文档库 最新最全的文档下载
当前位置:文档库 › 2SA1317三极管(TO-92S)

2SA1317三极管(TO-92S)

2SA1317三极管(TO-92S)
2SA1317三极管(TO-92S)

A,Dec,2010

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD

TO-92S Plastic-Encapsulate Transistors

2SA1317 TRANSISTOR (PNP)

FEATURES

z Large Current Capacity and Wide ASO

MAXIMUM RATINGS (T a =25℃ unless otherwise noted)

ELECTRICAL CHARACTERISTICS (T a =25℃ unless otherwise specified)

Parameter

Symbol Test conditions Min Typ Max Unit Collector-base breakdown voltage V (BR)CBO I C =-0.01mA,I E =

0 -60 V Collector-emitter breakdown voltage V (BR)CEO

I C =-1mA,I B =

0 -50

V Emitter-base breakdown voltage V (BR)EBO

I E =-0.01mA,I C =0 -6

V

Collector cut-off current I CBO V CB =-40V,I E =

0 -0.1 μA Emitter cut-off current I EBO V EB =-5V,I C =0 -0.1 μA h FE(1) V CE =-6V, I C =

-1mA 100 560 DC current gain

h FE(2) V CE =-6V, I C =

-0.1mA 70 Collector-emitter saturation voltage V CE(sat)

I C =-100mA,I B =-10mA -0.3 V Base-emitter saturation voltage V BE (sat)

I C =-100mA,I B =

-10mA -1 V Collector output capacitance C ob V CB =-6V,I E =0, f=1MHz 4

pF Transition frequency

f T

V CE =-6V,I C =-10mA

200

MHz

CLASSIFICATION OF h FE(1)

RANK R S

T

U

RANGE 100-200 140-280 200-400 280-560

Symbol Parameter Value Unit V CBO Collector-Base Voltage -60 V V CEO Collector-Emitter Voltage -50 V V EBO Emitter-Base Voltage -6 V I C Collector Current

-0.2 A P C Collector Power Dissipation

300 mW R θJA Thermal Resistance From Junction To Ambient 417 ℃/W T j Junction Temperature 150 ℃ T stg

Storage Temperature

-55~+150

Sponge strip

3000 pcs

Sponge strip The top gasket

Label on the Inner Box

Plastic bag

Label on the Outer Box

Inner Box: 333 mm ×162mm ×43mm

Outer Box: 350 mm × 340mm × 250mm

QA Label

Seal the box with the tape

Stamp “EMPTY” on the empty box

Inner Box: 240 mm ×165mm ×95mm

Label on the Inner Box

Outer Box: 525 mm × 360mm × 262mm

Label on the Outer Box

QA Label

Seal the box with the tape

Stamp “EMPTY” on the empty box

三端稳压集成电路LM317工作原理

LM317工作原理分析

LM317工作原理 三端稳压集成电路LM317是三端稳压集成电路,它具有输出电压可变、内藏保护功能、体积小、性价比高、工作稳定可靠等特点。采用的电路模式如图所示,调节可变电阻R2的阻值,便可从LM317的输出端获得可变的输出电压0U 。 从图中的电路中可以看出,LM317的输出电压(也就是稳压电源的输出电压)0U 为两个电压之和。即A 、B 两点之间的电压也就是加在R2上的电压222R R U I R =?,而2R I 实际上是两路电流之和,一路是经R1流向R2的电流1R I ,其大小为1/1R U R 。因1R U 为恒定电压1.25V ,Rl 是一个固定电阻,所以1R I 是一个恒定的电流。另一路是LM317调整端流出的电流D I ,由于型号不同(例如LM317T 、LM317HVH 、LM317LD 等),生产厂家不同,其D I 的值各不相同。即使同一厂家,同一批次的LM317,其调整端流出的电流D I 也各不相同。尽管这祥.但总的来说D I 的电流但是有一定规律的,即D I 的平均值是50A μ左右,最大值一般不超过100A μ。而且在LM317稳定工作时,D I 的值基本上是一个恒定的值。当由于某种原因引起D I 变化相对较大时,LM317就不能稳定地工作。总而言之,2R I 是1R I 、D I 两路恒定电流之和.2R U 是由两路恒定电流1R I 、D I 流经R2产生的,调节R2的阻值即可调节LM317的输出电压0U (0U 是恒定电压1R U 与2R U 之和)。既然D I 和IR1对调节输出电压0U 都起到了一定的作用,并且1R I 是由R1提供的,1R I 的大小也没有任何限制.是否可以使R1的阻值趋于无穷大,使1R I 的电流值趋向于无穷小如果可以这样做的话,就可以去掉R1,只用可变电阻R2就可以调节LM317的输出电压。 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。稳压电源的输出电压可用下式计算,0V =(1+ R2/R1)。仅仅从公

