文档库 最新最全的文档下载
当前位置:文档库 › 炉水低磷酸盐处理工艺的应用研究

炉水低磷酸盐处理工艺的应用研究

炉水低磷酸盐处理工艺的应用研究
炉水低磷酸盐处理工艺的应用研究

汽包炉水低磷酸盐处理工艺的应用研究

吴仕宏

(北京大唐发电股份有限公司)

1 引言

在北京、天津、唐山(以下简称京津唐)地区的九九年度化学监督会上,我们决定改变本地区各台高压及以上的汽包炉水磷酸盐处理工艺,即由原来控制磷酸根浓度为 2-8mg/L、pH9-10,并辅加Na2HPO4 来控制炉水 Na+与 PO4 摩尔比为 2.3-2.8的协调磷酸盐处理工艺全部改成控制磷酸根浓度小于3mg/L、并辅以氢氧化钠处理的低磷酸盐处理工艺。由99 年年初开始到现在,这一地区的各火电厂汽包锅炉基本都采用了低磷酸盐处理工艺。部分超高压、亚临界汽包炉的炉水磷酸根浓度都控制在 1mg/L 以下,即控制在磷酸盐平衡点浓度附近运行,并同时加纯碱以维持炉水 pH 值。天津大港发电厂两台意大利进口的强制循环汽包炉原采用加氨和联氨的全挥发性处理工艺,炉管沉积率一直比较大,近几年来,采用低磷酸盐处理工艺,炉管沉积率大幅度下降。

2 磷酸盐处理工艺转换的基本原由

我国大部分地区很长时间以来都是采用协调磷酸盐处理工艺,工作做得很多,为什么我们地区要转换磷酸盐处理工艺呢?我觉得基于如下几点:

⑴基于国内外磷酸盐处理工艺的研究发展。

磷酸盐处理工艺已应用了几十年。从应用一开始,人们就在研究它。随着机组容量、参数的不断加大,随着补给水水质的变化(锅炉补给水由软化水改为除盐水),磷酸盐处理工艺得到不断发展。回忆起来,前后差不多运用过五种处理工艺,在某段历史时期,每种处理工艺都有一定的先进性。见表1。

近 10 几年来,国外对磷酸盐处理工艺的应用研究取得了重大进展,尤其是加拿大、美国等对磷酸盐的处理给以新的概念。加拿大提出了平衡磷酸盐处理工艺,美国提出了低磷酸盐处理工艺,这些工艺都经过了多年的运行实践,并在理论上说明了避免磷酸盐暂时消失现象和酸性磷酸盐腐蚀的可能性。这些成果给我们提供了借鉴作用。

在磷酸盐处理新工艺的应用研究方面,国内也进行了很多年的深入研究。比如,在多年试验研究的基础上,我们的国标已将亚临界参数的汽包锅炉炉水磷酸盐处理的磷酸根浓度定为0.5-3mg/L,这相同于平衡磷酸盐处理工艺的控制标准。再如,近几年来,国内已有好几台汽包锅炉应用了低磷酸盐处理工艺(磷酸根浓度小于1mg/L),有的还进行了超低磷酸盐处理工艺的应用研究(磷酸根浓度控制在 0.1—0.5mg/L)。这些应用研究都取得了比较成熟的运行经验。

伴随着国内外的不断探索,反复研究,炉内磷酸盐处理工艺的应用已发展到了一个新的阶段。应该说,到目前为止,我们对炉内

磷酸盐处理工艺的特点有了比较清楚地认识,因此,我们应该更合理、更安全地应用。

⑵基于国内的实际应用情况。

在国内,协调磷酸盐处理工艺应用时间较长,达二十多年。在协调磷酸盐处理工艺的二十多年应用中,我们几乎每年都在研究它,完善它,发展它,比如对R 值的计算、控制、修正上;在配药浓度的调整、计算与加药系统的设置等方面,全国各地做了不少工作,我们地区也如此。但在使用中出现了很多问题,过去机组容量小些,问题不是太明显。随着机组容量、参数的提高,电网调峰力度的加大,协调磷酸盐处理工艺暴露出的问题越来越多。在深度调峰(调峰负荷超过 50%)过程中,很多锅炉都发生磷酸盐暂时消失现象;有些锅炉在较大的变动工况下,连续好几天测不出磷酸根,发生了严重的盐类暂时消失现象;还有些锅炉发生了明显的皿状腐蚀,一种酸性磷酸盐腐蚀特征。

大家知道,磷酸盐处理主要存在着两方面问题:一是产生酸性磷酸盐腐蚀。酸性磷酸盐腐蚀通常发生在有汽囊或汽水冷却不正常的部位,国外测试研究表明,发生酸性磷酸盐腐蚀的直接原因是因为加入Na2HPO4。二是发生磷酸盐暂时消失现象。在机组负荷剧烈波动的情况下,采用磷酸盐处理的炉水会发生盐类暂时消失现象,即当负荷剧烈增加时,炉水磷酸盐含量大幅度降低,甚至测不出,pH 明显升高;工况相反,负荷降低时,会出现暂时消失的盐类回溶,炉水磷酸盐含量很快增加,炉水 pH 大幅度降低。炉水在变动负荷下的

盐类暂时消失与盐类回溶都会导致磁性氧化铁保护层的溶解,加速炉管的腐蚀。发生磷酸盐暂时消失现象的主要条件是磷酸盐在炉水中的含量,另外还和炉管表面的清洁程度和热负荷有关。不管炉水中Na+与PO4的摩尔比值为多少,只要炉水中含有一定量的 PO4 ,都会发生磷酸盐暂时消失现象。很显然,协调磷酸盐处理工艺不能避免所存在的这两方面问题。

⑶电网要求我们提高监督管理水平。

现在,电网管理不断加强,机组运行日益稳定,水汽质量也非常好,化学监督各方面都有很大的提高。但炉管沉积率仍较高。统计陡河发电厂#5-#8 四台 200MW、张家口发电厂#1-#4 四台 300MW、下花园发电厂#1、#2 两台100MW 机组一个酸洗周期的炉管沉积率发现,沉积率数值都在20g/m2.a 以上,见表 2。这几台机组都是国产机组,沉积率比较大。其原因:首先与凝汽器的泄漏有关,凝汽器泄漏在有些机组上时有发生;其次与机组启停时的水质变化有关,但现在机组运行都比较稳定,非停次数已少于年均1 次/台,因此机组启停对水质的影响已很小;最后的原因就是与炉内采用协调磷酸盐处理工艺有较大关系。降低炉管沉积率,应在炉内处理工艺方面做工作。

还有,我们现在要求所有机组必须做到五年以上一次大修,我们的锅炉酸洗周期最好应适应这一点,最好在15 年以上洗一次锅炉,这样就要求炉管的沉积率在 20g/m2.a 以下,否则满足不了这样的大修时间间隔要求。要达到这样的要求,除抓好日常的机组启

停监督、严格异常水质处理等工作外,更重要的是要优化我们的炉水处理、给水处理。

3 加强炉内低磷酸盐处理工艺的管理

工艺优化,从机理上保证了炉内处理工况的合理性、安全性、可靠性,但是否能达到预想的效果,还有待我们的日常管理。几年来,京津唐地区汽包锅炉磷酸盐处理工艺的实施基本正常,大多炉水水质合格率较高,大多数电厂管理较细,水质控制十分好。实施结果,应该说取得了较好的效果。但有部分机组,主要是几台 100MW 的老机组,由于运行条件没有完全满足,使炉水水质出现波动,合格率忽高忽低。下面就京津唐地区几年来的应用情况谈如何应用好低磷酸盐处理工艺。

