文档库 最新最全的文档下载
当前位置:文档库 › 红外测量控器的发射与接收

红外测量控器的发射与接收

红外测量控器的发射与接收

红外测量控器的发射与接收

红外感应器(总结)

1 红外辐射,红外探测器原理,菲涅尔透镜(介绍红外很全面) 以及应用。 2 应用 红外线技术在测速系统中已经得到了广泛应用,许多产品已运用红外线技术能够实现车辆测速、探测等研究。红外线应用速度测量领域时,最难克服的是受强太阳光等多种含有红外线的光源干扰。外界光源的干扰成为红外线应用于野外的瓶颈。针对此问题,这里提出一种红外线测速传感器设计方案,该设计方案能够为多点测量即时速度和阶段加速度提供技术支持,可应用于公路测速和生产线下料的速度称量等工业生产中需要测量速度的环节[1] 。 红外线对射管的驱动分为电平型和脉冲型两种驱动方式。由红外线对射管阵列组成分离型光电传感器。该传感器的创新点在于能够抵抗外界的强光干扰。太阳光中含有对红外线接收管产生干扰的红外线,该光线能够将红外线接收二极管导通,使系统产生误判,甚至导致整个系统瘫痪。本传感器的优点在于能够设置多点采集,对射管阵列的间距和阵列数量可根据需求选取。 红外技术已经众所周知,这项技术在现代科技、国防科技和工农业科技等领域得到了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。 红外传感器发展前景 咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。 一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(MICRO-ELECTRO-MECHANICALSYSTEMS,微机电系统)传感器、生物传感器等新兴传

红外接收发射(电路图和PCB)

学年论文 (课程论文、课程设计) 题目:红外发射接受 作者: 所在学院:信息科学与工程学院专业年级:电子信息工程08-1班指导教师:王建英 职称:讲师 2009年1月7日

实验目的: 1. 学会熟练操作Altium Designer 6软件。 2. 学会用Altium Designer 6软件进行电子线路设计并运用软件分析各种参数。 3.熟练掌握基本红外发射接收的设计、分析及运。 4. 学会红外发射接收电路基础的电路设计并进行研究分析。 实验要求: 1.了解红外发射接收的基本电路结构。 2.概述音频放大器的构造及功能。 3.用Multisim完成对电压和功率放大器的电路设计。 4.对电路的各部分功能作简要解释。 5.要求所设计的电路实现对电压和功率的放大功能。 6.对电路进行调与仿真,得到重要性能参数且要求要有电路的输入与输出波形。 7.对放大器的一些性能指标进行研究分析。(对输入输出波形研究以及对频率效应的研究等等)。 8.得出实验结论。 实验内容: 一、实验原理图

红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。

红外遥控器电路(接收电路)

电子技术基础课程设计任务书2014-2015学年第一学期第18周-19周

目录 1、总体方案的设计与选择........................... 错误!未定义书签。 1.1、选题及要求 (1) 1.2、原理与方案 (1) 1.2.1、红外线与红外接收二极管 (1) 1.2.2、红外接收电路 (1) 1.2.3、电源电路 (3) 1.2.4、红外接收总电路 (3) 1.2.5、元器件的选择 (4) 1.2.3方案确定 (4) 2、总电路图,印刷图及相关说明 (5) 2.1、原理图 (5) 2.2、清单图 (5) 2.3、PCB (6) 2.4、PCB三维图 (6) 2.5、PCB板3D显示图 (7) 3、计算机仿真及相关说明 (9) 3.1、仿真电路图 (9) 3.2、仿真过程 (9) 4、电路制作与调试 (11) 4.1、元件确定 (11) 4.2、元件检测 (11) 4.3、仪表仪器 (11) 4.4、电路板制作 (11) 4.5、电路板调试 (13) 4.6、调试常见故障与处理方法 (15) 5、心得体会 (16) 6、参考文献 (17)

引言 随着时代的发展,人民的生活水平不断提高,各种家用电器设备也随之进入千家万户,一些家用电器开关在使用的时候非常麻烦,为了方便大家使用,现在社会上也设计出了各种各样的控制开关,其中包括红外遥控开关,红外遥控是目前家用电器中用的较多的遥控方式。 红外遥控有以下特点: 1、抗干扰能力强。由于其无法穿透墙壁,故不同房间的家用电器可以使用通用的遥控器而不会产生相互的干扰; 2、电路调试简单,操作简单; 3、成本低,符合大众消费观念。 由于其抗干扰能力强,操作简单等诸多有点,红外遥控已经广泛应用于彩色电视机、DVD、空调、组合音响等各种家用电器上。 基于红外遥控发射与接收原理,我们小组设计了一款简易红外遥控电路,通过这个设计,不仅可以明白红外遥控的工作原理,还能在之后自己DIY红外遥控开关。相信通过这个设计也能让其他人对红外遥控开关的工作原理有进一步的了解。

38khz红外发射与接收解析

38khz红外发射与接收 38khz红外发射与接收 红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示. 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的. 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示. 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定. 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高. 图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示. 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.

