文档库 最新最全的文档下载
当前位置:文档库 › 相关性、平均值、标准差、相关系数、回归线及最小二乘法概念

相关性、平均值、标准差、相关系数、回归线及最小二乘法概念

相关性、平均值、标准差、相关系数、回归线及最小二乘法概念
相关性、平均值、标准差、相关系数、回归线及最小二乘法概念

平均值、标准差、相关系数、回归线及最小二乘法相关性

线性相关

数据在一条直线附近波动,则变量间是线性相关

非线性相关

数据在一条曲线附近波动,则变量间是非线性相关

不相关

数据在图中没有显示任何关系,则不相关

平均值

N个数据的平均值计算公式:

标准差

标准差表示了所有数据与平均值的平均距离,表示了数据的散度,如果标准差小,表示数据集中在平均值附近,如果标准差大则表示数据离标准差比较远,比较分散。标准差计算公式:

3、相关系数r的范围在[-1,1]之间,当r=0时表示数据相关系数为0(不相关)。当r=正负1时,表示数据负相关,此(x,y)点数据都在SD线上。

4、r的值越接近正负1说明(x,y)越靠拢SD线,说明数据相关性越强,r的值越接近0说明(x,y)点到SD线的散度越大(越分散),数据相关性越小。

回归方法主要描述一个变量如何依赖于另一个变量。y对应于x的回归线描述了在不同的x值下y的平均值情况,它是这些平均值的光滑形式,如果这些平均值刚好在一条直线上,则这些平均值刚好和回归线重合。通过回归线,我们可以通过x值来预测y值(已知x值下y值的平均值)。下面是y对应于x的回归线方程:

简单的说,就是当x每增加1个SD,平均而言,相应的y增加r个SD。

从方程可以看出:

1、回归线是一条经过点,斜率为的直线。

2、回归线的斜率比SD线小,当r=1或-1时,回归线和SD线重合。

当用回归线从x预测y时,实际值与预测值之间的差异叫预测误差。而均方根误差就是预测误差的均方根。它度量回归预测的精确程度。y关于x的回归线的均方根误差用下面的公式进行计算:

由公式可以看出,当r越接近1或-1时,点越聚集在回归线附近,均方根误差越小;反之r越接近0时,点越分散,均方根误差越大。

最小二乘法寻找一条直线来拟合所有的点,使得这条直线到所有的点之间的均方根误差最小。可以看到,当求两个变量之间的关系时,最小二乘法求出的直线实际上就是回归线。只不过表述的侧重点不同:

1、最小二乘法强调求出所有点的最佳拟合直线。

2、回归线则是在SD线的基础上求出的线,表示了样本中已知变量x的情况下变量y的平均值。

由以上可知,一个散点图可以用五个统计量来描述:

1、所有点x值的平均数,描述了所有点在x轴上的中心点。

2、所有点x值的SD,描述了所有点距离x中心点的散度。

3、所有点y值的平均数,描述了所有点在y轴上的中心点。

4、所有点y值的SD,描述了所有点距离y中心点的散度。

5、相关系数r,基于标准单位,描述了所有点x值和y值之间的关系。

相关系数r将平均值、标准差、回归线这几个概念联系起来:

1、r描述了相对于标准差,点沿SD线的群集程度。

2、r 说明了y 的平均数如何的依赖于x --- x 每增加1个x 标准差,平均来说,y 将只增加r 个y 标准差。

3、r 通过均方根误差公式,确定了回归预测的精确度。

注意:以上相关系数、回归线、最小二乘法的计算要在以下两个条件下才能成立: 1、x 、y 两组样本数据是线性的,如果不是线性的先要做转换。 2、被研究的两组样本数据之间的关系必须有意义。

R 平方值=回归平方和/总平方和 其中:

回归平方和=总平方和-残差平方和 总平方和=y 的实际值的平方和

假设,实际测的值是yi ,拟合曲线计算出的值分别是Yi

残差平方和:

∑=-n

i i i

Y y

12)(

总平方和:

∑=n

i i

y

1

2

相关系数的平方为判定系数∑∑∑===--=

n

i i

n

i i i

n

i i y

Y y

y R 1

212

1

22)(

2R 分布区间(0, 1),2R 越小说明拟合得越差,2R 越大说明拟合得越好,

bx

ae y =

取对数:

bx

a y +=ln ln

?????

?

??????=??????????????????∑∑∑∑∑=====m i i i m i i m

i i m i i m

i i y x y b

a x x x m 11

1211ln ln

标准偏差与相对标准偏差公式

标准偏差与相对标准偏 差公式 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20- 30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ = l i X 1 σ = l2X 2 …… σn = l n X 我们定义标准偏差(也称)σ为 (1)

由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。 标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有 (2) 式(2)就是着名的贝塞尔公式(Bessel)。

它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 中定义S2为 数学上已经证明S2是σ2的无偏估计。即在大量重复试验中, S2围绕σ2散布, 它们之间没有。而式(2')在n有限时,S并不是总体标准偏差σ的无偏估计, 也

