子间的距离增大时,分子间的引力变大而斥力减小

第七章 气体分子动理论

第七章气体动理论 研究对象:由大量分子(原子)组成的系统。分子视为刚性小球,分子间作弹性碰撞。 研究方法:由于分子的数量极其庞大,彼此之间的相互作用又非常频繁,而且还具有偶然性,所以只能用统计的方法进行处理。研究微观量(m,v,p,f)集体表现出来的宏观特征。 §7-1 物质的微观模型统计规律性 1. 分子的数密度和线度:单位体积内的分子数叫分子数密度。气体(n氮=2.47*1019/cm3)、液体(n水=3.3*1022/cm3)、固体(n =7.3*1022/cm3)。不同种类的分子大小不等,小分子约为10-铜 10m的数量级。实验表明:标准状态下,气体分子间距为分子直 径的10倍。 2.分子力:当rr0时,分子力主要表现为吸引力,并 且随r的增加而逐渐减小(当r约为10-9m)时,可以忽略)。 3.分子热运动的无序性及统计规律性 (1)系统由大量分子(原子)组成的。由于分子的数量极其庞大,彼此之间的相互作用又非常频繁(标准状态下, 气体分子平均每秒钟要经历109次碰撞),在总体上表现 为热运动中所具有的无序性。 (2)物质内的分子在分子力的作用下欲使分子聚集在一起,形成有序的排列;而分子的热运动则要使分子尽量分 开;这样一来,分子的聚合将决定于环境的温度和压 强,从而导至物质形成气、液、固、等离子态等不同的 集合体。 (3)个别分子的运动具有偶然性,大量分子的整体表现具有规律性。称其为统计规律性。 §7-2 理想气体的压强公式 1.理想气体的微观模型 (1)气体分子看成是质点 (2)除碰撞外,分子间作用力可以忽略不计 (3)分子间以及分子与器壁间的碰撞可以看成是完全弹性碰撞 2.理想气体的压强公式 (1)定义:压强为单位面积上,大量气体分子无规则运动撞

中考物理第三单元分子动理论物态变化复习讲义

第三单元分子动理论物态变化学习目标 1.知道物质的构成 .扩散现象、分子动理论并能解释一些现象 2.知道常见温度值会使用温度计 3.理解物态变化 4.实验:晶体和非晶体的熔化、凝固实验水的沸腾实验 重点:理解物态变化晶体和非晶体的熔化、凝固实验水的沸腾实验 难点:理解物态变化 学习过程 一、梳理知识提纲(请根据课本目录边梳理边复习,不清楚再查阅课本和笔记) 二、题型归纳(请认真总结解题思路方法) 题型一:估测题 例题:以下估测与实际情况相符的是() A.人体感觉舒适的环境温度约为40℃ B。人正常步行的速度约为5m/s C.中学生脉搏跳动一次的时间约为3s D.一只普通鸡蛋的质量约为50g 题型二:温度计的使用读数 1.图11中温度计的示数是℃。 题型三:物态变化 物态变化例子(归纳总结) 2.下列现象中属于升华的是() A.烧水时,壶嘴喷出的“白气” B.加在饮料中的冰块不见了 C.撒在地上的水一会儿没有了 D.放在衣柜里的樟脑丸越来越

3、图2关于山河美景的描述,属于凝华现象的是() A.春天,雾绕群峰 B.夏天,雨笼山峦 C.秋天,霜打枝头 D.冬天,千里冰封 物态变化吸放热 1.下列物态变化中,需要吸热的是() A.冰雪消融 B.霜的形成 C.雪的形成 D.露珠的形成 题型三:晶体和非晶体 2.下图是分别表示甲、乙、丙、丁四种物质熔化或凝固规律的图线,下列说法正确的是()

A.甲种物质是晶体,图线表示的是凝固过程 B.乙种物质是非晶体,图线表示的是熔化过程 C.丙种物质是非晶体,图线表示的是凝固过程 D.丁种物质是晶体,图线表示的是凝固过程 题型四:熔化和凝固实验水的沸腾实验(知识拓展) 例:图13是“探究水沸腾时温度变化特点”的实验装置。 (1)实验中使用的温度计是利用液体的性质制成的。 (2)从水温达到90℃开始,每隔0.5min记录一次水的温度,数据记录如下表。请在图14中绘制出水温随时间变化的图像。 (3)实验测得水的沸点是____℃,原因是当地大气压____ (选填“高于”、“低于”或“等