二极管及三极管电路符号大全

二极管及三极管符号大全【图】二极管符号参数二极管符号意义

CT---势垒电容 Cj---结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管。硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二

极管极限电流。 IH---恒定电流。维持电流。 Ii---发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

串联型三极管稳压电路。

用三极管V代替图8.2中的限流电阻R,就得到图8.3所示的串联型三极管稳压电路。 在基极电路中,VDZ与R组成参数稳压器。 图8.3 串联型三极管稳压电路 2. 工作原理 〔实验〕: ①按图8.3连接电路,检查无误后,接通电路。 ②保持输入电压Ui不变,改变RL,观察U0。 ③保持负载RL不变,改变UL,观察U0。 结论:输出电压U0基本保持不变。 该电路稳压过程如下: (1)当输入电压不变,而负载电压变化时,其稳压过程如下: (2)当负载不变,输入电压U增加时,其稳压过程如下: (3)当UI增加时,输出电压U0有升高趋势,由于三极管T基极电位被稳压管DZ固定,故U0的增加将使三极管发射结上正向偏置电压降低,基极电流减小,从而使三极管的集射极间的电阻增大,UCE增加,于是,抵消了U0的增加,使U0基本保持不变.

上述电路虽然对输出电压具有稳压作用,但此电路控制灵敏度不高,稳压性能不理想。 8.3.2 带有放大环节的串联型稳压电路 1.电路组成 在图8.3电路加放大环节.如图8.4所示。可使输出电压更加稳定。 图8.4带放大电路的串联型稳压电路 取样电路:由R1、RP、R2组成,当输出电压变大时,取样电阻将其变化量的一部分送到比较放大管的基极,基极电压能反映出电压的变化,称为取样电压;取样电压不宜太大,也不宜太小,若太大,控制的 灵敏度下降;若太小,带负载能力减弱。 基准电路:由RZ、VDZ组成,给V2发射极提供一个基准电压,RZ为限流电阻,保证VDZ有一个合 适的工作电流。 比较放大管V2:R4既是V2的集电极负载电阻,又是V1的基极偏置电阻,比较放大管的作用是将输出电压的变化量,先放大,然后加到调整管的基极,控制调整管工作,提高控制的灵敏度和输出电压的稳定 性。 调整管V1:它与负载串联,故称此电路为串联型稳压电路,调整管V1受比较放大管控制,集射极间相 当于一个可变电阻,用来抵消输出电压的波动。 2.工作原理 (1)当负载RL不变,输入电压UI减小时,输出电压U0有下降趋势,通过取样电阻的分压使比较放大管的基极电位UB2下降,而比较放大管的发射极电压不变(UE2=UZ),因此UBE2也下降,于是比较放大管导通能力减弱,UC2升高,调整管导通能力增强,调整管V1集射之间的电阻RCE1减小,管压降UCE1下降,使输出电压U0上升,保证了U0基本不变。其过程表示如下: (2)当输入电压不变,负载增大时,引起输出电压有增长趋势,则电路将产生下列调整过程: 当负载RL减小时,稳压过程相反。

二极管和三极管原理

实用文案 二极管图 三极管工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基 本原理。 穂压二郴皆 表亍拆号.込6口 ZD,D 齐于特是-□ . “ 光硕二概苛葩光电接収二巒炭:?t_很首 駅亍咼号:U.VT 車示帝号 :Q,vr ■J'L hL H九世总 NPMSl三极普 表示持号:Q.VT 亵示符冒o 福压二Hi育 靑示時耳一口 艇谭二松苛隨谨二機営 净恃至二娜苗 潮看得■ : LED 翼台SflJ世 光嗽三慨営电接收三世 斫將号:LED

