文档库 最新最全的文档下载
当前位置:文档库 › 数字卫星转播车链路分析

数字卫星转播车链路分析

数字卫星转播车链路分析
数字卫星转播车链路分析

数字卫星转播车链路分析

1.前言

针对目前新闻时效性要求越来越高,新闻报道要求更快、更广、更活、更深、更近的方向发展,我台购置了一台新闻卫星车并于2009年5月投入使用,该车采用德国奔驰公司的Sprinter515CDI厢式车改装;卫星天线采用英国GIGASAT公司1.5m车载式天线。

新闻卫星通信质量不单单取决于占用的卫星功率和地球站的品质因素,它还受上行链路参数、卫星转发器工作点和一些外界参数的影响,为此需要进行整个通信链路计算。

用户提出业务信息容量和质量的需求,并选定通信卫星后,设计者进行链路计算。先由信息带宽算出占用转发器带宽的百分比(也是占用卫星功率的百分比),于是定出占用的卫星发射功率。

2.通信链路计算应考虑的因素

信息参数:

①信息速率Rb;②误码率(BER);③向前纠错速率(FEC);④调制方式;⑤每比特信号能量与噪声功率谱密度之比(Eb/N0)。

卫星性能:

①工作频率;②单载波饱和全向辐射有效功率(EI-RPS);③卫星品质因数([G/T]S);④单载波饱和通量密度([WS]);⑤转发器带宽Bts;⑥集总输入补偿IPBi;⑦集总输出补偿IPBo;⑧多载波互调噪声。

这些参数是由卫星供应商提供

地面站(卫星车)相关参数:

①品质因数([G/T]e);②接收天线增益(GR);③发射天线增益GT(由此导出地球站功放发射功率); ④地球站经纬度(绍兴为:,);⑤雨衰;⑥天线仰角。

信息的质量在模拟通信中以接收信息的信噪比(S/N)表示,在数字通信中以接收信息的误码率(BER)表示这个参数又随解调前的载噪比(C/N)或比特能量与噪声功率谱密度比(Eb/N0)而变化,它们必须高于误码率决定的门限值([C/N]th)[链路计算就是要计算上行、下行、卫星三部分对载噪比的影响。为了计算方便,除用载噪比(C/N)外,也常用载干比(C/I),载波噪声谱密度比(C/N0)载波噪声温度比(C/T)等来表示噪声或干扰对链路各部分的影响。

高清电视转播车视频系统和视频控制系统的

高清电视转播车视频系统和视频控制系统的 设计构想 这几年随着高、标清电视同播在全国的逐步推广,高清电视进入百姓家庭已渐成现实。2010年福州广电集团决定引进一辆10+2讯道高清电视转播车,由此拉开了福州广电高清电视事业建设的序幕。技术中心作为高清车项目技术总负责,与索尼公司一道,对高清电视转播车各系统的设计和项目建设进行全方位合作。本文仅对高清车视频系统及视频控制系统的设计提出初步构想和要求。 一.设计背景 从全国高清转播车发展轨迹来看,首先以2008年北京奥运为发展契机,全国包括福建省台在内等各大省级台建造了多辆高清转播车。这些转播车针对奥运设计,有其自身各自特点。高清转播车通过奥运洗礼,结合中国国情,有许多优点,也有一些需要注意改进的地方。福州台在2010年准备建造高清转播车,应该说在时间点上属于后奥运时候。而在高清车的设计上应充分借鉴已建高清车的经验。总结目前高清车在解决灵活性和安全性等核心问题上有以下设计要点要注意: 系统应具备高度灵活性,调度灵活可变; 系统应具备扩展能力; 系统应具备高安全性和可操作性; 制作环境舒适合理,注重人机工程设计; 工位可扩展; 以上要点立足于随需而变的要求。在设计上不单只考虑福州台使用这个车,也要考虑外单位和常规活动以外的大型活动的需求。 二.系统设计总体思路 1.系统设计总体需求 本系统制作核心为纯高清设备,为满足现有标清电视工作环境,通过下变换器获得高质量的标清PGM信号。转播车主要完成福州广电集团各种大型重要节目的高清直(录)播任务,同时可适应现在标清环境下的直(录)播要求。 2.系统总体结构描述 本系统设计为纯高清内核,采用下变换满足标清制作的需要,可实现高/标清电视节目的同步播出。以主高清切换台面板为主节目制作核心,卫星切换台面板作第二套节目制作设备,以矩阵的应急母线作为应急通道。采用双2选1切换开关进行主备切换。另外,基于多码流矩阵进行总信号调度,用于应急、录像、慢动作、监看、车外板等信号调配、切换和转换。在矩阵中环接上/下交叉变换器、嵌入/解嵌器等,以供信号随时灵活调用。 本系统将采用索尼S-BUS网络控制技术实现整个系统的强大控制功能。通过S-BUS网络结构将摄像机、矩阵、切换台、应急开关、视音频矩阵等设备形成一个整体,来实现多个设备之间的联动,以及异常复杂的TALLY源名跟随,以及其它系统的平滑嵌入等功能,以满足制作系统信源分配、调度灵活性的要求,以轻松应对各种节目形态。 3.系统信号格式 系统主信号格式为1080/50i,16:9高清格式信号。 系统支持其它高清格式信号,这个功能可由交叉变换器实现。 系统支持各种标清和模拟信号,以兼容现阶段的技术要求;系统输出信号采取下变换器和数模转换的方式来形成与标清环境的下兼容。