第一章 分子动理论与内能讲义

哈哈第一章分子动理论与内能 1.分子动理论 分子动理论是一种科学理论,其主要内容是什么呢? (一)物体是由大量分子组成的 1.物质是由分子组成的 这个结论是人类几千年探索的结果。学生看图1—1—3 人类对物质结构的认识 和历程。 2.分子的特点:多、小 见第3页第一段 (二)分子在永不停息地做无规则运动 演示实验:墨水滴入水中,由此得出上面(二),并由此引出“扩散” 1.扩散: 由于分子运动,不同的物质在互相接触时,彼此进入对方的现象,叫做扩散 液体之间会发生扩散现象,气体、固体之间呢? 气体:春暖花开,花香四溢。 固体: 第四页图1—1—8后两幅 2.气体、液体、固体之间都会发生扩散现象 3.扩散现象说明: (1)分子之间存在着空隙 (2)分子在永不停息地做无规则运动 (三)分子之间存在着相互作用力 演示实验: 用力拉一只笔,用力挤压一只笔的两端 说明:分子之间存在着引力和斥力 分子间既有引力又有斥力,可用“分子力模型”来说明,课本第5页 1—1—11分子力模型 分子间的相互作用力对分子有很大的意义,物质三态其区别就在于三态中分子间的相互作用力和分子的运动状态不同,如图1—1—12,叙述之 总结:分子动理论的基本内容 板书: 1.分子动理论 (一)物体是由大量分子组成的 1.物体是由大量分子组成的 2.分子的特点:多、小 (二)分子在永不停息地做无规则运动 1.扩散的定义: 2.气体、液体、固体之间都会发生扩散现象 3.扩散现象说明: (1)分子之间存在着空隙 (2)分子在永不停息地做无规则运动 (三)分子间存在着引力和斥力

2.内能和热量 由今天的天气引入新课 一.温度与热运动 演示实验: 温度对扩散的影响 物体热温度高扩散快分子运动剧烈 1.热运动的定义: 物体内部大量分子的无规则运动叫做热运动 2.温度与热运动的关系 温度越高,热运动越剧烈 二、物体的内能 1.定义:(学生找) 物体内所有分子的动能和分子间相互作用的势能的总和,叫做物体的内能(1)分子动能 (2)分子势能 2.说明两点: (1)内能是指物体的内能 (2)一切物体在任何情况下都具有内能 100摄氏度的水具有内能,零下100的冰有内能吗?为什么? 3.影响物体内能大小的因素 (1)温度 (2)物体内部分子的多少、种类、结构、状态等 以上有学生自己找 三、改变内能的方式 演示实验:第9页让笔杆热起来,学生做 由此引出:热传递和做功 1.热传递: (1)定义:以内能的形式从一个物体向另一个物体直接传递,叫做热传递 (2)能量形式不变(转移) 2.做功: (1)定义:从其他形式的能量转化为内能或内能转化为其他形式的能量 (2)能量形式改变(转化) 内能增大对物体做功 (3)其他形式的能量内能 内能减少物体对外做功 (4)用功来量度内能的改变 四、燃烧 1.能量转化: 化学能转化为内能 2.热值: (1)定义:燃料完全燃烧放出的燃料Q与燃料质量m的比,叫做这种燃料的热值注意:“完全” Q q = m

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3 π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

高中物理-分子动理论知识点汇总

分子动理论,热和功,气体 1.分子动理论 (1)物质是由大量分子组成的分子直径的数量级一般是10-10m。 (2)分子永不停息地做无规则热运动。 ①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。 ②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 (3)分子间存在着相互作用力 分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。 2.物体的内能 (1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。 (2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随