一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流 lb ;把从集电极C流至发射极E的电流叫做集电极电流lc。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的B倍,即电流变化被放大了B倍,所以我们把B叫做三极管的放大倍数(B一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流lb 的变化,lb 的变化被放大后,导致了lc 很大的变化。如果集电极电流lc 是流过一个电阻R 的,那么根据电压计算公式U=R*l 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V )。当基极与发射极之间的电压小于0.7V 时,基极电流就可以认为是0 。但实际中要放大的信号往往远比0.7V 要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因

三端稳压器工作原理(精华)

LM317工作原理 三端稳压集成电路LM317是三端稳压集成电路,它具有输出电压可变、内藏保护功能、体积小、性价比高、工作稳定可靠等特点。采用的电路模式如图所示,调节可变电阻R2的阻值,便可从LM317的输出端获得可变的输出电压0U 。 从图中的电路中可以看出,LM317的输出电压(也就是稳压电源的输出电压)0U 为两个电压之和。即A 、B 两点之间的电压也就是加在R2上的电压 222R R U I R =?,而2R I 实际上是两路电流之和,一路是经R1流向R2的电流1R I ,其大小为1/1R U R 。因1R U 为恒定电压1.25V ,Rl 是一个固定电阻,所以1R I 是一个恒定的电流。另一路是LM317调整端流出的电流D I ,由于型号不同(例如LM317T 、LM317HVH 、LM317LD 等),生产厂家不同,其D I 的值各不相同。即使同一厂家,同一批次的LM317,其调整端流出的电流D I 也各不相同。尽管这祥.但总的来说D I 的电流但是有一定规律的,即D I 的平均值是50A μ左右,最大值一般不超过100A μ。而且在LM317稳定工作时,D I 的值基本上是一个恒定的值。当由于某种原因引起D I 变化相对较大时,LM317就不能稳定地工作。总而言之,2R I 是1R I 、D I 两路恒定电流之和.2R U 是由两路恒定电流1R I 、D I 流经R2产生的,调节R2的阻值即可调节LM317的输出电压0U (0U 是恒定电压1R U 与2R U 之和)。既然D I 和IR1对调节输出电压0U 都起到了一定的作用,并且1R I 是

由R1提供的, I的大小也没有任何限制.是否可以使R1的阻值趋于无穷大, R 1 使 I的电流值趋向于无穷小?如果可以这样做的话,就可以去掉R1,只用可变R 1 电阻R2就可以调节LM317的输出电压。 LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。稳压电源的输出电压可用下式计算, V=1.25(1+R2/R1)。仅 仅从公式本身看,R1、R2的电阻值可以随意设定。然而作为稳压电源的输出电压计算公式,R1和R2的阻值是不能随意设定的。首先LM317稳压块的输出电压变化范围是 V=1.25——37V(高输出电压的LM317稳压块如LM317HV A、 LM317HVK等,其输出电压变化范围是V o=1.25——45V),所以R2/R1的比值范围只能是0——28.6V。其次是LM317稳压块都有一个最小稳定工作电流,有的资料称为最小输出电流,也有的资料称为最小泄放电流。最小稳定工作电流的值一般为1.5mA。由于LM317稳压块的生产厂家不同、型号不同,其最小稳定工作电流也不相同,但一般不大于5mA。当LM317稳压块的输出电流小于其最小稳定工作电流时,LM317稳压块就不能正常工作。当LM317稳压块的输出电流大于其最小稳定工作电流时,LM317稳压块就可以输出稳定的直流电压。 要解决LM317稳压块最小稳定工作电流的问题,可以通过设定R1和R2阻值的大小,而使LM317稳压块空载时输出的电流大于或等于其最小稳定工作电流,从而保证LM317稳压块在空载时能够稳定地工作。此时,只要保证 V/(R1 +R2)≥1.5mA,就可以保证LM317稳压块在空载时能够稳定地工作。上式中的1.5mA为LM317稳压块的最小稳定工作电流。当然,只要能保证LM317稳 V/(R1+R2)的值也可以设定为大于1.5mA 压块在空载时能够稳定地工作, 的任意值。