卫星通信中的常见问题

问题: 5、降雨损耗及链路可用度 6、饱和通量密度 7、转发器的增益 8、连路计算 9、系统容量估算 5、降雨损耗及链路可用度: ①降雨对链路的影响:降雨会导致电磁波的散射并且会吸收无线电波的能量;降雨的衰减量随着频率的升高而增加,因此Ku波段的降雨衰减要比C波段严重;水平极化的降雨衰减要比垂直极化的降雨衰减要大;雨衰会产生噪声,衰减和噪声对卫星链路性能的影响在上、下行链路的雨衰余量中考虑。 降雨对天线罩的影响:对半球形的天线罩,降雨会产生一个厚度不均匀的水层,水层将导致吸收损耗和反射损耗(1mm厚的水层所产生的损耗是14dB)。 降雨会导致信号的去极化:雨滴通过大气层时略带椭圆形,主轴方向对电场分量的影响不同于次轴方向对电场分量的影响,其结果就是使电波变成了椭圆极化波;对圆极化波的影响大于线性极化波,为了弥补降雨引起的去极化,需要安装去极化装备。 ②链路可用度: 定义:在一年中% p的时间内,链路的误比特率不超过一个给定的门限值 p的概率,称为链路可用度。因此链路可用度表示含义是:一 b

年中经过该链路传输的误比特率性能优于门限b p 的时间百分比。为了使链路可用度达到要求,定义一个门限载噪比C/N []th 和余量[M],余量[M]包括雨衰余量、系统余量以及设备余量等,因此设计系统应该达到的载噪比为:[][M](dB)[]C C N N th =+。 6、饱和通量密度: 卫星转发器的行波管放大器(TWTA )存在输出功率饱和现象,由此定义:使TWTA 达到饱和时接收天线所要求的通量密度为饱和通量密度,用s ψ表示。卫星转发器的饱和通量密度也称为卫星转发器的灵敏度。 如果用[]EIRP S 表示能使卫星接收天线达到饱和通量密度所要求的地球站的有效全向辐射功率,则有: 2 4[][][]10lg( )s s s LOSS EIRP π ψλ =-+ 显然,2 4[][][]10lg( )s s s LOSS EIRP π ψλ =+-,这样,如果知道卫星接收系统 的设计参数s ψ以及系统的工作频率、各种传输损耗,就可以计算单一载波时地球站的[]EIRP S 。 7、转发器的增益: 卫星转发器的三个主要参数为[]G T 、S ψ与EIRP 。[]G T 和S ψ(饱和通量密度)反映卫星接收系统在其服务区内的性能,它们与卫星接收天线的增益分布线性相关。EIRP 反映转发器的下行功率,它与卫星发送天线的增益分布线性相关。

卫星链路计算软件Satmaster帮助(精)

上下行部分 Site Name / Location Enter the literal name of the site where the earth station is located up to a maximum of 40 characters (18 for country data files Example input for country data files (18 characters maximum "Liverpool" Example input for all other forms (40 characters maximum "Liverpool, Merseyside, England." 基站名称 输入基站所处位置的名称,最多 40个字母。 国家数据文件名举例(最多 18个字母 :liverpool 其他格式输入举例:"Liverpool, Merseyside, England." Site Latitude Enter the latitude of the site where the earth station is located. This must be entered in decimal degrees with the suffix N for north and S for South. No spaces are allowed. Examples 53.33N or 27.89S Important Note: When entering data into country data files latitudes are required in degrees and minutes format as obtained from maps and atlases. In this case the fractional part represents the number of minutes and cannot exceed 59. In all other cases input in decimal degrees are assumed. A conversion facility is provided under the calculate menu.

数字卫星转播车系统设计

数字卫星转播车系统设计 顾卫东 崔永鑫 顾云 本文作者顾卫东先生,南京广播电视台总工办设备管理科科长;崔永鑫先生,总工办主任;顾云女士,副主任。 关键词:DSNG卫星链路 转播车 系统 设计 如今对新闻时效性要求越来越高,新闻报道向更快、更广、更活、更深、更近的方向发展。为了满足新闻节目制作和2005年“十运会”报道的需要,南京广播电视台于2004年4月购置了一辆5讯道数字卫星新闻采集(DSNG)转播车,本文从DSNG系统设计、视音频系统设计、车体改装设计三方面作一介绍,供同行参考。 DSNG系统的设计 卫星传输链路采用Ku波段,信号压缩/传输采用MPEG-2/DVB-S国际标准。设计容量为一路模拟复合或SDI串行数字分量视频、4路模拟或AES/EBU数字音频(4路单声道或2路立体声)及辅助数据链路。该系统目前传送数字标清或模拟电视节目,将来通过编码器升级后可传输高清电视节目。 DSNG系统的组成 如附图所示,DSNG卫星系统上行链路由天线、高功率放大器、上变频器、编码调制器等组成;其中编码调制器2台互为备份,特殊情况下可以通过2路ASI 信号复用,同时传输2路电视信号;高功率放大器、上变频器关键点互为备份。 ∶功率分配器、数字卫星解码器、频谱分析仪等组成。 下行链路由LNB、14 方案设计中,DSNG天线系统选用美国VertexRSI 1.8m SMK-LT Ku频段车载式碳纤维天线及RCI公司RC3000天线控制器,二者配合使用,实现天线自动展开、收藏、精确寻星功能,预设置18组卫星参数;高功放设备选用美国CPI公司VZU6994AC低相位噪声型行波管高功放,保护倒换开关选用CPI公司

完整word版,1、卫星链路通信系统与SIMULINK仿真(上行链路)