哈工程电子电路综合实验-红外发射接收系统教学教材

电子电路综合设计实验报告 设计实验选题七(接收部分) ---基于单片机的红外遥控收发系统的设计实现 姓名:周迪 学号:2010042105 2013年4月17日~~2013年4月24日

摘要 红外线是现代社会中已经极为常见,在遥测、遥控等领域中,往往使用微机与单片机组成多机通信系统来完成测控任务。其中,常用的方法是使用微机的RS-232C串行接口进行串行数据通信。由于受环境的影响以及RS-232C串行接口电气性能的限制,加上连接线长、接线麻烦等缺点,其通信的空间范围总是受到限制,并使人们感到不便。因此,人们想到了无线传输。常用的无线传输方式有无线短波传输和红外线传输,但这两种方式都有一定的局限性,如短波方式易受外界电磁场的干扰,线外线传输方式不能隔墙传输等等,本文将介绍采用最新的无线长波收发模块638以及三态编解码芯片MC145026/ MC145027来设计无线数据通信装置的方法。该装置具有抗干扰性能好、穿透性强、传输距离远等特点。由于串行接口传输速度慢,信号处理电路复杂,外接模块困难。因此,本装置选用并行接口通信,从而使得电路简单易做、可靠性高。 本设计是以STC89C51单片机为控制核心,本装置主要由数据编解码和发射接收两大模块组成,设计系统组成图如下: 发射部分电路模块:STC889C51单片机作为主控核心,采用三态编解码芯片MC145026作为编码芯片,CD4011逻辑器件作为反相用途,采用单段的数码管显示发射的数字,采用八位按键输入,采用MAX232作为电平转换电路作为单片机与PC机之间的程序下载用途。 接收部分电路模块:STC889C51单片机作为主控核心,与MC145026配对使用的三态编解码芯片MC145027作为解码芯片。74LS02逻辑器件作为反相用途,采用单段的数码管显示发射的数字,八位的发光二极管显示顺序,638作为红外的接收头,采用MAX232作为电平转换电路作为单片机与PC机之间的程序下载用途。 实现方法:本实验采用单片机控制,发射部分的数据经过调制编码后送入电光变换电路经过红外发射管转换为红外光脉冲发射出去,为了增加抗干扰能力将编码的信号调制在较高的频率载波上发射。在接受部分接收头将接收到的光信号装换为电信号,经过解调将发射数据解调出来,输入单片机进行控制。 实现功能:无线数据的发射与接收 特点及水平:实现无线数据传输,在三米近距离的范围内可以收到发射数据 关键词:单片机;可靠性;MC145026;MC145027;无线数据传输。

热释电红外传感器简介(相关知识)

热释电红外传感器简介 被动式红外探测器不需要附加红外辐射光源,本身不向外界发射任何能量,而是由探测器直接探测来自移动目标的红外辐射,因此才有被动式之称。被动式红外探测器是利用热释电效应进行探测的。被动式红外探测器又称为热释电红外探测器,其主要工作原理便是热释电效应。热释电效应是指如果使某些强介电质材料(如钦酸钡、钦错酸铅P(zT)等)的表面温度发生变化,则随着温度的上升或下降,材料表面发生极化,即表面上就会产生电荷的变化,从而使物质表面电荷失去平衡,最终电荷变化将以电压或电流形式输出。 热释电红外传感器通过接收移动人体辐射出的特定波长的红外线,可以将其转化为与人体运动速度,距离,方向有关的低频电信号。当热释电红外传感器受到红外辐射源的照射时,其内部敏感材料的温度将升高,极化强度减弱,表面电荷减少,通常将释放掉的这部分电荷称为热释电电荷。由于热释电电荷的多少可以反映出材料温度的变化,所以由热释电电荷经电路转变成的输出电压也同样可以反映出材料温度的变化,从而探测出红外辐射能量的变化。红外探测器的光学系统可以将来自多个方向的红外辐射能量聚焦在探测器上,这样红外探测器就可以探测到某一个立体探测空间内热辐射的变化。 当防范区域内没有移动的人体时,由于所有的背景物体(如墙壁、家具等)在室温下红外辐射的能量比较小,而且基本上是稳定的,所以不能触发报警器。当有人体突然进入探测区域时,会造成红外辐射