半导体二极管三极管和MOS管的开关特性(精)

理想开关的开关特性 假定图2.1.1所示S是一个理想开关,则其特性应如下: 一、静态特性 (一)断开时,无论Uak在多大范围内变化,其等效电阻Roff=无穷,通过其中的电流Ioff=0。(二)闭合时,无论流过其中的电流在多大范围内变化,其等效电阻Ron=0,电压Uak=0。 二、动态特性 (一)开通时间Ton=0,即开关S由断开状态转换到闭合状态不需要时间,可以瞬间完成。 (二)关断时间Toff=0,即开关由闭合状态转换到断开状态哦也不需要时间,亦可以瞬间完成。 客观世界中,当然没有这种理想开关存在。日常生活中使用的乒乓开关、继电器、接触 器等,在一定电压和电流范围内,其静态特性十分接近理想开关,但动态特性很差,根本不可能满足数字电路一秒钟开关几百万次乃至数千万次的需要。虽然,半导体二极管、三极管和MOS管作为开关使用时,其静态特性不如机械开关,但其动态特性却是机械开关无法比拟的。 2.1.2 半导体二极管的开关特性 半导体二极管最显著的特点是具有单向导电特性。 一、静态特性 (一)半导体二极管的结构示意图、符号和伏安特性 1.结构示意图和符号 如图2.1.2所示,是半导体二极管的结构示意图和符号。 半导体二极管是一种两层、一结、两端器件,两层就是P型层和N型层、一结就 内部只有一个PN结,两端就是两个引出端,一个引出端叫做阳极A,一个引出端称为阴极K。 2.伏安特性 反映加在二极管两端的电压Ud和流过其中的电流Id两者之间关系的曲线,叫做 伏安特性曲线,简称为伏安特性。图2.1.3给出的是硅半导体二极管的伏安特性。 从图2.1.3所示伏安特性可清楚地看出,当外加正向电压小于0.5V时,二极管工作在死区,仍处在截止状态。只有在Ud大于0.5V以后,二极管才导通,而且当Ud达到0.7V后,即

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

贴片三极管 二极管 稳压管Mark对照表

Codes / Markings SMD codes 1st character/以第一个字符为基准 01234 56789 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 印字器件厂商类型封装器件用途及参数 0 2SC3603 Nec CX SOT173Npn RF fT 7GHz 005 SSTPAD5 Sil J -PAD-5 5pA leakage diode p01PDTA143ET Phi N SOT23pnp dtr 4k7+4k7 t01PDTA143ET Phi N SOT23pnp dtr 4k7+4k7 01Gali-1MC AZ SOT89DC-8GHz MMIC amp 12dB gain 010 SSTPAD10 Sil J -PAD-10 10pA leakage diode 011 SO2369R SGS R SOT23R2N2369 02 BST82 Phi M -n-ch mosfet 80V 175mA 02 MRF5711L Mot X SOT143npn RF MRF571 02 DTCC114T Roh N -50V 100mA npn sw + 10k base res 02Gali-2MC AZ SOT89DC-8GHz MMIC amp 16dB gain p02PDTC143ET Phi N SOT23npn 4k7+4k7 bias res t02PDTC143ET Phi N SOT23npn 4k7+4k7 bias res 03Gali-3MC AZ SOT89DC-3GHz MMIC amp 22dB gain 03DTC143TE Roh N EMT3npn dtr R1 4k7 50V 100mA 03DTC143TUA Roh N SC70npn dtr R1 4k7 50V 100mA 03DTC143TKA Roh N SC59npn dtr R1 4k7 50V 100mA 04 DTC114TCA Roh N SOT23npn dtr R1 10k 50V 100mA 04 DTC114TE Roh N EMT3npn dtr R1 10k 50V 100mA 04 DTC114TUA Roh N SC70npn dtr R1 10k 50V 100mA 04 DTC114TKA Roh N SC59npn dtr R1 10k 50V 100mA 04 MRF5211L Mot X SOT143pnp RF MRF521 04Gali-4MC AZ SOT89DC-4GHz MMIC amp 17.5 dBm -04PMSS3904Phi N SOT3232N3904 t04PMBS3904Phi N SOT232N3904 05Gali-4MC AZ SOT89DC-4GHz MMIC amp 18 dBm o/p 05 DTC124TE Roh N EMT3npn dtr R1 22k 50V 100mA 05 DTC124TUA Roh N SC70npn dtr R1 22k 50V 100mA 05 DTC124TKA Roh N SC59npn dtr R1 22k 50V 100mA 05F TSDF1205R Tfk WQ -fT12GHz npn 4V 5mA 06Gali-6MC AZ SOT89DC-4GHz MMIC amp 115 dBm o/p 06 DTC144TE Roh N EMT3npn dtr R1 47k 50V 100mA 06 DTC144TUA Roh N SC70npn dtr R1 47k 50V 100mA 06 DTC144TKA Roh N SC59npn dtr R1 47k 50V 100mA