卫星链路通信系统与SIMULINK仿真<上行链路) 一、实验内容 题目1 题目内容:理解信源编码在数字通信系统中的作用,研究SCPC系统中PCM编码方式。利用MATLAB/SIMULINK通信模块库提供的基本模块搭建、编写PCM信源编码/译码模块,完成语音信号的编码/译码过程。通过参数设置,完成基本的运行调试,得到相关的运行结果,验证仿真过程的正确性。 1.实现框图 图1PCM信源编码 2.实验结果与分析

图2接收端PCM 译码与发送端结果显示 从图2我们可以看出,PCM 解调得到的信号和发送端信号是相同的频率,验证了PCM 调制的有效性和可靠性,但是解调得到的信号和原有信号相比出现了时延的情况,这也说明在通信过程中此类情况无避免。题目2 题目内容:了解SCPC 系统中信号调制/解调的实现机制。利用MATLAB/SIMULINK 通信模块库提供的基本模块搭建、编写BPSK(QPSK>调制/解调模块,完成信号的调制/解调的过程,并输出调制/解调前后的星座图和频谱图。1. 实现框图 图3信号调制/解调过程 2. 实验结果与分析 Transmit Filter1Transmit Filter Modulator Baseband Demodulator Baseband Generator Channel

图4发送地球站端QPSK调制后的星座图 图5接收解调信号星座图 从图4和图5中可以看出,信号经过调制解调并叠加噪声之后,接收信号的星座图出现了明显的抖动,出现了不同程度的相位模糊,在不同信噪比情况下,信噪比的值越大,星座图点的分布越集中,与发送端信号相比,误码率也越低,相反,信噪比越小,星座图点的分布越分散,误码率也越低。 题目3

卫星通信信道链路参数计算与模拟

综合课程设计 卫星通信信道链路参数计算与模拟 姓名: 学号: 一、课程设计内容及基本参数

1、 设计目的 近年来互联网和移动通信飞速发展,使得网络终端用户数量不断扩大、新业务不断增加,这对通信技术的发展提出了新的挑战。卫星通信系统以其全球覆盖性、固定的广播能力、按需灵活分配带宽以及支持移动终端等优点,逐渐成为一种向全球用户提供互联网络和移动通信网络服务的补充方案。 本学期我们学习了《微波与卫星通信技术》这门课程,对于卫星通信技术有了基本的了解。本课程设计基于已学的的基本理论,对卫星通信信道链路参数进行计算和模拟,从而掌握卫星通信信道链路参数计算的基本方法,了解影响卫星通信信道性能的因素。同时熟悉Matlab 编程仿真过程,利于今后的学习和研究。 2、 基本参数列表 表1 根据学号得到的系统参数3、 涉及公式 1) ITU 法计算雨衰值: ),()(βα p p R L R K A =(dB) (1) 其中,p R 为降雨率,单位为mm/h ,β为仰角,可以通过以下经验公式获得 0779.041.1-?=f α (255.0≤≤f ) (2) 42 .251021.4f K ??=- (549.0≤≤f ) (3)

上式中频率f 的计算单位为GHz 。 雨衰距离: 14766.03]sin )108.1232.0(1041.7[),(---?-+?=ββp p p R R R L (km) (4) 2)ITU 法计算氧、水蒸气分子吸收损耗值: 氧分子损耗率,对于57GHZ 以下的频段,可以按下式近似计算 3230226.09 4.81[7.1910]100.227(57) 1.50 f f f γ--=?++??+-+(dB/km) (5) 对流层氧气的等效高度0h 和水蒸气的等效高度可分别按如下公式确定: 06(57)h km f GHz =< 因此,对于氧分子的吸收损耗为: 002h R O γ= (dB) (6) 水蒸气分子损耗率与频率和水蒸气密度 )/(3m g p w 有关,对于350GHz 以下频段,都可以用下式计算(dB/km): 242223.610.68.9[0.050.0021]10(22.7)8.5(183.3)9.0(325.4)26.3 w w w p f p f f f γ-=++++???-+-+-+ (7) 对流层水蒸气等效高度w h 可按如下公式确定: ]4 )4.325(5.26)3.183(0.55)2.22(0.31[2220+-++-++-+=f f f h h w w (km) (350f GHz <) (8) 其中,0w h 取2.1km 。 同样,对于水蒸气分子的吸收损耗为: w w O H h R γ=2 (dB) (9) 3)给出经纬度,计算卫星于地面距离及仰角β; 同步卫星的经度s θ,地心角θ定义为从地心点看卫星与卫星终端之间的夹角,卫星终端所在地的经度和纬度(L L φθ,),卫星距地球中心的距离近似为42164.2r km =,地球的平均赤道半径为6378.155e R km =。 )cos(cos cos S L L θθφθ-= (10) θcos 222r R r R d e e -+= (11) 如图1所示,A 为卫星,B 为地心,C 为地球站,仰角为地球站与卫星连线与水平 C