标准差公式

标准差(Standard Deviation ) ,也称均方差(mean square error ),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用S (σ)表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差也被称为标准偏差,或者实验标准差,公式如下两式: ()1 n x x S n 1 i 2 i --= ∑= 或 1 n n x x S 2 n 1i i n 1 i 2i -??? ??- =∑∑ == 即: () 1 n x x 1 n n x x S n 1 i 2 i 2 n 1i i n 1 i 2i --= -??? ??- = ∑∑∑ === 如是总体,标准差公式根号内除以n 如是样本,标准差公式根号内除以(n-1) 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1) 公式意义 所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一),再把所得值开根号,所得之数就是这组数据的标准差。 标准差越高,表示实验数据越离散,也就是说越不精确;反之,标准

差越低,代表实验的数据越精确 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7 ,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.07分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。

平均数标准差计算例题

例1 测定蚕豆根在25℃的逐日生长量(长度)于表1,试求根长的每天平均增长率及第7,11天的根长 表1 蚕虫根长的每天增长率 求出日平均增长率(几何平均数) G=1.31021 即日平均增长率为1.31021毫米。 第7天的根长应为 17×(1.31021)6=85.9992=86.00毫米。 若用算术平均值计算,则第7天的根长应为 17×(1.31205)6=86.7266毫米,与实际不符。 第11天的根长应为 17×(1.31021)6=253.4306=253.43毫米

未分组资料中位数求法: 例2 观察某除草剂对一种杂草的除草效果,施药后对10株杂草观察,发现其死亡时间分别为7、8、8、9、11、12、12、13、14、14小时,求其中位数。 即10株杂草从施药到死亡时间的中位数为11.5小时 已分组资料中位数求法: L — 中位数所在组的下限; i — 组距; f — 中位数所在组的次数; n — 总次数; c — 小于中数所在组的累加次数。 例3 取三化螟初孵幼虫204头,使其在浸有1:100敌百虫的滤纸上爬行(在25℃下),得不同时间的死亡头数于表2中,试求中位数。 表2 敌百虫的杀螟效果 ) 2(c n f i L M d -+=5.112 12112265)12/(2/=+=+=+=+x x x x M n n d

由表2可见:i =10,n =204,因而中位数只能在累加头数为118所对应的“35—45”这一组,于是可确定L =35,f =36,c=82,代入公式得: (分钟) 即50%的三化螟幼虫死亡时间的中位数为40.6分钟。即致死中时间,致死中量。 加权平均数计算公式: 式中: y i —第i 组的组中值; f i —第i 组的次数; k —分组数。 例:某村共种五块麦地,各地块的面积分别为0.1,0.2,0.4,0.15,0.15公顷,其相应的小麦单位面积产量为2250,1900,1500,1700,2300公斤/公顷,求该村小麦的平均产量? 例:欲了解春季盐碱土的盐分分布动态,在某地对一米土体内进行盐分分析,每个剖面共分8层取样,重复两次,测得结果(%)如下表,求:(1)0-10cm 土层的盐分平均含量(%);(2)一米土体内的盐分平均含量(%)。 6.40)822204 (361035)2(=-+=-+=c n f i L d M ∑∑∑∑= = ++++++===f fy f y f f f f y f x f x f y k i i k i i i k k k 1 1212211权

标准偏差与相对标准偏差

标准偏差 标准偏差(也称标准离差或均方根差)是反映一组测量数据的。是指结果在某一个时段内误差上下波动的幅度。是的重要参数之一。是测量变动的统计测算法。它通常不用作独立的指标而与其它指标配合使用。 标准偏差在、、等领域中均得到了广泛的应用。因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按计算。 样本标准差的表示公式 数学表达式: ?S-标准偏差(%) ?n-试样总数或测量次数,一般n值不应少于20-30个 ?i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 ?在价格变化剧烈时,该指标值通常很高。 ?如果价格保持平稳,这个指标值不高。 ?在价格发生剧烈的上涨/下降之前,该指标值总是很 低。 标准偏差的计算步骤 标准偏差的计算步骤是: 步骤一、(每个样本数据-全部数据之平均值)2。 步骤二、把步骤一所得的各个数值相加。 步骤三、把步骤二的结果除以(n - 1)(“n”指)。 步骤四、从步骤三所得的数值之平方根就是的标准偏差。

六个计算标准偏差的公式 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l 1、l 2、……l n。令测得值l与该量真 值X之差为真差占σ, 则有σ 1 = l i X σ 2 = l2X …… σ n = l n X 我们定义标准偏差(也称)σ为 (1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l 1、l 2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

标准差σ的4种计算公式

标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中 标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中的Pooled standard deviation(合并标准差) 做数据分析,经常会碰到提到标准差σ这个概念,关于标准差σ的计算方式,目前,本人知道有4种标准差σ的计算方法,如下: 一,简易标准差σ的计算方式 上面是计算整体的标准差,如果是计算样本的标准差,这里的N, 应该为N-1. 一般情况下,都是计算样本的标准差。关于这个标准的详细运算公式和案例分析,可以参考附件,里面有比较详细的解释。 标准差的简易计算公式和案例分析.rar(28.19 KB, 下载次数: 1262) 二,XBAR-R管制图分析( X-R Control Chart)图中的Rbar/d2 算法 XBAR-R管制图分析( X-R Control Chart):由平均数管制图与全距管制图组成。 ●品质数据可以合理分组时,可以使用X管制图分析或管制制程平均;使用R管制图分析制程变异。 ●工业界最常使用的计量值管制图。