着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。 (3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。 (4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。 3.改变内能的两种方式 (1)做功:其本质是其他形式的能和内能之间的相互转化。(2)热传递:其本质是物体间内能的转移。 (3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。 4.★能量转化和守恒定律 5★.热力学第一定律 (1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。 (2)表达式:W+Q=ΔU (3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。 6.热力学第二定律

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

高考物理力学知识点之分子动理论真题汇编附答案

高考物理力学知识点之分子动理论真题汇编附答案 一、选择题 1.关于分子间的作用力,下列说法错误的是() A.分子之间的斥力和引力同时存在 B.分子之间的斥力和引力大小都随分子间距离的增大而减小 C.分子之间的距离减小时,分子力一直做正功 D.当分子间的距离大于109 米时,分子力已微弱到可以忽略 2.(3-3)对于液体在器壁附近的液面发生弯曲的现象,如图所示,对此有下列几种解释,其中正确的是( ) ①Ⅰ图中表面层分子的分布比液体内部疏 ②Ⅰ图中附着层分子的分布比液体内部密 ③Ⅱ图中表面层分子的分布比液体内部密 ④Ⅱ图中附着层分子的分布比液体内部疏 A.只有①对 B.只有③④对 C.只有①②④对 D.全对 3.雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果。雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写)。某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化。 据此材料,以下叙述正确的是() A.PM10表示直径小于或等于1.0×10-6m的悬浮颗粒物 B.PM10受到的空气分子作用力的合力始终大于其受到的重力 C.PM10和大悬浮颗粒物都在做布朗运动 D.PM2. 5浓度随高度的增加逐渐增大 4.下列说法正确的是( ). A.液体表面层的分子分布比较稀疏,分子之间只存在引力,故液体表面具有收缩趋势B.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动 C.当液晶中电场强度不同时,液晶对不同颜色光的吸收强度不同,就显示不同颜色D.高原地区水的沸点较低,这是高原地区温度较低的缘故 5.甲、乙两个分子相距较远,它们之间的分子力弱到可忽略不计的程度.若使甲分子固定

高中物理全套讲义选修3-3 第1讲 分子动理论(拔高版) 教师版讲义

分子动理论 一、分子动理论 1.物体是由大量分子组成的 ⑴ 用油膜法估测分子的大小 把很小一滴油酸滴在水面上,水面上会形成一块油酸薄膜,薄膜是由单层油酸分子组成的。在估算时我们忽略油酸分子的形状,把它简化为球形。测出一滴液体中油酸所占的体积V , 油膜的面积S ,就能估算出油酸的分子直径 V d S =。 ① 首先,配置一定浓度的油酸酒精溶液,例如可以向1mL 油酸中加酒精,直至总量达到500mL 。用注射器吸取这样的油酸溶液,把它一滴一滴地滴入小量筒中,记下液滴的总滴数和它们的总体积,这样便知道1滴溶液的体积了。例如,100滴溶液的体积是1mL ,1滴 的体积就是210mL -。根据这些数据就可以计算出一滴溶液中所含纯油酸的体积。例如,上 述数据中,1滴溶液含油酸5210mL -?。如果把1滴这样的溶液滴在水面,溶液中的酒精将 溶于水并很快挥发,液面上的油膜便是纯油酸形成的。 ② 先在浅盘里倒入约2cm 深的水,然后将痱子粉或细石膏粉均匀地洒在水面上。用注射器往水面上滴1滴油酸酒精溶液,油酸立即在水面散开,形成一块薄膜。薄膜上没有痱子粉,可以清楚地看出它的轮廓。待油酸薄膜形状稳定后,将事先准备好的玻璃板放在浅盘上,在玻璃板上描下油酸膜的形状。将画有油酸膜轮廓的玻璃板放在坐标纸上,计算轮廓范围内的正方形个数,不足半个的舍去,多于半个的算一个。把正方形的个数乘以单个正方形的面积就得到油膜的面积。 ⑵ 分子的大小:除了一些有机物质的大分子外,多数分子尺寸的数量级为1010 m -。 ⑶ 阿伏加德罗常数:

我们在化学课中学过,1mol 的任何物质都含有相同的粒子数,这个数量可以用阿伏加德罗 常数来表示。1986年用X 射线测得的阿伏加德罗常数是2316.0210mol A N -=?。 典例精讲 【例1.1】关于用油膜法估测分子大小实验的科学依据中,下列说法错误的是( ) A .将油酸薄膜看成单层的油酸分子组成 B .不考虑油酸分子间的空隙 C .实验需配置一定浓度的油酸酒精溶液,其中的酒精可使油酸和痱子粉之间形成清晰的边界轮廓 D .将油酸分子简化为球形 【分析】明确“用油膜法估测分子的大小”实验的实验原理:油酸以单分子呈球型分布在水面上,且一个挨一个,从而可以由体积与面积相除求出油膜的厚度,即可正确解答。 【解答】解:ABD 、在“用油膜法估测分子的大小”实验中,我们的实验依据是:①油膜是呈单分子分布的;②把油酸分子看成球形;③分子之间不考虑空隙,由此可知,故ABD 正确; C 、实验需配置一定浓度的油酸酒精溶液,其中的酒精可使油酸和痱子粉之间形成清晰的边界轮廓,属于实验操作,不是本实验的科学依据,故C 错误。 本题选错误的,故选:C 。 【例1.2】(2019?虎丘区校级一模)如图所示,在“用油膜法估测分子大小”的实验中,在玻璃板上描出油膜的轮廓,随后把玻璃板放在坐标纸上,其形状如图所示,坐标纸上正方形小方格的边长为5mm ,该油酸膜的面积是 2×10﹣3 m 2;若一滴油酸酒精溶液中含有纯油酸的体积是1×10﹣6mL ,则油酸分子的直径是 5×10﹣10 m .(上述结果均保留1位有效数字)

高考物理专题力学知识点之分子动理论真题汇编含答案

高考物理专题力学知识点之分子动理论真题汇编含答案 一、选择题 1.下列说法中不正确的是() A.布朗运动并不是液体分子的运动,但它说明分子永不停息地做无规则运动 B.叶面上的小露珠呈球形是由于液体表面张力的作用 C.液晶显示器是利用了液晶对光具有各向异性的特点 D.当两分子间距离大于平衡位置的间距r0时,分子间的距离越大,分子势能越小 2.下列说法中正确的是() A.将香水瓶盖打开后香味扑面而来,这一现象说明分子在永不停息地运动 B.布朗运动指的是悬浮在液体或气体中的固体分子的运动 C.悬浮在液体中的颗粒越大布朗运动越明显 D.布朗运动的剧烈程度与温度无关 3.关于分子间的作用力,下列说法中正确的是 A.当两个分子间相互作用表现为引力时,分子间没有斥力 B.两个分子间距离减小,分子间的引力和斥力都增大 C.两个分子从相距很远处到逐渐靠近的过程中,分子间的相互作用力逐渐变大 D.将体积相同的水和酒精混在一起,发现总体积小于混合前水和酒精的体积之和,说明分子间存在引力 4.采用油膜法估测分子的直径,先将油酸分子看成球形分子,再把油膜看成单分子油膜,在实验时假设分子间没有间隙。实验操作时需要测量的物理量是 A.1滴油酸的质量和它的密度 B.1滴油酸的体积和它的密度 C.油酸散成油膜的面积和油酸的密度 D.1滴油酸的体积和它散成油膜的最大面积 5.在“用油膜法估测分子大小”的实验中,能将油膜的厚度近似认为等于油酸分子的直径,下列措施可行的是() A.把痱子粉均匀地撒在水面上,测出其面积 B.取油酸一滴,滴在撒有均匀痱子粉的水面上形成面积尽可能大的油膜 C.取油酸酒精溶液一滴,滴在撒有均匀痱子粉的水面上形成面积尽可能大的油膜 D.把油酸酒精溶液滴在撒有均匀痱子粉的水面上后,要立即描绘油酸在水面上的轮廓6.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F>0为斥力,F<0为引力,a、b、c、d为x轴上四个特定的位置,现把乙分子从a处由静止释放,若规定无限远处分子势能为零,则 A.乙分子在b处势能最小,且势能为负值