卫星数字收音机知识

三大国际地面数字广播标准: 1。DAB/DMB 2。DRM 3。HDRadio DAB(数字音频广播标准)被许多国家特别是欧洲国家的广播系统所采用,在市面上可供挑选的DAB收音机非常多。除无失真接收和CD级音质外,DAB的音频编码标准还允许用同一发射机发射多个数字广播和视频信道。目前全球有5亿多用户接收近1000个不同的DAB 广播节目。 数字多媒体广播(DMB)是从DAB演化出来的,使用现有的DAB基础设施广播节目。DMB标准允许在同一频谱范围内提高频道的数量,并提供像数据和视频文件传输等新服务,第一个商用DMB已经在韩国开播,欧洲正在进行DMB试播。 DRM(世界数字广播)是一个新的开放式广播标准,该标准直到最近才开发出来,可以通过长波、中波和短波承载数字广播信号。与需要重新分配频率的数字广播不同,DRM能够更高效地使用现有的调幅(AM)频段(低30MHz)。DRM采用一项叫做带内同频(IBOC)技术,能够在同一频率上同时广播模拟和数字信号。 DRM广播已经出现在欧洲以及欧洲以外的地区,第一批DRM收音机已经上市。另一个IBOC 技术HDRadio允许调幅和调频电台同时广播数字和模拟信号,为广播公司提供了一个通过同一频率广播多套节目的平台(组播);HDRadio提供CD级的高清音质、实时天气预报和最新路况信息、滚读文本和图像内容。 美国有1000多家HDRadio广播电台,受众占美国总人口的90%,其它几个国家也在测试这项技术。 卫星广播标准 卫星广播技术采用商用通信卫星在世界五大洲传送数字无线电信号,世广、Sirius和XMRadio 是当今世界上的主要卫星广播公司,世广信号覆盖面主要是在非洲、亚洲和部分欧洲地区,Sirius和XMRadio主要在北美地区。这三大广播公司都是私营公司,服务都是有偿的,节目解码播放需要他们提供的独有的硬件。 据消费电子协会统计,2006年初全球卫星广播入户率达到10%。 意法半导体的解决方案

卫星通信链路计算过程

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比CrT或者载波与噪声功率比C/N、以及载波与干扰功率比CzI ,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 CZT u= EIRP E - LOSS U + G/T Sat C/T D = EIRP S - Loss D + GZT E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = CZT + 228.6 - BW N 式中的k 为波兹曼常数, BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I ASJU和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) T (C/I Total ) -1 = (C/I XPJU) -1 + (C/I ASJU) -1 + (C∕IM) -1 + (C/I XPJD)-I + (C/I ASJD)-I -1 -1 - 1 (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为

卫星链路计算公式

星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 C/T U=EIRP E - Loss U + G/T sat C/T D = EIRP s —Loss D + G/T E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = C/T + 228.6 - BW N 式中的k 为波兹曼常数,BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I AS_U和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) -1 - 1 -1 -1 -1 -1 -1 (C/I Total ) = (C/I XP_U) + (C/I AS_U) + (C/IM) + (C/I XP_D) + (C/I AS_D) (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为 (C/(N+I) u ) -1 = (C/N u ) -1 + (C/I XP_u) -1 + (C/I As_u) -1

第一部分∶高清卫星车项目设备需求及技术要求

项目:A 第一部分:高清卫星车项目设备需求及技术要求 概述:该系统由一辆上星车和一辆发电车组成。 高清卫星车系统包含视、音频系统,数字无线微波,卫星系统,车体及改装四个主要部分,要求设计成具备3讯道高清制作(1有线高清EFP讯道+2无线高清E NG讯道)、高清信号卫星传输及直播功能,为了确保直播安全,该车视、音频系统和卫星系统均要求有应急备份系统。卫星传输采用MPEG编码配合1.5米天线。 该项目车体部分已指定为丰田兰德酷路泽4700。要求在合理利用有效空间的前提下,尽可能扩大工作区的活动面积。机柜机架的设计安装应符合人体工程学操作规范,注重实用美观。招标人欢迎投标人在投标方案中采用新产品、新技术、新工艺、新概念,招标人所提出的系统要求仅作为投标参考,不对投标方案构成约束,但其方案应符合河南电视台工作模式。在满足招标人对各项功能要求的前提下,投标人可以提出更加科学合理、更加安全可靠的系统方案。除招标人已确定的车体外,投标人可以采用更加先进的技术和设备,但所选用设备的档次、技术指标不得低于该标书所提出的技术要求,并且符合该标书要求遵守的有关技术标准和规范。投标人应提供主要设备近期在类似系统工程中的应用情况。本标书中加*的项目,为必须满足条件,否则投标有可能不被接纳。 一、系统设计依据以下标准: GY/T 155-2000 《高清晰度电视节目制作及交换用视频参数值》 GY/T 157-2000 《演播室高清晰度电视数字视频信号接口》(等效SMPTE2029)M GB/T 14857-93 《演播室数字电视编码参数规范》 GB/T 17953-2000 《4:2:2 数字分量图像信号的接口》(等效SMPTE259)M GY/T 158-2000 《演播室数字音频信号接口》(等效ITU-R BS.647-2) GY/T 160-2000 《数字分量演播室接口中的附属数据信号格式》 GY/T 161-2000 《数字电视附属数据空间内数字音频和辅助数据的传输规范》