关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考帖子下面的表格三,XBAR-s管制图分析( X-sControl Chart)中的Sbar/C4算法 XBAR-S 管制图分析( X-S Control Chart):由平均数管制图与标准差管制图组成。 ●与X-R管制图相同,惟s管制图检出力较R管制图大,但计算麻烦。 ●一般样本大小n小于等于8可以使用R管制图,n大于8则使用S管制图。 ●有电脑软件辅助时,使用S管制图当然较好。

MATLAB 标准差 均值

Matlab标准差std函数 std(x)算出x的标准偏差。x可以是一行的matrix或者一个多行matrix矩阵; 如果只有一行,那么就是算一行的标准偏差,如果有多行,就是算每一列的标准偏差。 std(x,a)也是x的标准偏差但是a可以=0或者1.如果是0和前面没有区别,如果是1就是最后除以n,而不是n-1.(你参考计算标准偏差的公式,一般都用除以n-1的公式。) std(x,a,b)这里a表示是要用n还是n-1,如果是a是0就是除以n -1,如果是1就是除以n。 b这里是维数,比如说 1234 4561 如果b是1,就是按照行分,如果b是2就是按照列分 如果是三维的矩阵,b=3就按照第三维来分数据。 Matlab均值Mean函数 函数功能 求数组的平均数或者均值 使用方法

M=mean(A) 返回沿数组中不同维的元素的平均值。 如果A是一个向量,mean(A)返回A中元素的平均值。 如果A是一个矩阵,mean(A)将其中的各列视为向量,把矩阵中的每列看成一个向量,返回一个包含每一列所有元素的平均值的行向量。如果A是一个多元数组,mean(A)将数组中第一个非单一维的值看成一个向量,返回每个向量的平均值。 M=mean(A,dim) 返回A中沿着标量dim指定的维数上的元素的平均值。对于矩阵,mean(A,2)就是包含每一行的平均值的列向量。 《Simulink与信号处理》 应用举例编辑本段回目录 A=[123;336;468;477]; mean(A) ans= 3.0000 4.50006.0000 mean(A,2) ans= 2.0000

4.0000 6.0000 6.0000 mean(A) 当A为向量时,那么返回值为该向量所有元素的均值当A为矩阵时,那么返回值为该矩阵各列向量的均值mean(A,2) 返回值为该矩阵的各行向量的均值。

标准差和标准偏差 (1)

标准差和标准偏差 1)首先给出计算公式 标准差:σ=(1) 标准偏差:s =(2)方差就是标准偏差的平方 这下大家就困惑了,这两个公式分别表示什么意义?他们分别在什么情况下用?这两个公式是怎么来的? 2)公式由来 标准差又叫均方差、标准方差,这个大家都不陌生,它是各数据偏离平均数的距离的平均数,是距离均差平方和平均后的方根,用σ表示。。说白了就是表示数据分本离散度的一个值。计算公式也很好理解,从一开始接触我们用的看的都是这个公式。 那么第二个公式,怎么来的呢?其实标准偏差从样本估计中来的。比如我们有一批数据,共10000个点,他们服从正太分布,很容易计算出它的均值和标准差。在这里我们叫做样本均值和样本标准差。表示如下: 样本均值:1 1n i i X X n ==∑ 样本方差:2211()n n i i s X X n ==-∑ 这两个公式就是大家常用的公式。那么现在我们认为,我们想用采集到的这10000个样本估计数据的真实分布,想要求出其均值μ和方差2σ。 对于均值μ,我们容易通过期望获得:

但是对于方差,我们知道 2 1 2 () n i i X X σ = - ∑ 是服从卡分分布2 1 n χ - 的(这一点请查阅卡分分布的 定义)。因此有下面的公式: 这个公式的第一个等号后面是利用期望的性质,试图构造卡分分布来求解。第二个等号后面是利用卡分分布的均值计算出来的。请自行查阅卡方分布的定义和性质。 这么一来,我们就能看出,X是μ的无偏估计,而2 n s则不是2σ的无偏估计。但是我们 可以通过对样本方差进行重新构造,从而是2 n s就是2σ的无偏估计。我们定义:这样我们重新来求解方差的期望: 这样一来,2s就是2σ的无偏估计,这也就是这个公式的由来。 3)这两个公式的应用。 在实际中,公式(2)用的更多。因为当样本容量比较小的时候,公式(1)会过小的估计实际标准差;如果样本容量较大,公式(1)和公式(2)很接近。这时候公式(1)叫做渐近无偏估计,当然还是比不上公式(2)的无偏估计喽。 看了上面这段话,你可能还不知道该用哪个。其实是这样的:如果我们想求一批数据的标准差,那么自然就用公式(1)。如果我们是利用现在的样本估计真实的分布,那么就用公式(2)。 4)在EXCEL中,方差是VAR(),标准偏差是STDEV(),函数里解释是基于样本,分母是除的N-1,其实就是公式(2)。还有个VARP()和STDEVP(),基于样本总体,分母是N,也就是说你关注的就是这批数据。 在Excel透视表中 标准偏差为=STDEVA()