三端集成稳压器的工作原理

三端集成稳压器的工作原理

————————————————————————————————作者:————————————————————————————————日期:

三端集成稳压器的工作原理 现以具有正电压输出的78L××系列为例介绍它的工作原理。 电路如图1所示,三端式稳压器由启动电路、基准电压电路、取样比较放大电路、调整电路和保护电路等部分组成。下面对各部分电路作简单介绍。

(1)启动电路 在集成稳压器中,常常采用许多恒流源,当输入电压VI接通后,这些恒流源难以自行导通,以致输出电压较难建立。因此,必须用启动电路给恒流源的BJT T4、T5提供基极电流。启动电路由T1、T2、DZ1组成。当输入电压VI高于稳压管DZ1的稳定电压时,有电流通过T1、T2,使T3基极电位上升而导通,同时恒流源T4、T5也工作。T4的集电极电流通过DZ2以建立起正常工作电压,当DZ2达到和DZ1相等的稳压值,整个电路进入正常工作状态,电路启动完毕。与此同时,T2因发射结电压为零而截止,切断了启动电路与放大电路的联系,

从而保证T2左边出现的纹波与噪声不致影响基准电压源。 (2)基准电压电路 基准电压电路由T4、DZ2、T3、R1、R3及D1、D2组成,电路中的基准电压为 式中VZ2为DZ2的稳定电压,VBE为T3、D1、D2发射结(D1、D2为由发射结构成的二极管)的正向电压值。在电路设计和工艺上使具有正温度系数的R1、R2、DZ2与具有负温度系数的T3、D1、D2发射结互相补偿,可使基准电压VREF基本上不随温度变化。同时,对稳压管DZ2采用恒流源供电,从而保证基准电压不受输入电压波动的影响。 (3)取样比较放大电路和调整电路 这部分电路由T4~T11组成,其中T10、T11组成复合调整管;R12、R13组成取样电路;T7、T8和T6组成带恒流源的差分式放大电路;T4、T5组成的电流源作为它的有源负载。

稳压二极管原理及应用

什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。 2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。 3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到 它。

4、串联型稳压电路(如图5):在此电路中。串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发 射极就输出恒定的12V电压了。这个电路在很多场合下都有应用 国产稳压二极管产品的分类 二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。 (1)雪崩击穿 对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。雪崩击穿通常发生在高反压、低掺杂的情况下。 (2)齐纳击穿 对于采用高掺杂(即杂质浓度很大)形成的PN结,由于结很薄(如0.04μm)即使外加电压并不高(如4V),就可产生很强的电场(如)将结内共价键中的价电子拉出来,产生大量的电子一空穴对,使反向电流剧增,这种现象叫齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。(3)热击穿 在使用二极管的过程中,如由于PN结功耗(反向电流与反向电压之积)过大,使结温升高,电流变大,循环反复的结果,超过PN结的允许功耗,使PN结击穿的现象叫热击穿。热击穿后二极管将发生永久性损坏。