应急卫星通信指挥车

应急卫星通信指挥车 为保障紧急突发事件现场的通信指挥任务,我公司设计的通信指挥车采用先进的车辆改装技术、卫星通信技术、图象采集和传输技术、计算机通信技术、无线微波传输和图象处理等技术,组成一个功能较为完备的移动指挥中心,该系统在处理紧急突发事件中机动灵活、快速反应,实现通信保障、指挥调度,图像采集传输功能,把现场情况通过车载卫星系统高质量回传指挥中心,实现现场与远地指挥中心之间的远程图像监控、语音联络、数据查询,使指挥中心的指挥决策人员如临其境,及时获得现场信息,提高决策的准确性和及时性。为实现事件现场和远地指挥中心联动提供可靠的通信保障。 通信指挥车上具备卫星通信、地面无线通信等多种方式,各通信方式互为补充、备份,保证在任何情况下通信不中断,为顺利完成各项任务提供可靠的保障。 通信指挥车通信系统要求具有的功能为: ?具有卫星通信能力,能提供不低于2048kbps双向视频,音频和数据传输能力,视频信号采用MPEG-4压缩格式. ?具有GSM移动电话, 海事卫星电话,GPRS/CDMA无线通信终端. ?具有多路固定摄像图象输入,一路无线微波图象输入. ?具备音视频切换和处理能力 ?具有多路视音频硬盘录象能力. ?具备计算机通过公网上网能力. ?具有车外电子显示系统,在车内可以随时更新修改显示内容. 卫星通信系统集成设计充分考虑现有卫星通信系统的技术体制与设备性能,注重与其适配性与兼容性。随着技术的发展和用户新要求的提出,系统和结构上具有可扩充性,包括硬件的兼容和软件的升级与扩充. 卫星通信作为地面通信的补充,具有不受地域限制,覆盖面广,通信距离远,站点设置方便,信号传输质量好,可以点对点、点对多点进行图像、语音、数据的传输,方便地接入地面通信网等许多优点。突发事件现场位置随机性大,而地面有线、无线通信线路覆盖有限,传输速率带宽有限,传输质量较低。在执行任务时,通信指挥车能够在第一时间到达现场,可以在最短的时间内为现场和远地指挥中心建立应急指挥通信链路。利用移动卫星车载站可以方便、快速地开通卫星通信链路,解决现场图像、语音和数据的通信问题。 卫星通信系统由车载卫星站、通信卫星和卫星地面站构成。通信指挥车到达现场后,车载卫星通信分系统加电后能够快速进入工作状态,利用天线自动伺服与控制系统在几分钟之内完成天线准确对准指定卫星,及时开通卫星信道,充分发挥卫星信道建立快速有效、误码率低、覆盖面广等优势,实现指挥车、指挥中心之间的图像、语音和数据的传输。 通过卫星链路连通通信指挥车与远地指挥中心的通信联络,实现图像、语音、数据的双向或单向传输。 卫星图像传输采用MPEG-4编码,地面站接收的图像质量可以达到DVD质量。 根据应急通信指挥车的特点及实际工作的需要,通信指挥车的卫星通信系统采用非对

高清转播车TALLY 系统

某电视台高清转播车TALLY 系统 一、需求的产生 随着大型高清转播车系统设计的深入,用户为使转播车能够适应越来越复杂的应用需求,均希望转播车具有非常灵活的监视调度系统。如下图: 通常情况下,用户会希望转播车中的导演区、制作区、音响区的监视器墙具有完全(或部分)自由调度能力。而对于技术区则接受固定监看的方式。同时在通道上系统主通道由切换台提供,应急切换通道由矩阵提供。因此TALLY 系统应可跟随矩阵实现监视调度时的源名跟随及跟随切换台或矩阵应急输出实现切换时的TALLY 显示。 目前监视器自由调度的方案大致有如下情况: a 矩阵+独立LCD 显示方式 b 矩阵+多画面屏幕分割器方式 c MVP 集中调度屏幕分割器方式 在为用户进行系统设计时以第一种方案最为棘手,因为LCD 的价格不好掌握,且常规使用的TSL UMD 系统在对应此方案时成本较高。 而我公司的主要竞争对手都研发有低成本的UMD 系统。 因此我们迫切希望我公司可以设计一套低成本的UMD 控制系统以应对其他公司 的竞争。 二、其他公司的解决办法 以XX公司在XX电视台高清转播车项目中的应用为例:虽然XX公司研发有自主的动态UMD 及TALLY 提示系统设备,但他们从未推荐到中国来。原因就是价格太贵,不具有竞争力。因此他们将协议开放给其代理商XX公司。并通过XX公司研发一套可与XX UMD TALLY 显示系统配套的协议转换软件。如下图:

协议翻译器通过协议总线读取矩阵和切换台内部交叉点信息,并完成源名与UMD 显示灯地址的匹配、切换台(应急时为矩阵)节目/预选/ME 母线交叉点与UMD 显示灯地址的匹配。通过RS422 方式以XX UMD 协议告知UMD 驱动单元每个TALLY 灯应显示什么名称、何时亮灯、灯的颜色等。 三、我公司的解决方案: 因此建议我公司参照其他厂家的办法研发一套可以用于沟通切换台、矩阵和UMD 系统的协议控制软件。此前XX已经将UMD协议提供给我司,这种做法虽然使用了XX的UMD 公共平台,但由于如何协调切换台及矩阵,如何实现源名跟随及TALLY 提示的关键设计仍掌握在我们手中,因此不会出现其他不利影响。现今较为流行的屏幕分割器均遵循TSL 及ImageVideo 通讯协议。因此如果我们可以通过设备制造商得到TSL 通讯协议并遵循其编写我们的UMD 输出控制,则我们的UMD 控制软件有可能完全替代现有TSL 实现对分割器的调度从而进一步降低我们在TALLY 系统上的成本及造价。 四、UMD&TALLY 控制器硬件平台建议: 如图:建议我司UMD&TALLY 主控制器的硬件平台为1 台标准1RU 长卡工业计算机并配有足够的RS422、GPI 控制卡。可以自动运行我司研发的UMD 控制软件。可外接显示器及键盘、鼠标,实现对UMD 控制软件设置的本地修改。也可通过网络的方式由另外一台安装我公司UMD控制软件的计算机对设置进行遥控(远程)修改。 五、我司UMD&TALLY 系统框图 如前文所讲,我们目前推荐的屏幕分割器+大屏幕(LCD 或PDP)的方案在价格上劣势不是很明显,且与屏幕分割器通讯上可能存在协议上的阻碍。因此在本案中我们主要围绕矩阵+独立LCD 的显示方案进行讨论。