能量的突然变化,红外探测器将接收到的活动人体与背景物体之间的红外热辐射能量的变化转化为相应的电信号,电信号的大小,决定于敏感元件温度变化的快慢,经过后级比较器与状态控制器产生相应的输出信号U,送往报警器,发出报警信号。红外探测器的探测波长为8~14um,人体的红外辐射波长正好处于这个范围之内,因此能较好的探测到活动的人体。被动式红外探测器属于空间控制型探测器,其警戒范围在不同方向呈多个单波束状态,组成锥体感热区域,构成立体警戒。 由于被动式红外技术具有监测距离较远,灵敏度较高,节能价廉等优点,本课题采用红外探测器作为报警探测器,并在设计中增加了自动声光报警的功能,使报警系统更加趋于完善。 2 热释电红外传感器电路图 热释电红外线(PIR)传感器是80年代发展起来的一种新型高灵敏度探测元件。是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将这个电压信号加以放大,便可驱动各种控制电路。 图2-3为热释电红外传感器的内部电路框图。

红外发射与接收电路

红外发射与接收电路实验 报告 (应电0612 学号01) 一、实验目的 制作一个简易红外发射与接收电路。要求自行装配、接线调试,并能检查和发现问题(使用万用板布线),掌握其基本原理与工作情况,并根据原理、现象和测量数据进行分析问题所在,加以解决。 二、实训材料清单及工具仪器: 万用表、示波器、电铬铁、镊子、拔线钳、螺丝刀等常用工具。 元件名称元件标号封装号 1N4001 D7 D3 1N4001 D9 D3 1N4001 D8 D3 1N4007 D3 D3 1N4007 D4 D3 1N4007 D2 D3 1N4007 D1 D3 2K R1 AXIAL-0.3 4.7K R8 AXIAL-0.3 5.1v D6 D3 10K R2 AXIAL-0.3 10K R11 AXIAL-0.3 10K R9 W3296 10uF/25V C2 EC1.5 20K R3 AXIAL-0.3 20K R5 AXIAL-0.3 27K R4 AXIAL-0.3 104 C6 CM150 104 C4 CM150 104 C3 CM150 510 R6 AXIAL-0.3 510 R10 AXIAL-0.3 510R R7 AXIAL-0.3 561 C5 CM150 4700uF/25V C1 EC4-6 9013 Q3 90XX 9013 Q2 90XX 9013 Q1 90XX

LED D5 LED NE555 IC2 DIP-8 NE555 IC1 DIP-8 RED LED LED RELAY3 ZJCA SRD 三、实验要求 使用万用板布线,红外发射的频率为38KHz,载波为250Hz。接收管经过射极放后驱动继电器。要求通电后继电器吸合,阻断红外发射信号继电器断开,信号通后继电器又吸合。通过继电器实现红外信号控制其他器件。 四、实验原理图 红外发射电路 红外接收电路 五、电路PCB板

红外线发射与接收电路图

红外线发射与接收电路图 由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455KHZ的方波信号。经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。再经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。由单片机的异步串行口TX输出的串行数据信号,送到与非门74HC00的输入端。与非门的另一输入端接38KHZ的载波信号。与非门的输出信号用来控制三极管的开通或关断,从而控制红外发射管发送信息。这样就达到了用串行口TX输出的串行数据信号直接调制载波,进行红外数据传输的目的。发射电路的调制采用的是时分制幅度键控调制方式。因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。所以单片机TXD 发送的编码应是反码。 据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于1200b 设计中采用一种高效能的红外接收器——德律风根TFMS5380。德律风根所开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。同一组件内已装上了接收二级管和前置放大器。TFMS5380特点:(1)单一的接收器和前置放大器的组合。(2)超敏感度和传送距离。(3)内置PCM频率过滤器。(4)无外置组件需要。(5)特强光及电场干扰屏蔽。(6) TTL及CMOS兼容,适用于微处理器操作控制。(7)可选频率由30KHZ至56KHZ。(8)低功耗。(9)ISO9000认可。TFMS5380适用于数据传送、电视机、录像机、组合音响及