标准差

标准差 次数分布中的数据不仅有集中趋势,而且还有离中趋势。所谓离中趋势指的是数据具有偏离中心位置的趋势,它反映了一组数据本身的离散程度和差异性程度。标准差能综合反映一组数据的离散程度或个别差异程度。 例如,甲、乙两班学生各50人,其语文平均成绩都是80分,但甲班最高成绩98分,最低42分,而乙班最高成绩86分,最低60分。初步看出,两班语文成绩是不一样的,甲班学生的语文成绩个别差异程度大、水平参差不齐;而乙班学生的语文成绩差异程度小,语文水平整齐度大些。怎样用标准差这个特征量数来刻画一组数据的差异程度呢?下面介绍标准差的概念及计算。 一、标准差概念与计算 1.标准差定义与计算公式 一组数据的标准差,指的是这组数据的离差平方和除以数据个数所得商的算术平方根。若用S 代表标准差,则标准差的计算公式为: 标准差的平方,称为方差,用S2表示方差。 计算标准差时,首先要计算数据的平均数,接着要计算各数据与平均数之间的离差 平方,即()2,最后由公式(2-5)计算标准差S。 例如,4名儿童的身高分别是110厘米,100厘米,120厘米和150厘米,若求4名儿童身高数据的标准差时,其基本步骤如下: ①求平均数:(厘米) ②求离差平方和: )2=(110―120)2+(100―120)2+(120―120)2+(150―120)2 =100+400+0+900=1400(平方厘米) ③求标准差S:S= (厘米)

这样,我们大体可认为,这4名儿童身高差异程度,从平均角度来看,约相差18.71厘米。 2.标准差的计算中心方法 计算标准差的方法有三种,一是按公式逐步分析计算,如上述所示;二是以列表计算的方式;三是利用计算器或计算机进行计算。下面再举一例说明采用列表方式计算标准差S。 [例7] 已知8 位同学在某图形辨认测验中的成绩数据(见表2-2),计算这组数据的标准差。 [分析解答] 采用列表计算方式,应用公式(2-5)确定数据的标准差,详见表2-2。 表2-2 计算标准差S的示例 - () (1) = (2) () = 标准差在实际中有广泛的用途,同时对深化研究数据也具有重要的作用。如不同班级考试成绩的平均数和标准差,不同年度或不同学科测验分数的平均数和标准差,以及其他体能测试或心理测验数据的平均数和标准差,就是一些具体的应用。后续各章内容的学习,将经常用到平均数、标准差和方差这些概念。 由于标准差计算公式结构适合于代数处理,因此,许多具有统计功能的计算器,都有计算方差和标准差的相应功能。学习者只要花少量时间学习与掌握有关计算器的使用,即可以轻松自如地处理大量数据,求取平均数和标准差。 在利用公式(2-5)手工求标准差时,如表2-2所示,由于平均数有小数,这使计算离差平方的数据更加复杂,小数点的位数加倍增加,同时四舍五入的计算误差以及出错的可能性都有所增加。为克服这个弊病,我们可从公式(2-5)出发,通过代数演算,推导出另一个与公式(2-5)等价的新公式,即公式(2-6)。这一新公式对计算标准差来讲,不用通过计 算平均数以及离差平方和,用原始数据直接计算标准差,因而在许多情况下,具有更简便、准确的特点。其计算公式:

相关性平均值标准差相关系数回归线及最小二乘法概念

平均值、标准差、相关系数、回归线及最小二乘法相关性 线性相关 数据在一条直线附近波动,则变量间是线性相关 非线性相关 数据在一条曲线附近波动,则变量间是非线性相关 不相关 数据在图中没有显示任何关系,则不相关 平均值 N个数据的平均值计算公式: 标准差 标准差表示了所有数据与平均值的平均距离,表示了数据的散度,如果标准差小,表示数据集中在平均值附近,如果标准差大则表示数据离标准差比较远,比较分散。标准差计算公式: x、y两个变量组成了笛卡尔坐标系中的一 坐标(x,y),这个坐标标识了一个点的位置。 个 各包含n个常量的X,Y两组数据在笛卡尔坐标系中以n个点来进行表示。 相关系数 相关系数用字母r来表示,表示两组数据线性相关的程度(同时增大或减小的程度),从另一方面度量了点相对于标准差的散布情况,它没有单位。包含n个数值的X、Y两组数据的相关系数r的计算方法: 简单的说,就是r=[(以标准单位表示的x )X(以标准单位表示的y )]的平均数 根据上面点的定义,将X、Y两组数据的关系以点的形式在笛卡尔坐标系中画出,SD线表示了经过中心点(以数据组X、Y平均值为坐标的点),当r>0时,斜率=X的标准