数字卫星车卫星指挥车的设计方案

广东电视台数字卫星车的设计方案 关键词:卫星通信车卫星转播车通信指挥车 近年来,随着广播电视事业的不断发展,广东电视台外出转播的节目逐渐增多,台里2004年装配的一辆C波段卫星车已经无法满足平常的转播需要,所以装配一台Ku波段数字卫星车已经是时势所需。Ku波段数字卫星车设计的总体要求是:系统稳定,机动灵活,能满足大型节目直播的需要。根据这个要求,我们对车体、发射系统、编解码系统、视音频系统、电源系统等,进行了详细的设计、分析、比较、筛选,并确定了最终方案。 车体选择 由于是Ku波段卫星车,所以卫星发射天线的直径可以做到1.5米以下,再根据卫星车要灵活机动的特点,我们就主要考虑了奔驰416、福特E350等车型。由于奔驰416的载重量比较小,装上我们所有的设备可能会超重,另因为它造价比较昂贵,保修保养又极不方便,所以我们放弃了奔驰416,选择了福特E350加长加重车型。福特E350是改装车辆的明星车型,它底盘扎实,车体宽阔,动力充沛,很适合改装卫星车。国内很多卫星车都采用了这种车型,中央电视台的音频车也是采用了这个车型。福特E350车型见下图。 图1:FORD E350车型图 发射系统 卫星发射天线是数字卫星车的关键设备。因为发射频率是Ku波段,所以天线的直径可以做得比较小,但也必须满足重大节目转播的需要。车载卫星天线的直径一般不超过1.5米,一旦超过1.5米,很可能超出车体的宽度,但天线越小,发射增益也就越小,不稳定性就会增加,因此我们确定了天线的直径为1.5米。天线除了直径大小,其他也需要考虑的有:天线要支持全自动寻星,寻星准确、快捷;天线不宜过重,但要有一定 的机械强度,能抗8级风力;另外天线要适应广东地区的天气,防水、防潮、防晒能力要强。综合以上考虑,我们选择了SWEDISH DA150K DRIVE-AWAY型号天线,SWEDISH天线在欧洲占有最大的份额,其质量和售后服务受到了广大客户的认可。SWEDISH天线配有自己品牌的天线控制器,操作界面简单、直观,可以做到自动精确对星。另外,SWEDISH天线收起来外观呈流线形,置于车顶非常美观,见图2、图3。

便携式卫星通信系统(全)

便携式卫星通信系统

目录 1需求分析 (2) 1.1技术需求 (2) 1.2设计思路 (2) 1.3设计依据 (3) 2系统总体技术方案 (4) 2.1网络拓扑 (4) 2.2系统组成 (4) 2.3系统功能描述 (5) 2.4系统设计方案 (6) 2.5设备配置表 (18) 2.6空间卫星资源 (19)

1需求分析 根据应急通信及现场新闻采访的需求,建设1套卫星机动通信系统以满足应急通信及现场新闻采访的需求,包括1套通信固定站和1套卫星通信便携站及现场图像采集传输系统,固定站和卫星通信便携站之间的通信采用现有卫星通信ku资源实现。卫星通信便携站将通过现场图像采集传输系统采集到的话音、数据及视频传送到卫星通信便携站,再经卫星通信便携站通过卫星传输到固定站和指挥中心的大屏幕上。 根据通信系统实际情况,卫星通信系统建设规模如下: (1)指挥中心建固定卫星通信地球站; (2)建设1套机动通信机动平台。 本建议书对用户需求分析要点如下: 1.1技术需求 根据通信系统需求,工程系统配置包括固定和机动两大系统: 1、位于指挥中心的固定站通信系统:包括 ●天线系统:Ku频段天线系统一套; ●主站室外单元设备:包括低噪声放大器系统一套,SSPA系统(内置 BUC)一套,安装在天线基座架上; ●室内单元设备:包括调制解调器系统一套;视频编码器和解码器一套;语音 网关一套;网管、监控设备一套; 2、应急通信机动平台:包括 ●卫星通信便携站一套; 自动卫星便携天伺馈系统、一体化卫星信道设备、BUC ●单兵图传设备一套; 1.2设计思路 我们的设计原则是建立在满足用户当前需求和今后的扩展要求之上,采用以下设计思路: ●系统设计采用成熟技术,尽量减少技术风险,采用模块化、通用化设计原