卫星接收器等。TFMS5380的内部框图及构成的接收电路。如图3所示。 红外二极管就和普通的发光二极管原理一样,就是在半导体PN结区域电子和空穴复合发光。发光的波长和半导体的禁带宽度有关。 光敏红外二极管和普通的光敏二极管也是一样的。在PN结附近由于光照产生的激子被结电场拉开成为电子-空穴对,分别流向不同的电极。一般光敏管反向偏置,有光时反向电阻会变化。 一般红外管用来通信,比如电视机的遥控器。或者测距,比如自动冲水马桶

红外接收电路设计

基于单片机的主从红外通信系统的研究与设计2009-11-17 21:24出处:中华电子网作者:刘永春、王秀碧、陈彬【我要评论】[导读]发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。 1、引言 红外通信是目前比较常用的一种无线数据传输手段,其具有无污染、信息传输稳定、信息安全性高以及安装使用方便等优点,并且可以在很多场合应用,如家电产品,工业控制、娱乐设施等领域。红外通信是利用950nm近红外波段的红外线作为传递信息的载体,通过红外光在空中的传播来传递信息,由红外发射器和接收器实现。发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。 2、系统硬件电路设计 在主从式红外通信系统中,主机及从机的红外发射电路相同,红外线的载波频率都为38KHz,在同一时间内,可以是主机发射,从机接收;或者从机发射,主机接收。 2.1 红外发射电路设计 红外发射器电路主要由单片机,驱动管Q1和Q2、红外发射管D1等组成,电路如下: 红外发射器工作原理为:单片机通过I/O端口控制整个发射过程。其中,红外载波信号采用频率为38KHz的方波,由PIC18F248的CCP模块的PWM功能实现,并由CCP1端口传输到三极管T2的基极。待发送到数据由单片机的TX端口以串行方式送出并驱动三极管Q1,当TX为“0”时使Q1管导通,通过Q2管采用脉宽调制(PWM)方式调制成38KHz的载波信号,并由红外发射管D1以光脉冲的形式向外发送。当TX为“1”时使Q1管截止,Q2管也截止,连接Q1和Q2的两个上拉电阻R1和R3把三极管的基极拉成高电平,分别保证两个三极管可靠截止,红外发射管D1不发射红外光。因此通过待发送数据的“0”或“1”就可控制调制后两个脉冲串之间的时间间隔,即调制PWM的占空比。比如若传送数据的波特率为1200bps,则每个数位“0”就对应32个载波脉冲调制信号。红外发射管D1采用TSAL6200红外发射二极管,其实现将电信号转变成一定频率的红外光信号,它发射一种时断时续的高频红外脉冲信号,由于脉冲串时间长度是恒定的,根据脉冲串之间的间隔大小就可以确定传输的数据是“0”还是“1”。 2.2 红外接收电路设计 红外接收电路主要采用Vishay公司的专用红外接收模块HS0038B。接收电路及

红外遥控一体化接收头原理及应用电路

红外遥控一体化接收头原理及应用电路2 一.一体化红外线接收头的原理 二. 红外遥控一体化接收头型号:SH-0038应用电路集 三. 红外遥控一体化接收头型号:RPM-638应用电路集 四.一体化红外线接收头的管脚排列及检测 红外遥控一体化接收头原理图及应用 一体化红外接收头型号:SFH506-38、RPM-638 红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 一体化红外接收头,如图5所示外形及管脚:型号区别: 5所示:型号:SH0038 图5 红外接收头 红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输 出脚。根据发射端调制 一. 红外遥控一体化接收头型号:SH0038 应用电路集 1. 用红外接收头、CD4069 制作的遥控灯原理图 红外遥控的发射和接收电路图 2. 用红外接收头、CD4011制作的遥控灯原理图 红外遥控接收头内部电路 3. 用红外接收头、CD4541制作的单路遥控原理图 4. 一体化红外接收头遥控开关接收电路 5. 用一体化红外接收头制作的遥控开关电路 一体化红外接收头原理: 没有人时,遥控接收头低电平脉冲信号由C1送入Q1,Q1将信号放大,由D1,C2滤波使Q2b极电压升高,Q2导通,Q3断开,继电器不吸合,K2断开,无12V送入报警器,报警器不报警;当有人进如时,将红外线阻断,接收器收不到遥控器发来的信号,Q1b极为高电平,Q1截止,Q2也截止,Q2C极为高电平,此时Q3导通,继电器吸合,K2闭合将12V送入报警或语音电路,发出报警声,同时R5对C4充电,达到Q4的导通电压时,Q4导通,Q3截止,继电器断开,报警结束,同时K1闭合,将C4放电,报警时间可由R5和C4决定。 6. 用一体化红外接收制作的感应式自动洗手器