⑴.保证磷酸三钠的纯度。与协调磷酸盐处理工艺比较,采用低磷酸盐处理工艺后,炉水中控制的磷酸根浓度降低了很多。所以优化了炉内处理工艺后,可以节约可观的药品费用。但磷酸根浓度降低后,炉水的缓冲性也大幅度降低,所以采用低磷酸盐处理工艺后,必须提高炉水的清洁程度,尽量避免外界杂质对炉水的污染。为此对加入的炉水校正药品必须保证一定的纯度级别,如加入的磷酸三钠要使用分析纯级,不能使用工业品。采用了低磷酸盐处理工艺,减少了药品用量,提高药品纯度后应该不会增加运行费用。

⑵.配制合适的加药浓度。炉水控制的磷酸根浓度降低后,药箱中配制的药液浓度也要相应降低。采用协调磷酸盐处理工艺时,配制

的磷酸三钠浓度一般为 50g/L,而现在采用低磷酸盐处理工艺后,根据我们地区的经验,配制的磷酸三钠浓度要降低至 10g/L 以下。

炉水中的磷酸根浓度要求小于 3mg/L,我们地区多数汽包锅炉控制在 0.5-2mg/L。为维持炉水的 pH 值,在磷酸根浓度降低后,还要辅以 NaOH 处理。磷酸三钠和 NaOH 不必分别配制,可在配制的磷酸三钠药液中,加入一定量的苛性钠。其配制比例一般为Na3PO4·12H2O∶NaOH = 10∶0.3—10∶ 1。配制的比例应通过试验来确定。一般情况下,按这样比例配制的药液加入到炉内,如控制磷酸根浓度小于 2mg/L,炉水 pH 值可达 9.2—9.6,炉水电导率通常为 5—15μS/m。我们还可以根据炉水的酚酞碱度测定值来调整苛性钠的配制比例,炉水的酚酞碱度一般控制在 0.005—0.025μmol/L。

⑶.连续均匀地进行加药处理。运行加药调整试验中发现,要想避免发生磷酸盐暂时消失现象,炉水中的磷酸根浓度要小于 1mg/L,最好在 0.6mg/L 以下。但我们目前没有这么做,只要求将磷酸根浓度控制在一定范围内,控制小于 3mg/L,即按平衡磷酸盐处理工艺的水质条件控制。这样的水质工况虽然仍存在着盐类暂时消失现象,但炉水的缓冲性相对较大,适应性强,同时也便于监督控制。如按低磷酸盐处理水质条件控制,磷酸根浓度控制那么小,一是要自动加药,要采用在线仪表监督。但现在我们多数机组仍不是自动加药,日常水汽监督仍靠手工分析。靠手工分析,很难控制均匀,监督到位。二是炉水的缓冲性十分小,对于凝汽器管为铜材的老机组来说,

水质工况很难稳定。从我们地区许多电厂的几年运行工况来看,炉水磷酸根浓度维持越稳定,水质工况越好。如不连续均匀地加药,磷酸根浓度忽高忽低,水质工况就不好,炉水的 pH 和磷酸根合格率就较低。我们有很多汽包锅炉都将磷酸根浓度控制在 0.5—2mg/L 范围内,并辅加微量的苛性钠处理,水质工况比较理想。

⑷.注意机组启停及调峰时的水质控制。机组在启停过程中,负荷起伏较大,如磷酸盐浓度控制不当,容易发生盐类暂时消失现象,给炉管带来腐蚀危险。停炉时,负荷降低,有可能发生沉积的磷酸盐回溶,使磷酸根不断增加,pH 大幅度下降;启动时,负荷上升,如炉管沉积物较多,易于发生能测不出。针对上述情况,要通过试验采取措施:停炉时,提前少加或停加磷酸三钠;启动时,苛性钠的加入量应适当增加。

由于居民用电量大幅度增加,使电网供电的峰谷差进一步加大。为满足电网的要求,机组必须深度调峰运行。京津唐地区大多数时候要求机组具有 50%负荷调峰运行的能力。在夏季严重时,要求机组后夜深调至 40%的负荷运行。深度调峰运行给机组的水质工况控制带来较大的难度,稳定较低的磷酸根浓度,并辅以微量的苛性钠处理,精心调整,实践证明是可以控制好水质的,这当中的关键是通过调整保证炉水的 pH 值合格。

⑸.异常水质按异常处理原则进行调整。炉水磷酸根浓度降低后,炉水的缓冲性就降低,对异常水磷酸盐暂时消失现象,加之水质较差,磷酸根有可质的适应性就差,炉水一旦发生异常情况,如凝汽

器出现泄漏,就要少加或停加苛性钠处理。如果炉水水质异常比较严重,就要按异常处理原则调整,或改变处理工况,乃至停炉消缺。

电站锅炉水处理检验工艺讲解

电站锅炉水处理检验工艺 1、总则 1.1为了保证电站锅炉水处理检验工作质量,防止和减少由于结垢、腐蚀及蒸汽质量恶化而造成的事故,促进锅炉运行的安全、经济、节能、环保,根据《特种设备安全监察条例》和《锅炉水处理监督管理规则》、《锅炉水处理检验规则》等有关规定,制定本检验工艺。 1.2适用范围: 1.2.1以水为介质的额定工作压力>3.8MPa固定式蒸汽锅炉; 1.2.2本检验工艺不适用于交通运输车、船上的锅炉、和原子能锅炉。 1.3、检验依据: 1.3.1国务院颁布的《特种设备安全监察条例》; 1.3.2《蒸汽锅炉安全技术监察规程》; 1.3.3《锅炉水处理监督管理规则》; 1.3.4《锅炉水处理检验规则》; 1.3.5《锅炉安装监督检验规则》TSG G7001; 1.3.6《电力建设施工及验收技术规范第4部分:电厂化学》 DL/T5190.4; 1.2.7《火力发电厂水汽化学监督导则》DL/T561; 1.3.8《锅炉房设计规范》GB50041; 1.3.9《火力发电机组及蒸汽动力设备水汽质量》GB/T12145; 1.3.10《超临界火力发电机组水汽质量标准》DL/T912; 1.3.11其他相关标准、规范; 1.4电站锅炉水处理检验工作包括电站锅炉水处理系统安装监督检验、 运行水处理监督检验、停炉水处理检验三种情况。

2.水处理系统安装监督检验 2.1水处理系统安装监督检验可结合对锅炉安装质量进行监督检验时 进行。 监督检验是在安装单位自检合格的基础上进行,方式包括资料核查、现场监督、实物检查,实物检查前应当先审阅安装、调试记录或报告。 2.2 水处理系统安装监督检验重点是核查水处理设备的产品文件、水处理设备制水能力与当地水质和锅炉给水量的匹配情况,其内容包括锅炉水处理设计或者改造方案审查、水处理设备安装监督检验、水质检验。 2.3锅炉水处理设计或者改造方案审查 2.3.1应当依据以下设计规范和水质标准核查锅炉水处理设计或者改造方案: (1)GB/T 50109-2006《工业用水软化除盐设计规范》; (2)《火力发电机组及蒸汽动力设备水汽质量》GB/T12145 (3)《超临界火力发电机组水汽质量标准》DL/T912 (4)DL/T5068《火力发电厂化学设计技术规程》 2.3.2锅炉水处理设计或改造方案的核查重点如下: (1)水处理系统设计能否保证水汽质量符合GB/T12145《火力发电机组及蒸汽动力设备水汽质量》、DL/T912《超临界火力发电机组水汽质量标准》要求,并且满足锅炉运行过程中各种工况变化的要求; (2)水处理系统制水能力能否保证连续、充足的供给锅炉合格的补给水; (3)有水处理工艺设计计算说明书,内容齐全,能够指导设备选型和系统设计; (4)全年水源的水质分析资料是否齐全;