分子动理论教案

分子动理论讲义 一、分子动理论的基本内容 (1)物质是由分子构成的; (2)分子永不停息地做无规则的运动; (3)分子之间有相互作用的引力和斥力. 1、分子:分子是保持物质化学性质的最小微粒. 如氧分子、水分子等。 各种不同的物质是由不同的分子组成的,分子有多大呢? (1)分子的体积和质量非常小. 如果把分子看作球形的,一般分子的直径只有几个埃(1=10-10m),氧分子大约为3埃,质量约为5.3×10-23克。 (2)宏观物体中分子数非常多。 例:如果把1克蔗糖(含1.8×1021个分子)放入洪泽湖中(正常蓄水31.3亿m3),均匀之后,取1cm3的湖水,其中仍有蔗糖分子56.5万多个,这糖水还甜吗? (3)分子之间有空隙. 实验一:酒精和水的混合. 取一根玻璃管中放一半水,再放一半加颜色的酒精,用手堵住管口,来回倒置几次, 总体积的高度下降1厘米多。 分析:由于分子间有空隙,在酒精与水混合的过程中,有些酒分子进入了水分子的空隙中, 有些水分子也进入酒精分子的空隙中,这一实验证明了水分子、酒精分子之间有空隙. 2、分子的运动 若上面的实验不把玻璃管来回倒置,而是静放一段时间后,有色的酒精分子会运动到水中,——液体的扩散 实验二:在冷、热两杯水中放一滴蓝墨水, 现象1:过一会儿水就变蓝了.——说明液体分子在运动。 现象2:在热水变式比冷水快——说明液体分子的运动与温度有关,温度越高,分子无规则运动越快。 实验三: 二氧化氮气体的扩散。(二氧化氮红棕色气体,密度大于空气) 装置如图:过一会儿,在上面的瓶中有明显的棕色. 问:这说明了什么?

这两种气体的混合,不是重力等外来的作用,而是分子本身无规则运动的结果. 扩散:两种不同物质在接触时,彼此进入对方的现象. 水变色——液体扩散、气体的混合叫做气体扩散,固体之间也有扩散现象 扩散现象表明,一切物体里的分子都在不停地做无规则运动,分子之间存在空隙。 3、分子间的作用 (1)分子间有引力. 分子既然在不停地无规则运动着,为什么没有人看见固体分散成一个个分子呢?原来分子间有很大的引力,要想分开固体,必需克服分子间的引力才行. (2)分子间有斥力. 若要压缩固体,减小分子间的空隙,是十分困难的,如压缩粉笔,比分开要困难得多.这是因为,若分子距离很近时,分子间斥力就显示出来,要使分子靠得更近,必须克服分子间的斥力才行. (3)分子间的引力和斥力是同时存在的. 何时表现为引力,何时又表现为斥力呢? 说明:r 0平衡距离,大约为10-10 m ①分子间的距离d=r 0;引力与斥力相等且相互抵消,对外不显力; ②分子间的距离d >r 0时,引力大于斥力,表现为引力; ③分子间的距离d <r 0时,引力小于斥力,表现为斥力. ④当d >10倍分子直径时,分子间作用力变得十分微弱,可以认为没有作用力了. 备注:分子间距离增大时,引力和斥力都减小,且斥力减小得更快; 分子间距离减小时,引力和斥力都增大,且斥力增大得最快。 经典例题 【例1】两滴水银靠近时,能自动结合成一滴较大的水银,这一事实说明分子间存在着 。将盐放入水中, 能使水变咸,这是 现象,这一现象表明 。 【例2】固体和液体很难被压缩,是由于 。 分子运动论 的内容 物质由大量的分子组成 分子大小,肉眼看不见 分子数目多 分子在不停地做无规则运动 扩散现象 分子间存在引力和斥力 很难分开——表现引力 很难压缩——表现斥力

高中物理选修3-3“分子动理论”知识点总结

高中物理选修3-3“分子动理论”知识点总结 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标 r距离时,分 0子间的引力与斥力平衡,分子间作用力为零, r的数量级为 10 r位置叫做平衡位置。当分子距离的数量级大于 10 m,相当于 m时,分子间的作用力变得十分微弱,可以忽略不计了

相关文档