“动中通”卫星通信链路分析及优化研究汇总

“动中通”卫星通信链路分析研究 摘要:本文针对通信卫星“动中通”系统为研究对象,从其结构的组成,发展现状和影响卫星链路的因素等为对象进行介绍和分析,详细的从结构、功能等方面探讨。“动中通”卫星主要是由天线、馈源、反射面和转轴这几部分组成的。为了能更好评估卫星信号的好坏,需要长时间的监视观测,通过观测数据研究卫星链路传输的性能;通信卫星“动中通”在链路的传输上,实现了Ku频段的链路传输特性,通过自动检测系统代替了以往人工测量的方式,通过自动检测系统的精确测量,和以往人工测量相比,大大减小了数据误差,提高了测量的精确度并提高了工作效率,节省了人力资源。 关键词:Ku频段;卫星通信;链路 Analysis of Satellite Communication Link in the "Satcom on the Move" Abstract: In this paper regarded the satellite communication system as the research object. Discussion from the structure, function and other aspects in detailed, analysis the composition of the structure, development status and influence of the satellite link factors as the object of introduction. "Move through" satellite is mainly by the antenna and feed, the reflecting surface and the shaft which are composed, the parabolic cylinder antenna box to receive data of role, the data processing. Through the feed antenna and the reflector will data in the transmission to the original user, to work through the coordination of the internal rotating shaft and other parts. In order to better evaluate the satellite signal is good or bad and need to long time observation, for surveillance, through the observation data of satellite transmission link performance; communication satellite mobile communication in the transmission link, the realization of the Ku band link transmission characteristic. In order to improve the precision of the measurement, the work efficiency and saving human resources, the automatic detection system instead of the previous manual measurement, comparison to the accurate measurement of the automatic detection system, and in the past manual measurement, greatly reducing the error data. Keywords: Ku band; satellite communication; link 引言 自1960年到现在,卫星的发展取得了翻天覆地的变化,各种类型和功能的卫星被研发出来并应用起来,而卫星通信作为其中最为重要的一个分支,在通信领域起到了重大的作用。卫星通信不但具有保密性,还具有低成本的优势;在进行通信时,不但可以传输数据、图像等功能,还可以实现视频通话。至此,对于一些山区、农村、海洋等无法实现通信的地段,都能在卫星作用下实现,鉴于车辆、船舶在卫星通信时的重要作用,被称为“动中通”。 “动中通”卫星通信系统已经广泛应用于军事行动、物流管理、长途交通运输、新闻采访等领域。其功能也逐渐完善,在给高速运动中的车辆提供的卫星通信链路中,不仅可实现话音、视频传输业务,还可进行高速Internet网接入,拥有良好的发展前景。 和传统的VSAT卫星相比,USAT卫星通信口径的大小都是在0.6m以下的,并且设备具有小型化,质量轻等多种特点,完全能满足“动中通”的要求。对于“动中通”的通信频段来说,现在还是以USAT为主的,Ka频段相对现在来说还不能大规模的应用,可能在未来的通信中会逐渐慢慢的向Ka频段转型。

卫星链路计算公式

卫星链路计算公式 天线的增益与波束宽度 有效全向辐射功率 自由空间传输损耗 转发器的工作点 噪声与损耗 1. 天线增益:G=收点收到的功率 无方向天线辐射时,接点收到的最大功率定向天线辐射时,接收 微波天线增益:G= ηλπ24A 半功率角:)(7021 度D λθ≈ 【半功率角是指主叶瓣上场强为主射方向场强的1/ 2= 0.707时(即 功率下降1/2时),两个方向间的夹角。】 2. 接收点的功率密度(单位面积上的功率)为:)/(422m W d G P W T T E π= 接收天线收到的功率: 22)4(4d G G P d A G P A W P R T T T T E R πλπηη==?=① f R T T R L G G P P = ② 【式②一般性地描述通信线路中信号的传输,称之为“通信距离方程”】 3.自由空间传输损耗: 2)4(c df L f π=时,式②与式①相等。此即自由空间传输损耗。 【物理解释 物理解释:由于电磁波在自由空间无方向性地辐射,使得只有少部分信号被接收点收到,而其他大部分无法被收到的能量即视为损耗。】 4.有效全向辐射功率:T T G P EIRP =

若考虑馈线损耗,则 F T T L G P EIRP = 【物理解释:在接收点进行测量时,将T P 功率送入增益为T G 、最大辐射方向指向接收点的发射天线时所测得的结果与将T P T G 功率送入无方向性发射天线时所测得的结果是相同的。】 4. 转发器的工作参数: 工作点: 输入补偿 输出补偿 多载波与单载波工作时的输出功率 1) 44ππ?=?===f ES f T T f R T T R L EIRP L G P A L G G P A P W 即 )/)(4lg(10][[EIRP][W]22ES m dBW L f λπ+-= 【为使卫星转发器单载波饱和工作,在其接收天线的单位有效面积上应输入的功率,一般以W 或SFD 表示】 2)G/T 值:接收天线增益与接收系统总的等效噪声温度的比值称为地球站的G/T 值,也称性能因数或品质因数。 5. 噪声与损耗 噪声与损耗 噪声、干扰 热噪声 互调噪声 共信道干扰 交叉极化噪声 邻星、邻站干扰 邻道干扰 1) 热噪声功率谱密度:)/(0Hz W KT n = 【k 为玻耳兹曼常数,1.38054× 10-23J/K ;T 为电阻R 的绝对温度】 总的输出噪声功率:n p n B KTG B f H KT df f H KT N ===?∞|)(||)(|020 等效噪声带宽:p n G df f H f H df f H B 202020|)(||)(||)(|??∞∞==