最新红外线发射与接收电路图

红外线发射与接收电路图 1 2 由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455 3 KHZ的方波信号。经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。再4 经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。由单片机的异步5 串行口TX输出的串行数据信号,送到与非门74HC00的输入端。与非门的另一输6 入端接38KHZ的载波信号。与非门的输出信号用来控制三极管的开通或关断,从7 而控制红外发射管发送信息。这样就达到了用串行口TX输出的串行数据信号直8 接调制载波,进行红外数据传输的目的。发射电路的调制采用的是时分制幅度键9 控调制方式。因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低10 电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。所以单片机TXD发送的11 编码应是反码。 12 13 据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于120 14 0b 15 16 设计中采用一种高效能的红外接收器——德律风根TFMS5380。德律风根所17 开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。同一组件内18 已装上了接收二级管和前置放大器。TFMS5380特点:(1)单一的接收器和前置放19 大器的组合。(2)超敏感度和传送距离。(3)内置PCM频率过滤器。(4)无外置组20 件需要。(5)特强光及电场干扰屏蔽。(6)TTL及CMOS兼容,适用于微处理器操21 作控制。(7)可选频率由30KHZ至56KHZ。(8)低功耗。(9)ISO9000认可。TFMS5 22

38kHz 红外发射与接收复习进程

38k H z红外发射与接 收

38kHz 红外发射与接收 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VD D、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下:

课程设计-红外发射接收器

本科实验报告 实验名称: 红外遥控发射/接收器的设计

一、设计任务和主要技术指标 设计一个八路红外遥控器电路,主要技术指标为: 1.码元速率:400bit/S 2.调制方式:幅度键控,载频40kHz。 二、设计方案选择 利用MC145026/MC145027、NE555和CX10206A等芯片设计制作一个八路红外遥控器。 总体设计框图如下: 红外传输 三、电路原理与设计 1、MC145026编码器 MC145026由时钟振荡器、分频器、地址编码/数据编码输入电路以及数据选择与缓冲器等几部分组成。时钟振荡器和分频器向编码电路提供基准时钟。地址编码/数据编码输入电路,将不同的地址和控制数据码编为相应的信号。编码方式是以不同的脉冲宽度组合,表征不同的地址码和控制数据。数据选择与缓冲电路将编码电路的并行码变为串行码输出。 MC145026共有9条地址线A1~A9,最多有512个不同地址;其中4条与地址复用的数据线D6~D9,使用4位编码输入,16种编码状态。编码以串行方式由Dout脚(引脚15)输出。如果MC145026与译码器MC145027配对使用,则只能采用“5位地址线及4位数据线”的固定编码传送模式。

该器件的地址线和数据线采用并行编码复用输入,码状态为1、0和开路三种状态,通常仅使用前两种编码状态,每个编码的码元宽度对应编码器部的8个时钟周期,主要靠脉冲占空比大小区分编码状态,三 种状态编码波形如图1所示。 MC145026部振荡频率的典型运用围一般选择为:4kHz ~9kHz 。外接阻容元件R S 、R TC 、C TC 的参数值决定了部时钟频率,原则上要求部振荡频率围为:1kHz≤f osc ≤400kHz 。其中应满足R S =2 ~5R TC ,一般情 况当R S ≥20kΩ、R TC ≥10kΩ、400pF <C TC <15μF 时,通常遵循以下原则确定部振荡频率:' 3.21 TC TC osc C R f =,式中,pF C C TC TC 20' +=。 MC145026编码器电路原理图和参数设计如下: 1位编码间隔 编码器 内部时钟CK 编码“1”波形 编码“0”波形 编码“开路”波形 图1 编码器工作波形 D out 脚串行输出 D out 脚串行输出 D out 脚串行输出

红外收发对管电路

红外收发对管电路 This model paper was revised by the Standardization Office on December 10, 2020

红外收发对管 1、红外收发对管是一种利用红外线的开关管,接受管在接受和不接受红外线时电阻发生明显的变化,利用外围电路可以时输出产生明显的高低电平的变化,高低电平的变化输入单片机就可使之识别,从而实现智能控制。我们使用的单片机是凌阳61板,经过我们试验,在输入电压小于伏时单片机识别为低电平,在输入电压大于伏时单片机识别为高电平。 2、用途:蔽障、计数(记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数)、寻迹 3、红外发射接收电路: 3.1输入信号采用38KHz的调制波 红外发射电路由电阻R2、三极管Q2、电阻R3与红外发射二极管D1构成,如图 接收电路由红外接收管和放大电路组成,如图。Q4接收到红外信号后,经过三极管Q1进行第一级放大,放大后的信号送入三极管Q3进行第二级放大,通过Rx就可以得到放大后的红外接收信号。 为了降低干扰, Tx一般采用调制方式,这里,其波形如图。 图 38KHz调制波 对应图的调制波,如果VCC为5V,发射接收对管的有效距离(单片机可检测)大概为20cm;如果VCC为3V,发射接收对管的有效距离(单片机可检测)大概为10cm。3.2直接采用直流电源