差/Y的标准差;当r<0时,斜率=-X的标准差/Y的标准差;的直线。通常用SD线来直观的表示数据的走向: 1、当r<0时,SD线的斜率小于0时,则说明数据负相关,即当x增大时y减少。 2、当r>0时,SD线的斜率大于0时,则说明数据正相关,此时当x增大时y增大。 3、相关系数r的范围在[-1,1]之间,当r=0时表示数据相关系数为0(不相关)。当r=正负1时,表示数据负相关,此(x,y)点数据都在SD线上。 4、r的值越接近正负1说明(x,y)越靠拢SD线,说明数据相关性越强,r的值越接近0说明(x,y)点到SD线的散度越大(越分散),数据相关性越小。 回归方法主要描述一个变量如何依赖于另一个变量。y对应于x的回归线描述了在不同的x值下y的平均值情况,它是这些平均值的光滑形式,如果这些平均值刚好在一条直线上,则这些平均值刚好和回归线重合。通过回归线,我们可以通过x值来预测y值(已知x值下y值的平均值)。下面是y对应于x的回归线方程: 简单的说,就是当x每增加1个SD,平均而言,相应的y增加r个SD。 从方程可以看出: 1、回归线是一条经过点,斜率为的直线。 2、回归线的斜率比SD线小,当r=1或-1时,回归线和SD线重合。 当用回归线从x预测y时,实际值与预测值之间的差异叫预测误差。而均方根误差就是预测误差的均方根。它度量回归预测的精确程度。y关于x的回归线的均方根误差用下面的公式进行计算: 由公式可以看出,当r越接近1或-1时,点越聚集在回归线附近,均方根误差越小; 反之r越接近0时,点越分散,均方根误差越大。 最小二乘法寻找一条直线来拟合所有的点,使得这条直线到所有的点之间的均方根误差最小。可以看到,当求两个变量之间的关系时,最小二乘法求出的直线实际上就是回归线。只不过表述的侧重点不同:

计量资料的标准差和标准误有何区别与联系1

1、计量资料的标准差和标准误有何区别与联系 标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别: ①概念不 同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽 样误差;②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算 标准误等。标准误用于估计参数的可信区间,进行假设检验等。③它们与样本含 量的关系不同: 当样本含量n 足够大时,标准差趋向稳定;而标准误随n的增大 而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,当样本含量不变时, 标准误与标准差成正比。 2、二项分布、Poission分布的应用条件 二项分布的应用条件:医学领域有许多二分类记数资料都符合二项分布(传染病和遗传 病除外),但应用时仍应注意考察是否满足以下应用条件:(1) 每次实验只有两类对立 的结果;(2) n次事件相互独立;(3) 每次实验某类结果的发生的概率是一个常数。 Poisson分布的应用条件:医学领域中有很多稀有疾病(如肿瘤,交通事故等)资料都符合Poisson分布,但应用中仍应注意要满足以下条件:(1) 两类结果要相互对立;(2) n次试验相互独立;(3) n应很大, P应很小。 3、极差、四分位数间距、标准差、变异系数的适用范围有何异同? 答:这四个指标的相同点在于均用于描述计量资料的离散程度。其不同点为: 极差可用于各种分布的资料,一般常用于描述单峰对称分布小样本资料的变异程度,或用于初步了解资料的变异程度。若样本含量相差较大,不宜用极差来比较资料的离散程度。 四分位数间距适用于描述偏态分布资料、两端无确切值或分布不明确资料的离散程度。 标准差常用于描述对称分布,特别是正态分布或近似正态分布资料的离散程度。 变异系数适用于比较计量单位不同或均数相差悬殊的几组资料的离散程度。 4.中位数、均数、几何均数的适用条件有何异同。 (1)均数适用于描述对称分布,特别是正态分布的数值变量资料的平均水平;(2)几何均数适用于描述原始数据呈偏态分布,但经过对数变换后呈正态分布或近似正态分布的数值变量资料的平均水平;(3)中位数适用于描述呈明显偏态分布(正偏态或负偏态),或分布情况不明,或分布的末端有不确切数值的数值变量资料的平均水平。 5.第一类错误与第二类错误的区别与联系。

标准差σ的4种计算公式

标准差σ的4种计算公式

标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中标准差σ的4种计算公式: 简易标准差,Rbar/d2,Sbar/C4和Minitab中的Pooled standard deviation(合并标准差) 做数据分析,经常会碰到提到标准差σ这个概念,关于标准差σ的计算方式,目前,本人知道有4种标准差σ的计算方法,如下: 一,简易标准差σ的计算方式 上面是计算整体的标准差,如果是计算样本的标准差,这里的N, 应该为N-1. 一般情况下,都是计算样本的标准差。关于这个

关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考https://www.wendangku.net/doc/987970133.html,/thread-476-1-1.html帖子下面的表格 三,XBAR-s管制图分析( X-sControl Chart)中的Sbar/C4算法 XBAR-S 管制图分析( X-S Control Chart):由平均数管制图与标准差管制图组成。

●与X-R管制图相同,惟s管制图检出力较R 管制图大,但计算麻烦。 ●一般样本大小n小于等于8可以使用R管制图,n大于8则使用S管制图。 ●有电脑软件辅助时,使用S管制图当然较好。 关于上面公式中用到的A2、A3、D2、D3、D4等常数请参考https://www.wendangku.net/doc/987970133.html,/thread-476-1-1.html帖子下面的表格 四,Minitab中所使用的Pooled standard

deviation(合并标准差) Minitab中所使用的Pooled standard deviation,这个标准差的计算和一般的不一样,这个是Minitab默认的,相关的计算公式可以参考《Minitab: Pooled standard deviation》https://www.wendangku.net/doc/987970133.html,/thread-288-1-1.html Minitab: Pooled standard deviation(合并标准差), Rbar, Sbar Pooled standard deviation(合并标准差) is a way to find a better estimate of the true standard deviation given several different samples taken in different circumstances where the mean may vary between samples but the true standard deviation (precision) is assumed to remain the same. It is calculated by where sp is the pooled standard deviation,