KU波段卫星车的两个技术问题

Ku波段卫星车的两个技术问题 重庆广播电视集团(总台): 魏飞 卫星通信作为当今通信传输领域的三大支柱之一,以其传输距离远、覆盖范围大而在电视直播信号传输、长途通信传输等领域发挥着重要作用。为了满足各种传输任务的需要,我台将原有的一套FLYAWAY 卫星系统改装成了车载Ku波段卫星车。 在对卫星车的多次使用中,我认为有两个重要的技术问题: 1、如何快速找到、找准卫星; 2、找到卫星后如何确定本站HPA的发射功率,使之即能满足卫星中继传输的需要,又能保证不对卫星转发器上的现有业务造成干扰。 下面我将对这两个问题进行初浅的分析,以方便大家在以后使用Ku波段卫星车的过程中更熟练。 一、如何快速找到、对准卫星? 在Ku波段卫星车的使用中,如何通过天线控制系统找准卫星是首要的问题,离开这个基本点,其他一切问题也就无从谈起了。现代卫星通信地面站所采取的天线控制系统大多采用通过判断卫星信标的方法,驱动天线对准卫星。其工作步骤原理: 1、将天线收起的位置定义为“初始零位”,此时天线伺服系统的数字角位转换器由于其感应装置与天线俯仰、方位等驱动轴直接相连,因而有一个对应于“初始零位”时方位轴和俯仰轴位置的俯仰角、方位角数值,这些数值是在天线装置出厂时固化在系统中的,它是天线能够收起的最重要标记; 2、天线控制单元(ACU)通过GPS、电子罗盘等辅助设备得到车辆所在位置的经纬度,车头指向角度值和天线方位角度值、俯仰角度值;其中的初始方位角度值(AZ0)、初始俯仰角度值(EL0)与“初始零位”时的数字角位转换器的方位、俯仰读数对应起来; 3、通过在ACU单元中输入欲寻找卫星的经度参数,ACU计算出天线应达到的方位角(AZ1)、俯仰角(EL1),并且计算出与初始角度值的相对差ΔAZ、ΔEL,并将这一差值告知天线驱动单元; 4、天线驱动单元按照变化ΔAZ、ΔEL驱动步进电机引导方位轴、俯仰轴转动相应的刻度后到达ACU计算出的方位角、俯仰角位置; 5、再根据频谱仪按照事先设定的信标频率对信标信号进行判断、锁定。

卫星链路跟功率计算

radar_wind 1、接收功率的计算 根据电波传播理论,通信链路中电波的自由空间衰减为: L=(4πd/λ)2 (1) 其中λ为工作波长,在卫星通信中,d为卫星到接收站的距离: d=35786×103×{1+0.42×[1-cos(φs-φe)cosθ]}1/2或 d=42146×103×[1.023-0.302cos(φs-φe)cosθ]1/2 式中φs为卫星星下点的经度,φe为地球站经度,θ为地球站纬度。 如果源点的发射功率为Pt,接收方向上发射天线的增益为Gt,接收天线的增益为Gr,下行链路的自由空间衰减为Ld,则接收到的功率为: Pr=Pt×Gt×Gr/Ld用对数表示,则 [Pr]=[Pt]+[Gt]+[Gr]-[Ld](2) 在卫星通信中,Pt×Gt定义为等效全向辐射功率EIRP,该值由卫星公司提供,通常以等高线图或表格的形式提供给用户。并将大气闪烁损耗、天线指向误差和馈源极化调整误差对接收的影响归结为ΔLd(Ku波段上行或下行链路瞬间雨衰量可超过10dB,而C波段最大雨衰量一般不超过1dB),则公式(2)变为: [Pr]=[EIRP]+[Gr]-[Ld]-*ΔLd+ (3) Gr=10lg[(πD/λ)2 η]确定,其中D为接收天线的直径(米),η为接收天线的效率,通常在50%~70%之间(偏馈天线为65%,前馈天线为55%)。 2、当采用SCPC方式使用一个转发器时(SCPC为单路单载波系统,即一路载波只含有一套节目,要传送多套节目就需要多个载波,其优点是可在不同的地点上星,适合上行站不在同一地点而需共用一个转发器的情况。MCPC多路单载波系统,即一路载波包含多套节目,优点是没有多载波谐波干扰,频带和功率利用率较高,适用于多路信号在同一地点上星),转发器的发射功率将在几个载波之间分配,如果这几个载波都是等幅的,则对每1路载波而言,其EIRP要考虑带宽因子: [S]=10lg(B/Br)其中B为整个转发器的带宽,Br则为某个已调载波占的带宽。如果1个星载转发器的带宽被n个载波均分,则带宽因子成为[S]=10lgn。 此外,在多载波使用时,总功率是多个载波的功率之和,所以每个载波需要有一定数值的功率回退。功率回退的目的是减小互调产物对转发器甚至是对其它转发器的干扰。功率回退的值[OPBO]由卫星公司提供。 综合上述几个因素,某1路载波的EIRP为: [EIRP]=[EIRP]-[S]-[OPBO] 接收天线接收到载波的功率为: [Pr]=[EIRP]-[S]-[OPBO]+[Gr]-[Ld]-[ΔLd](4) 3、接收站的噪声温度和下行链路的载温比 如果接收天线的噪声温度为Ta,高频头的噪声温度为TLNB,则接收站的系统噪声温度大致(忽略了馈线的噪声温度)为: T=Ta+TLNB测定了噪声温度(现在有很多高频头给出的是噪声系数F单位是db,那么噪声系数和噪声温度TLNB的换算公式是: TLNB=(10F/10-1)T0 ,T0是常温下的绝对温度2900K),就可以得到下行链路的载温比C/T: [C/T]=[Gr/T]+[EIRP]-[Ld]-[ΔLd](5) 通常将[Gr/T]称为地球站的品质因数,它是用来描述卫星接收信号能力的一个重要指标。当多个载波使用1个转发器时,某1路载波的载温比为: [C/T]=[Gr/T]+[EIRP]-[S]-[OPBO]-[Ld]-[ΔLd](6)

相关文档