锅炉水处理工艺

锅炉水处理工艺 1、工业厂房锅炉水的处理 (1)预处理主要通过石灰软化处理和石灰钠软化处理来实现,原水杂质、pH值、离子等的简单处理由上述化学物质来实现。预处理前,首先对原水进行沉淀、过滤、冷凝,以减少工业锅炉原水中的杂质和水垢;其次,用石灰乳对原水中的重质碳酸盐进行处理,以降低工业锅炉外水的硬度;再次,采用碱石灰进行软化处理,调节工业锅炉水的pH值是必要的。最后,石膏可用于软化处理。通过石膏和钠盐的化学反应,可以适当降低水中碳酸氢盐的浓度,以减少锅炉内的二氧化碳气体。 (2)软化处理主要采用钠离子交换法。用钠离子交换剂吸附原水中的金属离子,减少工业锅炉结垢的产生,对工业锅炉的正常使用具有十分积极的意义。在钠离子交换器的使用过程中,氯离子浓度会适当提高。因此,在处理过程中应适当控制钠离子交换器的用量,防止钠离子交换器的过度使用。 (3)在除氧过程中,适当提高锅炉温度,通过热力除氧降低锅炉腐蚀速率。在使用该方法的过程中,进水管的加热温度应控制在105^0以上。为了提高除氧效果,还可以设置喷水盘式除氧器。 2、工业厂房锅炉内水处理在锅炉水处理过程中,可适当进行碱处理、磷酸盐处理和腐殖酸钠处理。 通过上述方法,可以全面改善锅炉内的水质,调节工业锅炉内水质的pH值、总碱度和钠离子浓度,对优化工业锅炉的水质有很好的效果。 在加碱过程中,可适当向锅炉中加入纯碱,通过酸、碱盐的置换反应生成碳酸钙和氢氧化镁沉淀,降低水中碳酸盐离子和金属镁离子、金属钙离子的浓度。在磷酸盐处理过程中,磷酸盐中的镁和钙离子可以在水中与之反应,这与自然界的碱处理是一样的。结晶后排出并除去。在加入腐植酸钠的过程中,腐植酸钠软化水的硬度,去除金属镁和钙离子,使水质软化。 3、工业厂房锅炉排污的处理锅炉排污处理作为工业锅炉水质处理的关键,对提高工业锅炉的安全性能具有十分积极的意义。工业锅炉在使用过程中,由于水的蒸发和化学物质的加入,锅炉内的水浓度会逐渐增加,锅炉内会产生一些杂质和沉淀物。

低温低浊微污染水处理技术研究进展

低温低浊微污染水处理技术研究进展 原作者:文 / 李杨段小睿员建李银磊 来源:水工业市场杂志时间:2010-5-27 摘要:低温低浊水处理一直是给水处理工程中的难题之一。文章从水温、水中微粒浓度及有机污染物三方面分析了低温低浊微污染水质难于处理的原因,阐述了低温低浊微污染水源水处理的重要性,探讨了该水质的各种预处理技术和深度处理技术,展望了我国低温低浊微污染源水处理发展趋势。 关键词:低温低浊水微污染水预处理技术深度处理技术 一、引言 低温低浊水是给水处理工程中最难处理的特殊水质之一,也是给水处理工程研究的焦点之一。我国北方地区,地表水体水质和水温受地理条件和季节性气候的影响变化很大,一年中大约有4~5个月的时间被冰封盖,此时江河水体的温度降低到0~1℃,浊度为5~30NUT;水库水体的温度降低到2~4℃,浊度为5~10NUT,均为低温低浊水;我国南方地区,也有部分水系每年随着冬天到来,水温和浊度逐渐下降,水温一般在3~7℃,浊度一般在20~50NUT之间变化,同样会遇到低温低浊水的问题。 近年来,水环境污染越来越严重,导致水源水质日益恶化,水中痕量或微量的化学污染物质—微污染物质不断增加,尤其是那些难于降解、易于生物富集和具有三致作用的优先控制有毒有机污染物,对人体健康造成极大危害。而自来水厂常规净水工艺:混凝、沉淀、过滤、消毒不能有效去除这些污染物,造成饮用水水质下降。而随着人民生活质量的不断提高,检测分析手段的进步,人们对饮用水水质的要求将更加严格,相应供水水质标准也要不断提高。因此,对于低温低浊微污染原水的净化处理已成为一项非常重要和迫切的新课题。为此,本文综述了目前主要的低温低浊微污染水预处理技术和深度处理技术,同时指出今后的发展方向。 二、低温低浊微污染水难处理原因分析 低温低浊微污染水具有温度低、浊度低、耗氧量低、碱度低、水粘度大、微污染等物理化学特性,而且水中微粒尺寸小且粒径分布均匀。因此,常规混凝工艺处理,一般难以达到饮用水标准或后续水处理的进水水质要求,常需进行预处理或深度处理。影响低温低浊微污染水净化效果的因素主要有以下几个方面: 1、水温对水质净化过程的影响[1,2,3,4,5] (1)温度对化学反应速度有较大影响,一般温度升高,化学反应速度加快。根据范特霍夫法则,温度每升高10℃,反应速度增加2~4倍。低温对混凝剂水解速率影响很大,水解是吸热反应,温度低,反应平衡常数小,低温使水解反应速度减慢,混凝剂水解进行不完全。 (2)低温时水中气体溶解度增加,混凝剂水解过程产生的CO2难以及时散出,水解就进行的不彻底,且溶解气体大量吸附在絮体周围,也不利于其沉淀。 (3)低温时水的粘度大,增大了水流的剪切力,单位时间单位体积颗粒的碰撞次数减少,不利于水中微小颗粒碰撞、凝聚和絮凝体的成长,使絮体含水率上升,絮体变得疏松,密度下降,絮体沉降性能变差。 (4)低温时胶体颗粒的Zeta点位比较高,胶体颗粒间的排斥势能较大,相互接近需要克服的位能大,而且此时胶体颗粒布朗运动动能减少,不利于胶体颗粒间的碰撞凝聚,使胶体颗粒脱稳困难。 (5)水温低,胶体的溶剂化作用增强,颗粒周围水化膜加厚,粘附强度降低,妨碍其凝聚,而且水化膜内的水由于粘度增大,影响了颗粒间的结合强度,形成的颗粒密度小,强度低,絮体松散易破碎。 2、水中微粒浓度对水质净化过程的影响 (1)低温低浊微污染水中的杂质,主要是以细的胶体分散体系溶于水中,而且胶体颗粒比较均匀,胶体颗粒具有很强的动力稳定性和凝聚稳定性,且带负电的胶体微粒数量很少。所以,为达到电中和所需的混凝剂也少,形成的絮体细、小、轻,难于沉淀,易穿透滤层。