算术平均值的实验标准差和单次测量值的实验标准差的区别

一、问题的提出 在不等精度直接测量时,由各测量值x i及其标准差σi计算加权算术平均值的标准差时,有两个计算公式 式中:p i——各测量值的权;σi——各测量值的标准差;σ——单位权标准差;——加权算术平均值的标准差。 但这两个公式的计算结果有时会相差很大。那么,在这种情况下,采用哪个公式更为合理呢?本文对此从公式的推导到公式的选用进行探讨,并给出了一般性的原则。 二、公式的数学推导 在不等精度测量时,各测量值的权的定义式为: 测量结果的最佳估计值为: 则测量结果的不确定度评定为: 对式(5)求方差有 设各测量值x i的方差都存在,且已知分别为,即D(x i)=

由(4)式有=σ2/p i 从公式(1)的推导,我们可以看出,此时各测量值的方差(或标准差)必须是已知的。而在实际测量中,常常各测量值的方差(或标准差)是未知的,无法直接应用公式(1)进行不确定度评定。但是,从分析来看,如果能由各测量值的残差(其权等于测量值的权)求出单位权标准差的估计值,并将其代入公式(1)中,就可计算出加权算术平均值标准差的估计值。为此,作如下推导: 由残差νi=x i-i=1,2,……n 对νi单位权化 由于v i的权都相等,因而可设为1,故用v i代替贝塞尔公式中的νi 可得单位权标准差的估计值 将此式代入公式(1),即得到加权算术平均值标准差的估计值

从上面的推导我们可以看出,公式(1)是在各测量值的标准差已知时计算出的不等精度测量结果的不确定度的准确值;而公式(2)是在各测量值的标准差未知时计算出的不等精度测量结果的不确定度的估计值。从概率论与数理统计知识可知,只有在n→∞时,其单位权标准差的估计值才能等于单位权的标准差,而由于测量次数的有限性和随机抽样取值的分散性,这两者是不相等的,所以由公式(1)和公式(2)确定的不确定度的值是也不相同的。 三、公式选用的一般原则 笔者用了较大的篇幅来进行公式的数学推导,主要是为了说明这两个公式推导的前提是不一样的,其应用当然也就不同。我们分两种情况来进行讨论。 1.各测量值的标准差未知时 显然,在这种情况下,由于其测量值的权是由其他方法得到的,而各测量值的标准差未知,无法应用公式(1)来进行不确定度评定,而只能用公式(2)。 2.各测量值的标准差已知时 当已知测量值x i和其标准差σi时,有两种方法计算的标准差:第一种 方法是用公式(1)进行计算,第二种方法是用公式(2)进行计算。前面已述这两种方法在理论上是不相等的。两种方法的区别是:第一种方法是根据已知的σi计算,没有用到测量数据x i。而第二种方法既用到了σi(确定权),也用到了测量数据x i(计算残差)。公式(2)是一个统计学公式,与观测次数n有关,只有n足够大,即观测数据足够多时,该公式才具有实际意义。所以,根据前面的推导分析,当测量次数较少时,考虑到随机抽样取值的分散性,建议采用公式(1)进行不确定度评定,当测量次数较多时,采用公式(2)评定不确定度更能真实地反映出这一组数据的不确定度值,它包含了由随机效应引起的不确定度,也包含了由系统效应引起的不确定度,因而更具有实验性质。现在的问题是,测量次数究竟为多少时才是较少或较多呢?根据概率论与数理统计知识,单次测量的标准差与平均值的标 准差的关系为:,当σ一定时,n>10以后,已减少得非常缓慢。所 以常把n=10作为一个临界值。综上所述,当测量次数n<10时,用公式(1)进行计算效果较好;当测量次数n≥10时,采用公式(2)来评定不确定度会更客观一些。另外,还有一个问题值得注意:不等精度测量本来就是改变了测量条件的复现性测量,这些改变了的测量条件有可能带来系统误差。当n足够大时且本次测量条件与以前的测量条件变化不大时,两个公式计算的结果应近似相等。否则本次测量数据可能存在系统误差。 四、实例

02资料的整理平均数标准差

1 资料的整理 一、资料的分类 1 数量性状资料 (一)计量资料 指用量测手段得到的数量性状资料,即用度、量、衡等计量工具直接测定的数量性状资料。其数据是用长度、容积、重量等来表示,如体高、产奶量、体重、绵羊剪毛量等。这种资料的各个观测值不一定是整数,两个相邻的整数间可以有带小数的任何数值出现,其小数位数的多少由度量工具的精度而定,它们之间的变异是连续性的。因此,计量资料也称为连续性变异资料。 (二)计数资料 指用计数方式得到的数量性状资料。在这类资料中,它的各个观察值只能以整数表示,在两个相邻整数间不得有任何带小数的数值出现。如猪的产仔数、鸡的产蛋数、鱼的尾数、母猪的乳头数等,这些观察值只能以整数来表示,各观察值是不连续的,因此该类资料也称为不连续性变异资料或间断性变异资料。 2 质量性状资料 (一)统计次数法 在一定的总体或样本中,根据某一质量性状的类别统计其次数,以次数作为质量性状的数据。例如,在研究猪的毛色遗传时,白猪与黑猪杂交,子二代中白猪、黑猪和花猪的头数分类统计如下表。