本电路电路简单,性能稳定,安装方便,但距离比较近。当阻挡了接收管接收红外线的强度时,产生一个低电平的脉冲信号,由于对管的发射口径较小,单光束发射,小球相对红外装置正交落下时,很容易检测处理。 使用此电路寻迹实现小车跟黑色轨道行驶,在行驶过程中不超出该线。考虑到黑线和白纸组合,我们采用红外对管辨认路面的黑白两种不同状态。由于红外对管对黑白色的感应比较明显,又不需要很高的精度,适用于简单的寻迹。但外部影响比较大,所以须将接收头用黑皮套套上以提高信号的接受率。该小车采用三对红外对管,通过他们送入单片机信号的不同,将其逻辑组合后向小车的各个电机发送启动信号,从而,驱动小车实现寻迹功能。

红外发射接收器示例

红外发射接收器示例

————————————————————————————————作者:————————————————————————————————日期:

图2-2 红外发射和接收器件示例 红外一体化接收头内部电路包括红外监测二极管,放大器,限副器,带通滤波器,积分电路,比较器等。红外监测二极管监测到红外信号,然后把信号送到放大器和限幅器,限幅器把脉冲幅度控制在一定的水平,而不论红外发射器和接收器的距离远近。交流信号进入带通滤波器,带通滤波器可以通过30khz到60khz的负载波,通过解调电路和积分电路进入比较器,比较器输出高低电平,还原出发射端的信号波形。注意输出的高低电平和发射端是反相的。 图2-3为红外发射和接收解码的示意图。在发射部分设计一个38kHz的载波,在发射数据(全码)为高电平时输出载波,发射数据(全码)为低电平时输出低电平,二者实现了逻辑与的关系,得到的信号(红外发射)驱动红外发射二极管向空间发射红外线。红外一体化接收头接收到红外信号后,解码出与发射数据(全码)逻辑相反的数据。 图2-3 红外发射和接收解码的示意图 3系统硬件设计 3.2红外遥控单元

本设计中作为发射部分使用的遥控器为M5046AP机芯的电视机遥控器。电视机遥控器应用的是红外收发原理,即遥控器前端侧面的红外发射管发射出红外信号,电路板上红外接收管接收到信号后送到单片机内部,经译码后变成相应的操作指令,以实现定时、遥控风扇的功能。 红外遥控器的内部关键电路和接收管电路如图3-1所示。 图3-1 3.3单片机控制单元 本设计以AT89S51单片机为主控器,单片机控制电路设计如图3-2所示。 单片机的P1.2-P1.4口用于控制风扇的3个档次,设计中用继电器来模拟风扇换挡开关;P1.6和P1.7引脚控制时钟电路;P2口作为液晶显示的8位数据线;P3.0和P3.1口控制风扇工作状态指示灯,分为手动和自动2个状态;P3.2中断0用于接收红外遥控编码信号;P3.4接收温度数据;P3.5-P3.7三个引脚分别控制液晶显示器的控制端。

关于红外传感器的报告要点

关于红外传感器的报告 摘要:本文主要介绍一些关于红外传感器的一些基本知识和工作原理,从而让我们能够从一定程度上了解红外传感器这一传感器的种类。对于红外传感器的认识,能够帮助我们更好的利用红外传感器,让我们的生活或者工作更加方便和愉快。 关键字:红外辐射、传感器、原理、用途 红外传感器(也称为红外探测器)是能将红外辐射能转换成电能的光敏器件,它是红外探测系统的关键部件,其性能好坏,将直接影响系统性能的优劣。因此,选择合适的、性能良好的红外传感器,对于红外探测系统是十分重要的。而作为红外传感器的重要组成部分,红外辐射是不得忽略的重中之重。下面我们先介绍红外辐射的相关知识和原理。 一、红外辐射的工作原理简介: 红外辐射是一种人眼不可见的光线,俗称红外线,因为它是介于可见光中红色光和微波之间的光线。红外线的波长范围大致在0.76-1000μm之间,对应的频率大致在4×104至3×1011Hz之间,工程上通常把红外线所占据的波段分成近红外、中红外、远红外和极远红外4 个部分。 下图是红外线的电磁波谱图: 红外分区:在红外技术中,一般将红外辐射分为4个区域 (1)近红外区: 770 nm~ 1.5 μm (2)中红外区: 1.5 μm ~ 6μm (3)远红外区: 6μm ~ 40μm (4)极远红外区: 40μm ~ 1000μm 注意:这里所说的远近是指红外辐射在电磁波谱中与可见光的距离。