锅炉水处理工艺流程

锅炉水处理工艺流程 一、补给水处理 因蒸汽用途(供热或发电)和凝结水回收程度的不同,锅炉的补给水量也不相同。凝汽式电站锅炉的补给水量一般低于蒸发量的3%,供热锅炉的补给水量可高达100%。补给水处理流程如下: ①预处理 当原水为地表水时,预处理的目的是除去水中的悬浮物、胶体物和有机物等。通常是在原水中投加混凝剂(如硫酸铝等),使上述杂质凝聚成大的颗粒,借自重而下沉,然后过滤成清水。当以地下水或城市用水作补给水时,原水的预处理可以省去,只进行过滤。常用的澄清设备有脉冲式、水力加速式和机械搅拌式澄清器;过滤设备有虹吸滤池、无阀滤池和单流式或双流式机械过滤器等。 为了进一步清除水中的有机物,还可增设活性炭过滤器。 ②软化 采用天然或人造的离子交换剂,将钙、镁硬盐转变成不结硬垢的盐,以防止锅炉管子内壁结成钙镁硬水垢。 对含钙镁重碳酸盐且碱度较高的水,也可以采用氢钠离子交换法或在预处理(如加石灰法等)中加以解决。 对于部分工业锅炉,这样的处理通常已能满足要求,虽然给水的含盐量并不一定明显降低。 ③除盐 随着锅炉参数的不断提高和直流锅炉的出现,甚至要求将锅炉给水中所有的盐分都除尽。这时就必须采用除盐的方法。 化学除盐所采用的离子交换剂品种很多,使用最普遍的是阳离子交换树脂和阴离子交换树脂,简称“阳树脂”和“阴树脂”。 在离子交换器中,含盐水流经树脂时,盐分中的阳离子和阴离子分别与树脂中的阳离子(H+)和阴离子(OH-)发生变换后被除去。 当水的碱度较高时,为了减轻阴离子交换器的负担,提高系统运行的经济性,在阳离子交换器之后一般都要求串联脱碳器以除去二氧化碳。 含盐量特别高的水,也可采用反渗透或电渗析工艺,先淡化水质,再进入离子交换器进行深度除盐。对高压以上的锅筒锅炉或直流锅炉,还必须除去给水中的微量硅;中、低压锅炉则按含量情况处理。 二、凝结水处理 凝结水在循环过程中,会受到汽轮机凝汽器冷却水泄漏和系统腐蚀产物等引起的污染,有时也需要进行处理。 凝结水的处理量与锅炉的参数、炉型(如有无锅筒或分离器)和凝结水的污染情况有关。随着锅炉参数的提高,凝结水的处理量一般逐渐增加。对超临界压力锅炉应全部处理;对超高压及亚临界压力锅炉处理量为25~100%;对有锅筒的高压以下锅炉一般不进行处理。 常用的凝结水处理设备有纤维素覆盖过滤器和电磁过滤器等。凝结水在其中除去腐蚀产物(氧化铜和氧化铁等)后,再进入混合床或粉末树脂覆盖过滤器进行深度除盐。 三、给水除氧 锅炉给水中的溶解氧会腐蚀热力系统的金属。 腐蚀产物在锅炉热负荷较高处结成铜铁垢,使传热恶化,甚至造成爆管或在汽轮机高压缸中沉积,使汽轮机效率降低。因此,经过软化或除盐的补给水和凝结水,在进入锅炉之前一般都要除氧。

低温低浊水混凝实验研究_聚合氯化铝

低温低浊水混凝实验研究_聚合氯化铝 论文导读::低温低浊水的处理问题一直是给水行业中备受关注的难题之一。混凝实验。混凝剂采用河南巩义某净水材料有限公司的聚合氯化铝(PAC)。论文关键词:低温低浊水,混凝,聚合氯化铝 前言我国新疆地区全年有4、5个月的时间处于寒冷季节,水体被冰层覆盖,水库水下层水温1~4℃。这个时期原水浊度也很低,水库水 也只有5~10NTU。低温低浊水的处理问题一直是给水行业中备受关注的难题之一,而且至今也没有一个完善的理论能对其进行透彻分析和系统研究,没能找到其特定的规律和成熟的处理方法。低温低浊水难处理的原因是杂质颗粒主要以微小的胶体分散体系存在于水中,而且胶体颗粒比较均匀,具有很强的动力和凝聚稳定性,并且带负电的交替微粒数量很小。另外,絮凝剂在低温下水解产物的形态不佳,聚合反应速度降低,水解产物的主要形态偏重于高电荷低聚合度,因此不利于在胶体颗粒间进行吸附架桥作用,这是低温低浊水难以处理的重要原因[1]。 1.水厂概况乌鲁木齐市石墩子山水厂(东区) 设计规模为20万m3/d,其处理工艺流程如图1所示。水厂水源为乌拉泊水库,其水源主要是来源于冰雪融化水聚合氯化铝,其典型的特点是低温低浊,尤其是每年的11月份至第二年的4月份之间,低温(1~4℃)低浊(5~10NTU)的特点更加明显。图1 石墩子山水厂工艺流程 Fig.1 Flow chart of water treatment process 2.混凝实验 2.1 水源与水质 实验用水分为两部分:一部分为乌拉泊水库原水(简称原水);另一部分为乌拉泊水库原水与滤池反冲洗排水在预沉池内的混合水(简称混合水)。其主要水质指标(2009年平均值)如表1所示。表1 原水及混合水水质Tab.1 Quality ofraw water and mixed water 指标 NH3-N(mg/L) PH 硬度(mg/L) 浊度(NTU) COD(mg/L) 温度℃ 原水 0.30

低温低浊水处理工艺

低温低浊水处理工艺研究进展 2008-08-27 13:23:38 来源:网友发表浏览次数:119 从混凝剂的选择和生产的工艺、技术措施上探讨了低温低浊水处理的研究进展,笔者认为可从优选聚硅酸金属盐混凝荆,完善混合、絮凝工艺,优化过滤工艺等方面加强对低温低浊水的处 理。 关键字:低温低浊水聚硅酸金属盐混凝荆混合絮凝助滤剂 董铺水库位于合肥市西北部,水源水质较好,全年大部分时间基本符合“地表水环境质量标准”(GB3838-2002)Ⅱ类标准,是合肥市重要的给水水源地之一。该水源从每年11月下旬到次年4月上旬水温低于10℃,长年浊度低于1ONTU,每年水质属于低温低浊水的时间有半年时间。低温低浊水具有温度低、浊度低、耗氧量低、粘度大等特点,在冬季给自来水厂的水处理造成了很大的困难,出现了混凝剂投药量低不起作用,投药量多处理效果不明显而且处理成本增加的现象。因此,解决低温低浊水的水质净化技术问题具有重要的现实意义。 1低温低浊对水质净化过程的影响 1.1低温对水质净化过程的影响低温对水质净化过程的影响在于水温低时,通常絮凝体形成缓慢,絮凝体颗粒细小、松散。其原因有:①低温水的牯度大,使水中杂质颗粒布朗运动减弱,碰撞机会减少,不利于胶粒脱稳凝聚。当水温低于10℃时,由于颗粒碰撞机会少且水的剪切力增大,也使生成的矾花易于破碎,又因水的粘度增大使矾花的沉降速度减慢,颗粒絮凝速度大大降低,减慢、不易沉淀,故混凝效果差。②无机盐混凝剂水解是吸热反应,低温水絮凝剂水解速度降低,水解产物的形态不佳。随着水温每降低10℃,水解速度常数减小2-4倍,导致反应速度减慢,OH浓度低,水离子体积小,以致水解进行不完全,药剂利用不充分。同时,水温低时,聚合反应速度降低,混凝剂的水解产物主要是高电荷、低聚合度的聚合物,不利于在胶体颗粒间进行吸附架桥,从而降低絮凝效果。 ③低温时,胶体颗粒水化作用增强.颗粒周围水化作用突出,絮状物粘附力和强度降低,妨碍胶体凝聚,而且水化膜内的水由于粘度增大,影响了颗粒问的结合强度,使絮体松散易破碎,密度小,颗粒强度低。④水温与pH值有关。水温低时,水的pH值提高,相应地混凝最佳pH值也随之提高。 1.2低浊对水质净化过程的影响低浊对水质净化过程的影响表现在:①水的浊度低时。水中杂质主要是以细的胶体分散体系溶于水中,而且胶体颗粒较为均匀,具有很强的动力稳定性和凝聚稳定性,且带负电的胶体颗粒数量少,达到电中和所需的混凝剂也少,形成的絮体细、小、轻,难以沉淀,易穿透滤层。②由于浊度低,胶体颗粒数目较少,颗粒间相互碰撞而聚集的机会减少,絮凝体难以形成,而要通过增大搅拌强度以提高颗粒碰撞的几率,同时又会产生很高的水流剪切强度,使原先形成的低强度的絮凝体被剪碎。③低浊度水由于固相浓度很小,分散相的浓度面积较小,易形成易溶解的产物,由于缺乏大量高聚物形成的有效空间网格交联的键.很容易被破坏。