贴片稳压二极管 BZT52B16S SOD-323

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD SOD-323 Plastic-Encapsulate Diodes BZT52B 5V 1S-BZT52B20S ZENER DIODE FEATURE z Planar Die Construction z General Purpose, Medium Current z Ideally Suited for Automated Assembly Processes z Available in Lead Free Version Maximum Ratings (T a =25℃ unless otherwise specified ) Characteristic Symbol Value Unit Forward Voltage (Note 2) @ I F = 10mA V F 0.9 V Power Dissipation(Note 1) P d 200 mW Thermal Resistance from Junction to Ambient R θJA 625 Я/W Junction Temperature T j 150 Я Storage Temperature Range T stg -55 ~ +150 Я

Zener Voltage Range (Note 2) Maximum Zener Impedance (Note 3) Maximum Reverse Current Typical Temperature Coefficent @I ZTC Test Current I ZTC V Z @I ZT I ZT Z ZT @I ZT Z ZK @I ZK I ZK I R V R mV/°C Type Number Type Code Nom(V) Min(V) Max(V) mA ? mA μA V Min Max mA BZT52B5V1S 2W8 5.1 5.00 5.20 5 60 480 1.0 2 2.0 -2.7 1.2 5 BZT52B5V6S 2W9 5.6 5.49 5.71 5 40 400 1.0 1 2.0 -2.0 2.5 5 BZT52B6V2S 2WA 6.2 6.08 6.32 5 10 150 1.0 3 4.0 0.4 3.7 5 BZT52B6V8S 2WB 6.8 6.66 6.94 5 15 80 1.0 2 4.0 1.2 4.5 5 BZT52B7V5S 2WC 7.5 7.35 7.65 5 15 80 1.0 1 5.0 2.5 5.3 5 BZT52B8V2S 2WD 8.2 8.04 8.36 5 15 80 1.0 0.7 5.0 3.2 6.2 5 BZT52B9V1S 2WE 9.1 8.92 9.28 5 15 100 1.0 0.5 6.0 3.8 7.0 5 BZT52B10S 2WF 10 9.80 10.20 5 20 150 1.0 0.27.0 4.5 8.0 5 BZT52B11S 2WG 11 10.78 11.22 5 20 150 1.0 0.18.0 5.4 9.0 5 BZT52B12S 2WH 12 11.76 12.24 5 25 150 1.0 0.18.0 6.0 10.0 5 BZT52B13S 2WI 13 12.74 13.26 5 30 170 1.0 0.18.0 7.0 11.0 5 BZT52B15S 2WJ 15 14.70 15.30 5 30 200 1.0 0.110.5 9.2 13.0 5 BZT52B16S 2WK 16 15.68 16.32 5 40 200 1.0 0.111.2 10.4 14.0 5 BZT52B18S 2WL 18 17.64 18.36 5 45 225 1.0 0.112.6 12.4 16.0 5 BZT52B20S 2WM 20 19.60 20.40 5 55 225 1.0 0.1 14.0 14.4 18.0 5 Notes: 1. Device mounted on ceramic PCB : 7.6mm x 9.4mm x 0.87mm with pad areas 25mm 2. 2. Short duration test pulse used to minimize self-heating effect. 3. f = 1kHz. ELECTRICAL CHARACTERISTICS T a =25℃unless otherwise specified