红外辐射本质上是一种热辐射。任何物体,只要它的温度高于绝对零度( -273 ℃),就会向外部空间以红外线的方式辐射能量,一个物体向外辐射的能量大部分是通过红外线辐射这种形式来实现的。物体的温度越高,辐射出来的红外线越多,辐射的能量就越强。另一方面,红外线被物体吸收后可以转化成热能。 红外线作为电磁波的一种形式,红外辐射和所有的电磁波一样,是以波的形式在空间直线传播的,具有电磁波的一般特性,如反射、折射、散射、干涉和吸收等。红外线在真空中传播的速度等于波的频率与波长的乘积,即 c =λ f 。红外辐射的强度及波长与物体的温度和辐射率有关,能在任何温度下全部吸收投射到其表面的红外辐射的物体称为黑体,能全部反射红外辐射的物体称为镜体,能全部透过红外辐射的物体称为透明体,能部分反射或吸收红外辐射的物体称为灰体。自然界并不存在理想的黑体、镜体和透明体,绝大部分物体都属于灰体。 二、红外线的物理特性: ①热效应 ②穿透云雾的能力强 ①热效应及应用: 一切物体都在不停的辐射红外线。物体的温度越高,辐射的红外线就越多。红外线照射到物体上最明显的效果就是产生热。冬天烤火,就是因为有大量的红外线从炉子里射到人身上,才能让我们感觉到热乎乎的。 人体生病的时候,虽然外面看起来没有什么变化,但是由于局部皮肤的温度不正常,如果在照相机里装上对红外感光的胶片,给皮肤拍照再与正常人的照片对比,可以对疾病作出诊断。这种相机拍出来的照片叫热谱图。 根据红外线的热效应,人们还研究出了红外线夜视仪。红外线夜视仪在漆黑的夜晚也可以发现人的存在。夜间人的体温比周围草木或建筑的温度高,人体辐射出来的红外线就比他们强。可以帮助人们在夜间进行观察、搜索、瞄准和驾驶车辆等。 物体在辐射红外线的同时,也在吸收红外线。各种物体吸收了红外线以后温度就会升高。我们就可以利用红外线的热效应来加热物品。家庭用的红外线烤箱,浴室用的暖灯,也就是浴霸等等。物体加热可以利用红外线烘干汽车表面的喷漆,烘干稻谷等作物。 在医学上,还可以利用红外线的热效应进行理疗。在红外线照射下,组织温度升高,血流加快,物质代谢增强,组织细胞活力及再生能力提高。伤口就容易痊愈。 ②穿透能力强的应用: 穿透云雾的能力强(波长较长,易于衍射) ,由于一切物体,都在不停地辐射红外线,并且不同物体辐射红外线的强度不同,利用灵敏的红外线探测器接收物体发出的红外线,然后用电子仪器对接到的信号进行处理,就可以察知被测物体的形状和特征,这种技术叫做红外线遥感技术,可以用在卫星上勘测地热、寻找水源、监测森林火情、估计农作物的长势和收成。还有我们每天都要关注的天气预报,也是红外线遥感技术。 红外辐射在大气中传播时,由于大气中的气体分子、水蒸汽以及固体微粒、尘埃等物质的吸收和散射作用,使辐射能在传输过程中逐渐衰减。空气中对称的双原于分子,如N2、H2、O2不吸收红外辐射,因而不会造成红外辐射在传输过