2 表2-1 白猪和黑猪子二代的毛色分离情况 毛色 次数(f ) 频率(%) 白色 332 73.78 黑色 96 21.33 花色 22 4.89 合 计 450 100.00 这种由质量性状数量化得来的资料又叫次数资料。 (二)评分法 对某一质量性状,因其类别不同,分别给予评分。例如,在研究猪的肉色遗传时,常用的方法是将屠宰后2小时的猪眼肌横切面与标准图谱对比,由浅到深分别给予1 5分的评分,以便统计分析。 二、资料的整理 三、常用统计图 平均数、标准差与变异系数 一、平均数 平均数是统计学中最常用的统计量,用来表明资料中各观测值相

强度标准差计算公式

直接转的:看看对你有帮助没有。 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。 语言表述如下:fcu.i的平方求和再减去n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。当Sfcu<0.06fcu,k时,取Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值

在线规范网https://www.wendangku.net/doc/987970133.html, 协助网站:给排水On Line 5.4 混凝土强度换算及推定 5.4.1 混凝土强度换算值可采用以下三类测强曲线计算: 1 统一测强曲线:由全国有代表性的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±15.0%,相对标准差(er)不应大于18.0%。 2 地区测强曲线:由本地区常用的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±14.0%,相对标准差(er)不应大于17.0%。 3 专用测强曲线:由与结构或构件混凝土相同的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±12.0%,相对标准差(er)不应大于14.0%。 4 平均相对误差(δ)和相对标准差(er)的计算应符合本规程附录F的规定。 5 各检测单位应按专用测强曲线、地区测强曲线、统一测强曲线的次序选用测强曲线。 5.4.2 地区和专用测强曲线应与制定该类测强曲线条件相同的混凝土相适应,不得超出该类测强曲线的适用范围。应经常抽取一定数量的同条件试件进行校核,当发现有显著差异时,应及时查找原因,并不得继续使用。 5.4.3 符合下列条件的混凝土应采用本规程附录G进行测区混凝土强度换算: 1 混凝土采用的材料、拌和用水符合国家现行的有关标准; 2 不掺引气型外加剂; 3 采用普通成型工艺; 4 采用符合现行的《铁路混凝土与砌体工程施工质量验收标准》(TB10424)规定的模板; 5 自然养护或蒸汽养护出池后经自然养护7d以上,且混凝土表层为干燥状态; 6 龄期为14~1000d; 7 抗压强度为10~60MPa。 5.4.4 当有下列情况之一时,测区混凝土强度值不得按本规程附录G换算,但可制定专用测强曲线或通过试验进行修正,专用测强曲线的制定方法宜符合本规程附录F的有关规定:

平均值、方差、标准差

平均值(Mean)、方差(Variance)、标准差(Standard Deviation) 对于一维数据的分析,最常见的就是计算平均值(Mean)、方差(Variance)和标准差(Standard Deviation)。 平均值 平均值的概念很简单:所有数据之和除以数据点的个数,以此表示数据集的平均大小;其数学定义为: 以下面10个点的CPU使用率数据为例,其平均值为。 14 31 16 19 26 14 14 14 11 13 方差、标准差 方差这一概念的目的是为了表示数据集中数据点的离散程度;其数学定义为: 标准差与方差一样,表示的也是数据点的离散程度;其在数学上定义为方差的平方根: 为什么使用标准差 与方差相比,使用标准差来表示数据点的离散程度有3个好处: 表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。依然以上述10个点的CPU使用率数据为例,其方差约为41,而标准差则为;两者相比较,标准差更适合人理解。 表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。 在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。 贝赛尔修正 在上面的方差公式和标准差公式中,存在一个值为N的分母,其作用为将计算得到的累积偏差进行平均,从而消除数据集大小对计算数据离散程度所产生的影响。不过,使用N 所计算得到的方差及标准差只能用来表示该数据集本身(population)的离散程度;如果数据集是某个更大的研究对象的样本(sample),那么在计算该研究对象的离散程度时,就需要对上述方差公式和标准差公式进行贝塞尔修正,将N替换为N-1: 经过贝塞尔修正后的方差公式: 经过贝塞尔修正后的标准差公式:

标准偏差与相对标准偏差公式

标准偏差 数学表达式: S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1~n; 标准偏差的使用方法 六个计算标准偏差的公式[1] 标准偏差的理论计算公式 设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i?X σ2 = l2?X …… σn = l n?X 我们定义标准偏差(也称标准差)σ为

(1) 由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。标准偏差σ的常用估计—贝塞尔公式 由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值 来代表真值。理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。 于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即 设一组等精度测量值为l1、l2、……l n 则 …… 通过数学推导可得真差σ与剩余误差V的关系为 将上式代入式(1)有