三端稳压管

三端稳压管 三端稳压管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。稳压管在反向击穿时,在一定的电流范围内(或者说在一定功率损耗范围内),端电压几乎不变,表现出稳压特性,因而广泛应用于稳 压电源与限幅电路之中。 三端稳压管的分类 三端稳压管,主要有两种,一种输出电压是固定的,称为固定输出三端稳压管,另一种输出电压是可调的,称为可调输出三端稳压管,其基本原理相同,均采用串联型稳压电路。 三端稳压管的原理 因为固定三端稳压器属于串联型稳压电路,因此它的原理等同于串联型稳压电路。 其中R1、Rp、R2组成的分压器是取样电路,从输出端取出部分电压UB2作为取样电压加至三极管T2的基极。稳压管Dz以其稳定电压Uz作为基准电压,加在T2的发射极上。R3是稳压管的限流电阻。三极管T2组成比较放大电路,它将取样电压UB2与基准电压Uz加以比较和放大,再去控制三极管T1的基极电位。输入电压Ui加在三极管T1与负载RL相串联的电路上,因此,改变T1集电极间的电压降UCE1便可调节RL两端的电压Uo。也就是说,稳压电路的输出电压Uo可以通过三极管T1加以调节,所以T1称为调整管。由于调整元件是晶体管管,而且在电路中与负载相串联,故称为晶体管串联型稳压电路。电阻R4和T1的基极偏置电阻,也是T2的集电极负载电阻。 当电网电压降低或负载电阻减小而使输出端电压有所下降时,其取样电压UB2相应减小,T2基极电位下降。但因T2发射极电位既稳压管的稳定Uz保持不变,所以发射极电压UBE2减小,导致T2集电极电流减小而集电极电位Uc2升高。由于放大管T2的集电极与调整管T1的基极接在一起,故T1基极电位升高,导致集电极电流增大而管压降UCE1减小。因为T1与RL串联,所以,输出电压Uo基本不变。 同理,当电网电压或负载发生变化引起输出电压Uo增大时,通过取样、比较放大、调整等过程,将使调整调整管的管压降UCE1增加,结果抑制了输出端电压的增大,输出电压仍基本保持不变。 调节电位器Rp,可对输出电压进行微调。调整管T1与负载电阻RL组成的是射极输出电路,所以具 有稳定输出电压的特点。 在串联型稳压电源电路的工作过程中,要求调整管始终处在放大状态。通过调整管的电流等于负载电流,因此必须选用适当的大功率管作调整管,并按规定安装散热装置。为了防止短路或长期过载烧坏调整管,在直流稳压器中一般还设有短路保护和过载保护等电路。 三端稳压管使用注意事项 在使用时必须注意:(VI)和(Vo)之间的关系,以7805为例,该三端稳压管的固定输出电压是5V,而输入电压至少大于7V,这样输入/输出之间有2-3V及以上的压差。使调整管保证工作在放大区。但压差取得大时,又会增加集成块的功耗,所以,两者应兼顾,即既保证在最大负载电流时调整管不进入饱和,又不 致于功耗偏大。 另外一般在三端稳压管的输入输出端接一个二极管,用来防止输入端短路时,输出端存储的电荷通过稳 压器,而损坏器件。 ------------------------------------------------------------------------------------------------------------

分析稳压三极管的工作原理

相信谈到稳压三极管,很多从业不久或刚刚入门的设计者都会觉得比较陌生。因为在电路设计中,最常见的稳压器件为二极管,而非三极管,但实际上三极管也是拥有稳压作用的,在本文将为大家介绍关于稳压三极管电路的工作分析,通过浅显易懂的方式来帮助大家理解。 图1是一个固定稳压电路。电阻作用1是向三极管提供偏置电流,使三极管导通。2是向稳压管提供工作电流,稳压管接在基极上。所以基极的电压被稳压管稳定了。又因为三极管基极与射极之间是一个二极管,而二极管导通时两端电压是稳定的0.7V(以硅管算)。所以此电路输出电压等于稳压管稳定值减0.7V。电容的作用与稳压无关,但是在这类稳压电路中往往“顺便”用它。其作用是与三极管构成“电子滤波”电路,利用三极管的放大作用,在输出端得到扩大了hFE(三极管放大倍数)倍的滤波效果,这是接在输出端的滤波电容无法相比的。右图的电容也是此作用。 图2是一个输出可调的串联调整稳压电路。三极管V1叫调整管,起到调整输出电压作用。V2叫比较放大管。起到把取样信号与基准电压进行比较并放大后控制调整管的作用。电阻1作用是向三极管V1提供偏置电流,使三极管导通。电阻1另一个作用是向V2提供工电源。电阻2向稳压管提供工作电流。电阻3.4及W构成取样电路。稳压管给V2提供基准电压。 此电路工作原理如下:设因负载变化或输入电压波动或其它原因使输出电压升高---------经取样电路取样,V2基极电压也升高---------V2基极电流加大------V2集电极电流加大--------V2集电极电压即V1基极电压下降----------V1射极即输出电压下降------结果就是输出电压实际并没有