2021年课程设计-红外发射接收器

本科实验报告 欧阳光明(2021.03.07)实验名称:红外遥控发射/接收器的设计

一、设计任务和主要技术指标 设计一个八路红外遥控器电路,主要技术指标为: 1.码元速率:400bit/S 2.调制方式:幅度键控,载频40kHz 。 二、设计方案选择 利用MC145026/MC145027、NE555和CX10206A 等芯片设计制作一个八路红外遥控器。 : 三、电路原理与设计1、MC145026编码器 MC145026由时钟振荡器、分频器、地址编码/数据编码输入电路以及数据选择与缓冲器等几部分组成。时钟振荡器和分频器向编码电路提供基准时钟。地址编码/数据编码输入电路,将不同的地址和控制数据码编为相应的信号。编码方式是以不同的脉冲宽度组合,表征不同的地址码和控制数据。数据选择与缓冲电路将编码电路的并行码变为串行码输出。 MC145026共有9条地址线A1~A9,最多有512个不同地址;其中4条与地址复用的数据线D6~D9,使用4位编码输入,16种编码状态。编码以串行方式由Dout 脚(引脚15)输出。如果MC145026与译码器MC145027配对使用,则只能采用“5位地址线及4位数据线”的固定编码传送模式。 该器件的地址线和数据线采用并行编码复用输入,码状态为1、0和开路三种状态,通常仅使用前两种编码状态,每个编码的码元宽度对应编码器内部的8个时钟周期,主要靠脉冲占空比大小区分编码状态,三种状态编码波形如图1所示。 MC145026内部振荡频率的典型运用范围一般选择为:4kHz ~9kHz 。外接阻容元件RS 、RTC 、CTC 的参数值决定了内部时钟频率,原则上要求内部振荡频率范围为: 编码器 内部时钟CK 编码“1”波形 编码“0”波形 1 2 3 4 5 6 7 8 编码“开路”波形 图1 编码器工作波形

红外二极管感应电路分析

红外二极管感应电路分析 一、电路功能概述 红外二极管感应电路可以实现用手靠近红外发射管和红外接收管时,蜂鸣器发声,LED灯点亮,手移开后立即停止发声、LED灯熄灭,灵敏度非常高。该电路设计思路来源于银行自动开门关门的生活场景,人走进银行,门自动打开,离开后门自动关闭。或者说来源于肯德基等高档餐厅的水龙头,当手放在水龙头下,水自动流出,离开后水自动关闭。该电路应用的生活场景非常多,是电路设计人员必须掌握的一种电路。 特别注意,本电路制作成功后,必须调试后才能达到相应的效果,只有掌握了红外感应电路的工作原理后才能调试好相关的参数,所以工作原理是学习重点。 二、电路原理图 三、原理图工作原理 红外感应电路的设计采用模拟电路中的电阻分压取样电路、红外二极管感应电路、三极管电路、运算比较器组成的电压比较电路等相关知识点,请制作者务必学习。 红外感应电路由以红外发射管VD1、红外接收管VD2为核心的红外感应电路,以可调电阻RP1、通用运算放大器LM358为核心的取样比较电路,以三极管9012 VT1、VT2、蜂鸣器HA1、发光二极管LED1为核心元件的声音输出、显示电路构成。

通上5V电源,红外发射管VD1导通,发出红外光(眼睛是看不见的),如果此时没有用手挡住光,则红外接收管VD2没有接受到红外光,红外接收管VD2仍然处于反向截止状态。红外接收管VD2负极的电压仍然为高电平,并送到LM358的3脚。 LM358的2脚的电压取决于可调电阻RP1,只要调节可调电阻RP1到合适的时候(用万用表测量LM358的2脚的电压大概为左右),就能保证LM358的3 脚的电压大于LM358的2脚的电压,根据比较器的工作原理,当V+ > V-的时候, LM358的1脚就会输出高电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2截止,蜂鸣器HA1不发声,发光二极管LED1熄灭。 当用手靠近红外发射管VD1时,将红外光档住并反射到红外接收管VD2上,红外接收管VD2接受到红外光,立刻导通,使得红外接收管VD2负极的电压急速下降,该电压送到LM358的3脚上。 LM358的3脚电压下降到低于2脚的电压,根据比较器的工作原理,V+ < V-的时候, LM358的1脚就会输出低电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2导通蜂鸣器HA1发声,发光二极管LED1点亮。 通过以上调试步骤,可以实现当手移动到红外发射管VD1和红外接收管VD2的上面时,蜂鸣器发声,发光二极管点亮。当手离开红外发射管VD1和红外接收管VD2的上面时,蜂鸣器停止发声,发光二极管熄灭,产生了感应手的效果。 四、组装及调试技巧 请根据红外二极管感应电路的原理图和PCB布局图(如下图),按照红外发射电路、红外接收电路、电压取样电路、电压比较电路、报警电路、LED显示电路的顺序安装。安装前一定要学习红外感应电路工作原理,并熟记电路原理 图, 以便正确安装。

相关文档