(2) 式(2)就是著名的贝塞尔公式(Bessel)。 它用于有限次测量次数时标准偏差的计算。由于当时, ,可见贝塞尔公式与σ的定义式(1)是完全一致的。 应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。它不是总体标准偏差σ。因此, 我们称式(2)为标准偏差σ的常用估计。为了强调这一点, 我们将σ的估计值用“S ” 表示。于是, 将式(2)改写为 (2') 在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有 于是, 式(2')可写为 (2") 按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。 标准偏差σ的无偏估计 数理统计中定义S2为样本方差

计算全距平均差方差和标准差

计算全距、平均差、方差和标准差 一、全距 R(range) 全距是一组数据中的最大值(maximum)与该组数据中最小值(minimum)之差,又称极差。 R=Xmax-Xmin 一般用于研究的预备阶段,用它检查数据的分布范围,以便确定如何进行统计分析 原始数据计算公式 三、四分位差(Quartile) 四分位差是第一个四分位数与第三个四分位数之差计算公式为 Q=Q 3-Q 1 四、方差与标准差 方差:又称为变异数、均方,是每个数据与该组数据平均数之差乘方后的均值,是表示一组数据离散程度的统计指标。 样本的方差用表示,总体的方差用表示。 标准差是方差的算术平方根。一般样本的标准差用 S 表示,总体的标准差用表示。 标准差和方差是描述数据离散程度的最常用的差异量。 分组数据方差与标准差的计算公式 方差与标准差的性质 ?方差是对一组数据中各种变异的总和的测量,具有可加性和可分解性特点。 ?标准差是一组数据方差的算术平方根,它不可以进行代数计算,但有以下特性: 总体方差、标准差或者方差、标准才差的合成 ?方差具有可加性的特点。当已知几个小组数据的方差或标准差时,可

以计算几个小组联合在一起的总的方差或标准差。 ?需要注意的是,只有在应用同一种观测手段,测量的是同一种特质,只是样本不同的数据时,才能计算合成方差或标准差。 方差和标准差的优点: 方差与标准差是表示一组数据离散程度的最好指标,其值越大,离散程度越大。 应用方差和标准差表示一组数据的离散程度,须注意必须是同一类数据(即同一种测量工具的测量结果),而且被比较样本的水平比较接近。 优点: ?反应灵敏。每个数据发生变化,方差与标准差也随之变化 ?有一定计算公式的严密确定 ?容易计算 ?受抽样变动的影响小 ?简单明了 ?方差具有可加性(区分变异源,组间/组内) 五、差异系数(coefficient of variation) 差异系数指标准差与其算术平均数的百分比,它是没有单位的相对数。用CV表示。 何种情况下运用差异系数: ?两个或两个以上样本所测特质不同,即所使用的观测工具不同,如何比较两者的离散程度? ?即使使用同一种观测量具,但样本水平相差较大,如何比较其离散程度? 差异系数的作用 ?比较不同单位资料的差异程度 ?比较单位相同而平均数相差较大的两组资料的差异程度 ?可判断特殊差异情况

夏普比率-标准差-贝他系数

夏普比率-标准差-贝他系数 夏普比率 现代投资理论的研究表明,风险的大小在决定组合的表现上具有基础性的作用。风险调整后的收益率就是一个可以同时对收益与风险加以考虑的综合指标,以期能够排除风险因素对绩效评估的不利影响。夏普比率就是一个可以同时对收益与风险加以综合考虑的三大经典指标之一。投资中有一个常规的特点,即投资标的的预期报酬越高,投资人所能忍受的波动风险越高;反之,预期报酬越低,波动风险也越低。所以理性的投资人选择投资标的与投资组合的主要目的为:在固定所能承受的风险下,追求最大的报酬;或在固定的预期报酬下,追求最低的风险。 ·夏普比率计算公式 ·夏普比率在运用中应该注意的问题 夏普比率(Sharpe Ratio),又被称为夏普指数--- 基金绩效评价标准化指标 夏普比率概述1990年度诺贝尔经济学奖得主威廉·夏普(William Sharpe)以投资学最重要的理论基础CAPM

(Capital Asset Pricing Model,资本资产定价模式)为出发,发展出名闻遐迩的夏普比率(Sharpe Ratio)又被称为夏普指数,用以衡量金融资产的绩效表现。 威廉·夏普理论的核心思想理性的投资者将选择并持有有效的投资组合,即那些在给定的风险水平下使期望回报最大化的投资组合,或那些在给定期望回报率的水平上使风险最小化的投资组合。解释起来非常简单,他认为投资者在建立有风险的投资组合时,至少应该要求投资回报达到无风险投资的回报,或者更多。 夏普比率计算公式夏普比率计算公式:=[E(Rp)-Rf]/σp 其中E(Rp):投资组合预期报酬率 Rf:无风险利率 σp:投资组合的标准差 目的是计算投资组合每承受一单位总风险,会产生多少的超额报酬。比率依据资本市场线(Capital Market Line,CML)的观念而来,是市场上最常见的衡量比率。当投资组合内的资产皆为风险性资产时,适用夏普比率。夏普指数代表投资人每多承担一分风险,可以拿到几分报酬;若为正值,代表基金报酬率高过波动风险;若为负值,代表基金操作风险大过于报酬率。这样一来,每个投资组合都可以计算Sharpe

相关文档