三端稳压电路图集分析

三端稳压电路图集(六祖故乡人汇编2013年9月8日) LM317可调稳压电源电路图: LM317是可调稳压电源中觉的一种稳压器件,使用也非常方便。LM317 是美国国家半导体公司的三端可调正稳压器集成电路。很早以前我国和世界各大集成电路生产商就有同类产品可供选用,是使用极为广泛的一类串连集成稳压器。LM317 的输出电压范围是1.25V —37V(本套件设计输出电压范围是 1.25V—12V),负载电流最大为 1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性率和负载率也比标准的固定稳压器好。LM317 内置有过载保护、安全区保护等多种保护电路。 为保证稳压器的输出性能,R应小于240欧姆。改变RP阻值稳压电压值。D5,D6用于保护LM317。 输出电压计算公式:Uo=(1+RP/R)*1.25 下面是LM317可调稳压电源电路图的元器件清单: 下面是LM317可调稳压电源电路图:

三端集成稳压可调电源电路设计: 如图所示,此电路的核心器件是W7805。W7805将调整器,取样放大器等环节集于一体,内部包含限流电路、过热保护电路、可以防止过载。具有较高的稳定度和可靠性。W7805属串联型集成稳压器。其输出电压是固定不变的,这种固定电压输出,极大的限制了它的应用范围。如果将W7805的公共端即3脚与地断开,通过一只电位器接到-5V左右的电源上,就可以在改变电位器阻值的同时,使集成稳压器的取样电压及输出电压都随之改变。图中RP1就是为此而设计的。只要负电压的大小取得合适便能使输出电压从0V起连续可调,输出电压的最大值由W7805的输入电压决定,本稳压器0V-12V可调。VD3整流,C2滤波,VD4稳压后提供5V负电压。 元件选择:变压器应选用5V A,输出为双14V;二极管VD1-VD4选用1N4001;VDW 选用稳压值为5-6V的2CW型稳压管;RP1用普通电位器;RP2为微调电阻。IC用7805;其它元件参数图中已注明,无特殊要求。 电路调试:元件焊接无误后可通电调试,首先测b点对地电压,空载时应在18V左右;d点电压大约为-5.5V--6V,如不正常,可重点检查VD3,C2,R1,VDW,RP2等元件,然后再测量输出电压,旋动RP1,万用表指针应能在较大范围变动,说明稳压器工作正常;最后

二极管三极管的开关特性(精)

第一节二极管的开关特性 一般而言,开关器件具有两种工作状态:第一种状态被称为接通 ,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。 在数字系统中, 晶体管基本上工作于开关状态。对开关特性的研究, 就是具体分析晶体管在导通和截止之间的转换问题。晶体管的开关速度可以很快, 可达每秒百万次数量级, 即开关转换在微秒甚至纳秒级的时间内完成。二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短, 一般可以忽略不计, 因此下面着重讨论二极管从正向导通到反向截止的转换过程。 一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t 1时间内, 输入为 +VF , 二极管导通, 电路中有电流流通。 设 V D 为二极管正向压降(硅管为 0.7V 左右,当 V F 远大于 V D 时, V D 可略去不计,则

在 t 1时, V 1突然从 +VF 变为 -V R 。在理想情况下 ,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是, 二极管并不立刻截止, 而是先由正向的 I F 变到一个很大的反向电流 I R =VR /R L , 这个电流维持一段时间 t S 后才开始逐渐下降,再经过 t t 后 ,下降到一个很小的数值 0.1I R ,这时二极管才进人反向截止状态,如下图所示。 通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中 t S 称为存储时间, t t 称为渡越时间, t re =ts +tt 称为反向恢复时间。 由于反向恢复时间的存在,使二极管的开关速度受到限制。 二、产生反向恢复过程的原因——电荷存储效应 产生上述现象的原因是由于二极管外加正向电压 V F 时,载流子不断扩散而存储的结果。当外加正向电压时 P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴 ,它们都是非平衡少数载流于,如下图所示。

稳压二极管原理及故障

稳压二极管原理及故障 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号1N47281N47291N47301N47321N47331N47341N47351N47441N47501N47511N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V15V27V30V75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。 (1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。

(4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

相关文档
相关文档 最新文档