锅炉补给水处理常用方法

锅炉补给水处理常用方法 工业锅炉用水一般为自来水和地下水,在经过锅炉加热后很容易产生水垢,还会对锅炉内壁产生腐蚀,严重危害锅炉的正常使用。 锅炉补给水处理的常用方法 锅外水处理: 原水在进入锅炉之前采用水处理设备去除水中的硬度、盐份、溶解氧等杂质,使给水达到国家水质标准。常见的水处理设备有钠离子交换软水设备、离子交换除盐设备、反渗透净水设备、热力除氧设备等。 锅内水处理: 采用化学水处理药剂随锅炉的给水进入锅炉,在锅炉内部与水中的杂质和锅炉金属发生化学反应,避免或减缓水中的杂质对锅炉金属的腐蚀,防止锅炉结垢。 锅炉补给水处理技术与节能应用 缓蚀阻垢剂 缓蚀阻垢剂一般由高效缓蚀剂、渗透剂、分散剂、碱度调节剂、催化剂等有机、无机成分组成。在锅炉水中的高温条件下进行复杂的理化反应,能够有效的阻止锅炉受热面上水垢的形成,防止锅炉腐蚀。

缓蚀阻垢剂可以用于具有软化、除氧设备的中、低压蒸汽锅炉,对锅炉给水进行深度处理,避免给水中的残余硬度和溶解氧对锅炉的危害,进一步减缓锅炉的结垢速度,保证锅炉受热面的清洁。 对于运行压力较低的中、小吨位蒸汽锅炉和热水锅炉,可以直接使用缓蚀阻垢剂取代软化、除氧设备对锅炉水进行锅内处理。 化学除氧剂 化学除氧剂由缓蚀剂、渗透剂、氧吸收剂等有机、无机成分组成,可以有效的吸收锅炉水中的溶解氧,阻止溶解氧对锅炉金属的腐蚀,而且其化学反应的生成物对锅炉没有任何危害。 对于中、小吨位低压蒸汽锅炉和热水锅炉,采用化学药剂除氧是一种比较理想的低温除氧方式,可以有效的提高省煤器和锅炉吸收热量的能力,并且不需要消耗蒸汽和电能,具有显著的节能效果。 给水降碱剂 给水降碱剂由高效缓蚀剂、降碱剂、催化剂等有机、无机成分组成,能够有效的降低锅炉给水的碱度,提高锅水的浓缩倍数,减少锅炉的排污量,可以明显的提高煤汽比、水汽比。适用于给水碱度高而氯根含量较低的低压蒸汽锅炉。 锅炉补给水处理关系着锅炉安全运行,采用合理正确的方式处理可以避免锅炉内壁结垢和被腐蚀,延长锅炉的使用寿命,降低能源消耗,提高经济效益。

锅炉水处理技术流程和药剂配方

锅炉水处理主要包括供水(补水补水)处理、冷凝水(汽轮机冷凝水或过程回收冷凝水)处理、水脱氧、水氨和锅内药处理。 一、补给水处理 根据蒸汽的使用(热量或发电量)和浓缩水回收的程度,锅炉供水量不同。凝汽式电站锅炉的补给水量一般低于蒸发量的3%,供热锅炉的补给水量可高达100%。补给水处理的流程如下。 ①预处理 当原水为地下水时,预备处理是除去悬浮物、胶体溶液和有机化合物。凝结剂(如硫酸铝等。)通常被添加到原水中,以将上述杂质浓缩成大颗粒,这些大颗粒因其自身重量而下沉,然后被过滤成清水。 当地下水或城市水作为供水时,只能节约和过滤原水。常用的澄清器包括脉冲澄清器、液压加速澄清器和机械搅拌澄清器。过滤器设备包含虹吸式过滤器、无阀过滤器和单流或双流水处理过滤器。 为了进一步去除水中的有机化合物,还要添加活性炭过滤器。 ②软化 选用纯天然或人工服务离子交换剂,将钙镁硬盐转换为非硬垢盐,避免钙镁硬垢在锅炉管内腔产生。 对于高碱度的含钙和镁的碳酸氢盐水,可采用钠氢离子交换法或预处理法(如石灰添加法等。)也可以采用。 对于一些工业锅炉来说,这种处理一般都符合要求,尽管供水中的盐含量并不一定减少。 ③除盐 随着锅炉参数的不断改进和直流锅炉的出现,甚至需要去除锅炉水中的全部盐分。然后

必须使用脱盐方法。 化学脱盐用的离子交换剂种类繁多,最常用的是阳离子交换树脂和阴离子交换树脂。 在离子交换器中,盐中的阳离子和阴离子在从树脂中的阳离子(h+)和阴离子(oh-)转化后被去除。 在水碱度较高的情况下,为了减少阴离子交换器的负荷,提高系统运行的经济性,通常要求阳离子交换器去除二氧化碳后采用串联脱碳器。 含盐量特别高的水,也可采用反渗透或电渗析工艺,先淡化水质,再进入离子交换器进行深度除盐。对于锅炉或高压直流锅炉,需要去除水中的微量硅。 二、凝结水处理 凝结水在整个循环系统过程中,会导致汽轮发电机冷却器的冷却和循环水泄漏及系统软件腐蚀材料的污染,有时必须解决。 冷凝水量与锅炉参数、锅炉类型(锅炉管和分离器的有无等)和冷凝水污染有关。伴随着加热炉主要参数的提升,凝结水处理量广泛提升。超临界压力锅炉应完全处理,超高压和亚临界压力锅炉的处理能力为25100%,高压锅炉未得到普遍处理。 常见的凝固水处理设备是甲基纤维素遮盖过滤器和电磁感应过滤器。凝结水去除腐蚀性物质(氢氧化钙和化合物等),然后进入混合床或粉末环氧涂层过滤器进行深度消除。 三、给水除氧 加热炉供电中的溶解氧浸蚀热系统的原材料。 腐蚀产物在锅炉热负荷较高处结成铜铁垢,使传热恶化,甚至造成爆管或在汽轮机高压缸中沉积,使汽轮机效率降低。因而,在软化或凝结水软化或脱盐后,一般是在进到加热炉前往除co2。 常用的除氧方法包括热脱氧和真空脱氧,有时伴有化学脱氧。所谓热脱氧就是当水在除

低温低浊水聚合氯化铝难处理的原因分析

低温低浊水聚合氯化铝难处理的原因分析 1、水温的影饷水温在影饷低温低浊水处理效果的诸多因素中至关重要。低温对混凝剂水解速率影饷很大,低水温使水解反应速度减缓,在常见的混凝剂中,铝盐较铁盐受水温影饷大聚合氯化铝。以常用的硫酸铝为例,当水温为0℃时,硫酸铝水解速率只是5℃时的2/3~1/2聚合氯化铝。同时低温对混凝反应速率很大,国外试验表明,水温每升高10℃,反应速率要增高1倍或2倍此可见,在低温条件下,混凝反应的效果很差。水温低,水的粘度增大,水中颗粒物和絮凝体沉淀速度下降,加之低温时气体溶解度大,溶解在水中的气体增多,其大量吸附在絮体四周,不利于絮体和颗粒物质沉降。且水的粘度大时,水流剪切力增大,当水流收到扰动时轻易使已形成的大的絮体撕裂、破碎,变得细小、松散,不易下沉。水温低,水中胶体颗粒的粒间排斥势能升高,斥力增大,且水温低时胶体颗粒的布朗运动动能减小,水的粘滞系数升高,几者综合,不利于胶体颗粒碰撞脱稳。水温低时,溶剂化作用增强,颗粒四周轻易形成一层水化膜,不利于胶体的凝结。水温低,聚合反应速率减小,聚合氯化铝水解产物以高电荷低聚合度的物质为主,不仅不利于胶体絮凝,更重要的是不能有效发挥其吸附架桥的作用。 2、水中颗粒物浓度的影饷水中颗粒物浓度是影饷低温低浊水处理效果的又一重要因素,它对低温低浊水处理的很多方面都会造成影饷。能否取得良好的处理效果,单位体积内颗粒数量和颗粒间有效碰撞次数是至关重要的制约因素。颗粒物浓度高,碰撞机会大,有利于胶体颗粒凝结和絮体成长。低温低浊水颗粒物浓度很低,碰撞几率很小,加之水温低,布朗运动动能小,颗粒运动不活跃,凝结效果不好。 3、有机污染物的影饷水体中有机污染物的存在大大增加了低温低浊水处理的难度。有机物可吸附在胶体颗粒表面,形成有机保护膜,不但使胶体表面电荷密度增加,而且阻碍了胶体颗粒间的结合,影饷混凝效果聚合氯化铝。当水中存在天然有机物时,混凝剂首先与带电密度大的腐殖酸和富里酸作用,只有加大投药量使混凝剂中和了溶液中颗粒表面的天然有机物电荷后,才开始表现出架桥作用。并且,颗粒物表面的有机保护层会造成颗粒间空间位阻或双电层排斥作用,使低温低浊水形成一个稳定的物系。这是常规的混凝沉淀工艺在处理稳定性低温低浊水时效率不高,即使增加混凝剂投量除浊效果也不理想的原因之一聚合氯化铝。 聚氯化铝低温低浊水处理技术与工艺 1、改变低温低浊水的水质特性低温低浊水难处理的原因正是由于其特别的水质特性造成的,因此在处理低温低浊水时我们首先会考虑能否改变其水质特性使其变得易于处理。低温低浊水处理技术,有机污染物- 时间: 20102:54:04 作者: 系统 低温低浊水处理技术与工艺 1、改变低温低浊水的水质特性低温低浊水难处理的原因正是由于其特别的水质特性造成的,因此在处理低温低浊水时我们首先会考虑能否改变其水质特性使其变得易于处理。

反渗透设备原理,反渗透水处理系统工程工艺流程

奥凯〖反渗透设备〗概述; Okay reverse osmosis water treatment equipment(inverse)with high selectivity for reverse osmosis membrane element desalination rate can be high up to99.7%.So the choice of high salt rejection rate,low osmotic pressure,high flux membrane, can be the most salt ions removal from water. Ro(reverse osmosis)is a kind of pressure driven by a semipermeable membrane, the selection of interception function,the solution of the solute and solvent separation separation method.They are widely used in various liquid separation and concentration.Water treatment process,water,inorganic ion,bacteria,virus, organic matter and colloid and other impurities are removed,to obtain a high quality water. 奥凯反(逆)渗透水处理设备采用选择性较高的反渗透膜元件除盐率可以高达99.7%。所以选择脱盐率高,低渗透压力,高通量的膜,可以将水中的大部分的盐离子去除。 反渗透(逆渗透)是一种在压力驱动下,借助半透膜的选择截留作用,将溶液中的溶质与溶剂分开的分离方法。目前被广泛的应用于各种液体的分离与浓缩。水处理工艺中,将水中无机离子、细菌、病毒、有机物及胶质等杂质去除,以获得高质量的水。 奥凯〖反渗透设备〗原理: Ro(reverse osmosis)technology:reverse osmosis is REVERSE OSMOSIS,it is the United States of America NASA set international scientists,in support of the government,to spend billions of dollars,after many years of research into.Reverse osmosis principle is applied in water on one side than the natural osmotic pressure greater pressure,so that the water molecules from the high concentrations of a reverse osmosis to the low concentration of a party.Due to the reverse osmosis membrane pore size is much smaller than a virus and bacterial hundreds of times or even thousands of times,so a variety of viruses,bacteria,heavy metal,solid solubles,organic pollution,such as calcium and magnesium ions cannot pass reverse osmosis membrane,so as to achieve the purpose of purifying water quality softening. Reverse osmosis membrane of the epidermis is covered with many very fine pores of the membrane,the membrane surface selective adsorption of a layer of water molecules, salt solute is membrane rejection,higher valence ion exclusion of more distant, film hole surrounding water molecules in reverse osmosis pressure role,through the membrane of the capillary effect of water and salt to reach out.RO membrane pore size< 1.0nm,thus can remove at least one bacterium Pseudomonas aeruginosa (specifically10-10m3000influenza virus(800),specifically for10-10m), meningitis,virus(10-10m200specifically for various viruses,can even remove pyrogen

低温低浊水处理技术影响因素分析

低温低浊水处理技术影响因素分析 水处理是降低排水污染的重要措施,可以消除水中的有害物质,减少对环境造成的污染。低温低浊水处理技术是水处理工程中具有较高难度的一项技术,一直以来都备受关注。文章对影响低温低浊水处理技术的各种因素进行了分析,对于低温低浊水处理技术的发展具有重要的意义。 标签:低温低浊;絮凝动力学;给排水处理 在水处理工程中,低温低浊水的处理是难以攻克的一个关口,因为在净化的过程中,会存在很多特殊的水质,这些水质不符合水处理设备的进水标准,所以会影响到处理的效果。这种水质为水处理带来了很大的难度,一般存在于我国北方的寒冷地区。为了减少对环境的污染,需要不断的提高水处理技术,完善处理工艺,为我国的水处理技术创造有利的发展空间。 1 影响低温低浊水混凝效果的因素 1.1 温度因素 1.1.1 水的温度直接影响到混凝剂的水解反应,在较低的水温状况下,迫使水解反应放缓。在比较常见的混凝剂中,铝盐受到水温的影响较大。 1.1.2 在低温的状况下,水的粘度增大,由此流动性较差,水中细小的颗粒不易联接,絮凝的速度和颗粒沉降的速度变慢。因为絮凝体中的含水率较高,所以密度减少,这种疏松的状态使絮凝体的沉降性能降低。 1.1.3 在微粒发生布朗运动时,有助于微粒间的碰撞,从而产生凝聚效果。但是在较低的水温状况下,布朗运动的效率降低,微粒间的碰撞速度也有所降低,不利于凝聚。 1.2 水中微粒浓度因素 混凝效果的基础原理是水中的微粒在运动的状态下发生碰撞,创造了凝聚的条件,所以说与微粒的浓度有直接的关系。如果水中微粒的浓度较高,那么发生碰撞的几率就会上升,由此增加了微粒的凝聚成长。反之微粒的浓度较低,微粒之间发生碰撞的几率较低,不利于微粒的凝聚成长,势必会对混凝处理的效率造成影响。 2 低温对絮凝速度的影响 2.1 能够快速产生絮凝的条件是在较短的时间内发生较高的絮凝速度,絮凝速度的快慢与颗粒间的碰撞次数以及有效率有直接的关系,所以说如果在单位时间内,颗粒间的有效碰撞次数越高,那么就会越快产生絮凝。速度是决定颗粒间

锅炉水处理几种锅内加药处理方法

锅炉水处理几种锅内加药处理方法 锅内加药处理是作为锅炉补给水、凝结水、生成返回水处理的补充处理。其作用是使随给水带入锅炉内的结垢物质与所加药剂反应,生成悬浮颗粒,呈分散状态,通过锅炉排污排出锅内,或使其成为溶解状态存在于锅水中,不会沉积在锅炉管壁上,以达到防垢的目的。一、纯碱处理法 纯碱是工业碳酸钠的俗称。 纯碱处理是人为地增加浓度,使锅水中的平衡向左移动,在锅水中维持一定的碱度和pH 值的条件下,生成无定形水渣,锅水中浓度减少,平衡式& e, @7 B# @! y- M4 f5 x 向左移动,从而减少、水垢的形成。! G" }4 f7 j% e, g7 ` 由于在高温下发生水解反应 生成,使反应式的平衡向生成水渣方向移动。. U* k1 i; X/ h) S) B 纯碱处理法可使锅水中和保持在一定浓度范围内,使锅内生成无定形水渣,不生成结晶形水垢,达到防垢的目的。4 ]2 b0 V3 d2 g. [. g7 S, Z 因碳酸钠在锅水中会水解,其水解率随温度升高而增大,当锅炉压力为1.5MPa时,其水解率为60%,因此,纯碱处理一般用于压力低于1.3Mpa、大于0.2Mpa的锅炉,也可用于火管、水管立式锅炉和卧式三回程快装锅炉及水容量大于50L/m2加热面的锅炉。对于原水硬度大于碱度的非碱性水质,以及含镁的非碳酸盐硬度较小的锅炉也适用。对于压力低于0.2MPa的锅炉,因碳酸钠水解率低,难以维持锅水pH值在10~12范围内,尤其是热水锅炉,一般不宜采用单独的纯碱处理,可适当补充一些氢氧化钠。: e0 l; p) m& V- Q+ {, b: C 二、磷酸盐处理法(科盛环保科技) (一) 磷酸盐处理 一般中、高压锅炉均可采用磷酸盐处理,该法是在锅水呈碱性的条件下,加入磷酸盐溶液,使锅水磷酸根维持在一定浓度范围内,水中的钙离子便与磷酸根反应生成碱式磷酸钙,少量镁离子则与锅水中的硅酸根生成蛇纹石。 碱式磷酸钙和蛇纹石均属于难溶化合物,在锅水中呈分散、松软状水渣,易随锅炉排污排出锅炉,不会粘附在受热面形成二次水垢。 (二) 锅水中磷酸盐的“暂时消失”现象+ R5 n! p, S" I9 M1 P' B1 T/ y 有些锅炉在磷酸盐加药正常,当锅炉运行负荷增高时,锅水中的磷酸盐浓度会明显降低,而当锅炉负荷降低或停炉时,锅水中的磷酸盐浓度又重新升高,这种水质异常的现象称磷酸盐“暂时消失”现象。这种现象的实质是“锅炉高负荷时,易溶的磷酸盐从锅水中析出,沉积在水冷管壁上,锅水中的磷酸盐浓度便明显降低;当锅炉低负荷运行时,沉积在管面上的磷酸盐又溶解下来,锅水中的磷酸盐浓度又明显升高。这种现象的危害,不仅是沉淀析出影响传热,引起超温,加剧管壁结垢与腐蚀,而且会使管壁表面产生游离NaOH,造成局部碱度过高而引起金属管壁的腐蚀。磷酸盐“暂时消失”现象有时与水冷管壁的清洁程度有关,有的锅炉刚进行化学清洗后,“暂时消失”现象明显。防止这种现象发生的办法是:实行低磷酸盐处理、平衡磷酸盐的锅水处理方式,或采用全挥发性处理。采用等成分磷酸盐处理,虽不能解决磷酸盐的消失现象,但可防止由磷酸盐的消失现象而引起的碱腐蚀问题。7 [5 l R2 p) c1 d- x) G5 a5 z% ` (三) 等成分磷酸盐处理 这种方法是向锅炉水中加入磷酸三钠和磷酸氢二钠混合液,使锅水中的游离氢氧化钠全部转变成磷酸三钠,只要锅水中钠离子和磷酸根离子的摩尔比(R)Na/PO4控制在一定范围内,就可以使锅水既有足够的pH值和一定的PO43-浓度,又不会含游离氢氧化钠。 (四) 平衡磷酸盐处理( T1 j2 y( q; f% F

锅炉水处理方法

锅炉水处理方法 锅炉水处理主要包括补给水(即锅炉的补充水)处理、凝结水(即汽轮机凝结水或工艺流程回收的凝结水)处理,给水除氧、给水加氨和锅内加药处理4部分。 补给水处理因蒸汽用途(供热或发电)和凝结水回收程度的不同,锅炉的补给水量也不相同。凝汽式电站锅炉的补给水量一般低于蒸发量的3%,供热锅炉的补给水量可高达100%。补给水处理流程如下: ①预处理:当原水为地表水时,预处理的目的是除去水中的悬浮物、胶体物和有机物等。通常是在原水中投加混凝剂(如硫酸铝等),使上述杂质凝聚成大颗粒,借自重而下沉,然后过滤成清水。当以地下水或城市用水作补给水时,原水的预处理可以省去,只进行过滤。常用的澄清设备有脉冲式、水力加速式和机械搅拌式澄清器;过滤设备有虹吸滤池、无阀滤池和单流式或双流式机械过滤器等。为了进一步清除会中的有机物,还可增设活性炭过滤器。 ②软化:采用天然或人造的离子交换剂,将钙、镁硬盐转变成不结硬垢的盐,以防止锅炉管子内壁结成钙镁硬水垢。对含钙镁重碳酸盐且碱度较高的水,也可以采用氢钠离子交换法或在预处理(如加石灰法等)中加以解决。对于部分锅炉,这样的处理通常已能满足要求,虽然给水的含盐量并不一定明显降低。 ③除盐:随着锅炉参数的不断提高和直流锅炉的出现,甚至要求将锅炉积水中所有的盐分都除尽。这时就必须采用除盐的方法。化学

除盐所采用的离子交换剂品种很多,使用最普遍的是阳离子交换树脂和阴离子交换树脂,简称“阳树脂”和“阴树脂”。在离子交换器中,含盐水流经树脂时,盐分中的阳离子和阴离子分别于树脂中的阳离子(H﹢)和阴离子(H-)发生交换后被除去。图为常用的积水化学除盐系统示意图。 当水的碱度较高时,为了减轻阴离子交换器的负担,提高系统运行的经济性,在阳离子交换器之后一般都要求串联脱碳器以除去二氧化碳。含盐量特别高的水,也可采用反渗透或电渗透工艺,先淡化水质,再进入离子交换器进行深度除盐。对高压以上的锅筒锅炉或直流锅炉,还必须除去给水中的微量硅;中、低压锅炉则按含量情况处理。 凝结水处理凝结水在循环过程中,会受到汽轮机凝汽器冷却水泄漏和系统腐蚀产物等引起的污染,有时也需要进行处理。其典型的处理流程为 凝结水的处理量与锅炉的参数、炉型(如有无锅筒或分离器)和凝结水的污染情况有关。随着锅炉参数的提高,凝结水的处理量一般逐渐增加。对超临界压力锅炉应全部处理;对超高压及亚临界压力锅炉处理量为25-100%;对有锅筒的高压以下锅炉一般不进行处理。常用的凝结水处理设备有纤维素覆盖过滤器和电磁过滤器等。凝结水在其中除去腐蚀产物(氧化铜和氧化铁等)后,在进入混合床或粉末树脂覆盖过滤器进行深度除盐。 给水除氧锅炉给水中的溶解氧会腐蚀热力系统的金属。腐蚀产物在锅炉热负荷较高处结成铜铁垢,使传热恶化。因此,经过软化

微涡旋混凝低脉动沉淀技术处理低温低浊水

微涡旋混凝低脉动沉淀技术处理低温低浊水 我国北方地区全年有3?5个月的冰冻期,作为主要饮用水水源的地表水在这一时期呈现低温低浊特性:水温0?5C ;浊度一般10?30NTU (有时降至10NTU以下);水中胶体颗粒电位升高(约为常温时的2倍),胶体间静电斥力增大,稳定性增强;水的粘滞性增加,颗粒运动的阻力变大,碰撞困难;颗粒的布朗运动减弱,微粒惰性增强,水中胶体颗粒的粒径分布趋于均匀且小于常温时的粒径,造成直接过滤的效果差;水体中无机胶体颗粒含量减少,有机胶体颗粒含量增加,矶花絮体中有机成分较多,密度较平常期小;动力粘滞系数变大,颗粒的极限沉降速度变小,因而浊度去除率降低。 1机理研究 混合和初始絮凝是给水处理的重要环节。混合的本质是混凝剂的水解产物向水体中的扩散过程。扩散分为宏观扩散和亚微观扩散,从而导致微观微粒的碰撞反应。宏观扩散取决于浓度梯度和水体湍动强度,一般的混合设备均能完成宏观扩散。微观微粒的碰撞反应取决于热力学条件和微粒的物理化学特性。亚微观扩散是扩散阻力最大的一环,它决定了混合的效果。对扩散系数可描述如下: K=a(£ 0 入)1/3 ?入 (入>入0)(1) K=B (入?£ 0/ U)1/2 (2) 式中入涡旋尺度 入涡旋特征尺度£ 能耗项U 运动粘滞系数a、B 与流态和热力学性质有关的系数由于入W入时的K值比入>入时的K值小几个数量级,因此它的扩散阻力最大。在实际工程中,通过造成高比例高强度的微涡旋,利用微涡旋的离心惯性效应来实现多相物系中的颗粒迁移,克服亚微观传质阻力,增加亚微观传质速率,促进亚微观传质。在试验中,利用管式微涡混合器和串联圆管混合器来实现混合工艺?这两种混合器通过控制水流的速度和水流空间的尺度以及速度零区的范围来造成高比例高强度的微涡旋,从而充分利用微小涡旋的离心惯性效应使混凝剂的水解产物瞬间进入水体细部,使胶体颗粒脱稳,避免了局部药剂浪费或局部药剂不足的现象发生。对于低温低浊水的混合,该工艺设备可迅速使其间胶体颗粒脱稳析出同时,较强的剪切作用避免了微絮体的不合理长大,从而保证单位体积内的颗粒数,为微小矶花的凝并提供了物量保障。 水体中的胶体颗粒脱稳析出后,含有微絮体的水进入反应池,在反应池中使微絮体相互碰撞凝并,并保持一定的尺度、密实度和抗剪切强度。在试验中,通过在反应池的过水断面上设置不同形式的网络来完成工艺目的。由于水流经过格网和格网后的过水断面不一致,因此根据伯努利方程可知,在格网处和格网后的压力不一致,有逆向压力梯度存在。由于过网后的流线分离,在网条后形成速度空白区,从而产生网后涡旋。通过控制流速和采用格网的形式,可以控制涡旋的大小和强度。在涡旋中取其间的颗粒进行受力分析,颗粒受到离心力(F1)、水的压力(F2)和运动产生的绕流阻力Fd的作用: 根据颗粒所受的运动阻力Fd=Cd?n r02?p U2/2 (Cd为绕流阻力系数,Y 0为颗粒尺度)可以得出单位质量颗粒受力fd=3Cd p U2/ (8p 0 丫0),可以看出,在水体中运动的颗粒,单位质量大所受阻力小,单位质量小所受阻力大,因此涡旋内不同尺度的颗粒沿径向有碰撞的可能。由于离心惯性效应,颗粒作径向运动,在由原速度区向新速度区运动时,因速度差异而与新速度区内的颗粒发生碰撞合并。涡旋内相邻的速度层间产生滑移也为层与层间的颗粒碰撞提供条件。另外,茹可夫斯基升力的作用使得涡旋离开原位置,这为不同涡旋内的颗粒合并提供条件。 低温低浊条件下,原水浊度越低给水工艺在运行中的耗药量越高,处理难度也越大。研究认为,在任何水体中,保证单位体积内颗粒的数量和有效碰撞的次数是至关重要的。在浊度较高时,单位体积水体内颗粒数可以保证,因此,投加的混凝剂主要是使胶体颗粒脱稳,在有充足的絮凝时间时,常规工艺可达到设计标准。在低浊条件下,投加少量混凝剂即可使胶体脱稳,由于低浊时单位体积内颗粒密度小和微絮体的不合理凝并,导致部分微絮体失去了碰撞凝并的条件,从而使得反应池出水矶花中小矶花比例增加,给沉淀截留增加了难度。在试验中,着重增强了混合过程中的传质扩散和颗粒有效碰撞,并在水流过程中保持一定的剪切强度,使凝并的矶花不断压密,达到理想的密实度。给水处理中,通过对混合、反应过程中颗粒碰撞凝并进行合理的动力学控制,可以大幅度增加单位体积内颗粒有效碰撞的几率,从而在保障胶体颗粒脱稳的前提下,降低单位体积内的颗粒数量,因而较常规工艺减小药耗。原水浊度越低,效果就越明显。 依据浅池理论及对颗粒沉降中湍流扰动的抑制,试验应用了小间距斜板,并作了对比计算。在T=5 °C,上升流速q=3. 0mm/s斜板单元为12. 5cmX 1. 5cm时,其雷诺数Re=13;而对于T=5 °C, q=2. 5mm/s,间距为3. 5cm的斜管,其雷诺数Re=15由此可见,上升流速为3. 0mm/s的斜板较上升流速为2. 5mm/s的斜管扰动小,从而更有利于沉降。在运行中,由于小间距斜板间距小、无侧向约束、排泥面和沉泥面相等而有利于矶花沉降和彻底排泥。在实际制作过程中,对斜板材料的光滑度、强度及倾角均作了更有利于排泥的处理,因此排泥彻底,不积泥,并且在运行过程中不改变倾角,斜板不变形,从而使设计意图得以全面实现。由斯托克斯方程可知,在低温条件下,由于动力粘滞系数增大,颗粒沉降速度减小,这意味着在相同上升流速,在常温下可去除的一定尺度的颗粒在低温状态时去除率降低,甚至不能去除而影响水质,同时增加滤池负荷,这也是冬季北方水厂降负荷运行的主要原因之一。由于在混合反应上的强化,矶花絮体保证足够的粒度后,在小间距斜板中因其沉降距离短而仍可去除,这在实际运行中得到了证实。

相关文档