文档库 最新最全的文档下载
当前位置:文档库 › 利用加速试验中的短期数据预测混凝土梁中GFRP的耐久性能

利用加速试验中的短期数据预测混凝土梁中GFRP的耐久性能

Durability Prediction for GFRP Reinforcing Bars

Using Short-Term Data of Accelerated

Aging Tests

Yi Chen1;Julio F.Davalos2;and Indrajit Ray3

Abstract:This paper presents a procedure based on the Arrhenius relation to predict the long-term behavior of glass?ber-reinforced polymer?GFRP?bars in concrete structures,based on short-term data from accelerated aging tests.GFRP reinforcing bars were exposed to simulated concrete pore solutions at20,40,and60°C.The tensile strengths of the bars determined before and after exposure were considered a measure of the durability performance of the specimens.Based on the short-term data,a detailed procedure is developed and veri?ed to predict the long-term durability performance of GFRP bars.A modi?ed Arrhenius analysis is included in the procedure to evaluate the validity of accelerated aging tests before the prediction is made.The accelerated test and prediction procedure used in this study can be a reliable method to evaluate the durability performance of FRP composites exposed to solutions or in contact with concrete.

DOI:10.1061/?ASCE?1090-0268?2006?10:4?279?

CE Database subject headings:Durability;Aging;Fiber reinforced polymers;Glass?ber;Predictions;Reinforcement;Bars.

Introduction

Corrosion of steel reinforcement is a major cause of deterioration of reinforced concrete structures.Fiber-reinforced polymer?FRP?reinforcing bars are being increasingly used in concrete structures due to their resistance to corrosion,high strength-to-weight ratio, good fatigue properties,and ease of handling?Uomoto et al. 2002?.But among the various FRP products,glass?ber-reinforced polymer?GFRP?bars,which are extensively used in civil engineering structures due to their signi?cantly low cost,are readily attacked by concrete pore solutions having pH values of 12.4to13.7?Diamond1981;Anderson et al.1989;Bank and Gentry1995?.

Glass?bers are known to be susceptible to attack by water and acidic and alkaline solutions?Bank and Gentry1995?.The most severe degradation is observed in alkaline solutions.The main attack mechanisms include etching,leaching,and embrittlement. The matrices of FRP bars are intended to protect the?bers from harmful agents,but hydrolysis,plasticization,and swelling due to alkaline solution may lead to degradation of the matrix itself?Karbhari and Chu2005?.The?ber/matrix interphase,an inhomogeneous region,may also degrade easily due to matrix osmotic cracking and interfacial debonding and delamination ?Bradshaw and Brinson1997?.

Though numerous studies have been conducted on the durabil-ity of composites used for aerospace or naval applications,long-term performance data for GFRP bars in civil engineering appli-cations are still not available?Micelli and Nanni2004?.Design guidelines for FRP-reinforced concrete structures recommend strength reduction factors to account for environmental effects and sustained stress?ACI2001;JSCE1997?.However,these fac-tors are offered without support by signi?cant experimental data ?Greenwood2002;Nkurunziza et al.2005?.This necessitates de-velopment of critical test methods by which long-term durability performance of GFRP bars in a concrete environment can be as-sessed,in order to establish a50-to75-year life-cycle perfor-mance of GFRP-reinforced structures.

To obtain durability results of GFRP reinforcing bars within a reasonable time,accelerated test methods have generally been adopted by researchers by immersing bare GFRP bars in simu-lated solutions at elevated temperatures.Since degradation of GFRP bars in solutions mainly depends on diffusion and chemical reactions?Micelli and Nanni2004?,both of these factors can be accelerated by raising temperatures;thus elevated temperatures were used as an accelerating factor by several researchers?Micelli and Nanni2004;Porter and Barnes1998;Dejke2001?.Sustained loading during environmental exposure was also used by other researchers such as Benmokrane et al.?2002?and Sen et al.?2002?,while a combination of elevated temperatures and sus-tained loading was used as an accelerating factor by Rahman et al.?1998?and Nkurunziza et al.?2003?.

In recent studies?Mukherjee and Arwikar2005,Almusallam and Al-Salloum2006?,GFRP bars were embedded in concrete beams under sustained load in solutions at elevated temperatures. ASTM E632?ASTM2000?provided a general approach for conducting accelerated tests of construction materials.Recently, ACI Committee440?ACI2004?proposed an accelerated test

1Doctoral Student and Research Assistant,Dept.of Civil and

Environmental Engineering,West Virginia Univ.,Morgantown,WV

26506-6103.E-mail:sjtuchenyi@https://www.wendangku.net/doc/948287447.html,

2Benedum Distinguished Teaching Professor,Dept.of Civil and

Environmental Engineering,West Virginia Univ.,Morgantown,WV

26506-6103?corresponding author?.E-mail:Julio.Davalos@mail.

https://www.wendangku.net/doc/948287447.html,

3Research Assistant Professor,Dept.of Civil and Environmental

Engineering,West Virginia Univ.,Morgantown,WV26506-6103.

Note.Discussion open until January1,2007.Separate discussions

must be submitted for individual papers.To extend the closing date by

one month,a written request must be?led with the ASCE Managing

Editor.The manuscript for this paper was submitted for review and pos-

sible publication on August29,2005;approved on November16,2005.

This paper is part of the Journal of Composites for Construction,V ol.

10,No.4,August1,2006.?ASCE,ISSN1090-0268/2006/4-279–286/

$25.00.

JOURNAL OF COMPOSITES FOR CONSTRUCTION?ASCE/JULY/AUGUST2006/279

method for evaluating alkali resistance of FRP bars.The test consists of subjecting FRP bars to alkali environments with or without stress at a temperature of60°C.But questions still remain on procedures,magnitude of sustained loads to be applied to the specimens,types of simulated alkaline environment to be used, and duration of exposures.

Following accelerated tests,analyses were often carried out on the short-term data,and predictions for long-term behavior were made based on various models.Following the procedure used by Litherland et al.?1981?,prediction equations were suggested for GFRP bars by Porter and Barnes?1998?,but the approach successfully used in GRC?glass?ber-reinforced concrete?in Litherland et al.?1981?may not be applicable to GFRP bars, since the?bers are embedded in polymers.

Recently,Caceres et al.?2000?adopted the time-temperature superposition method to analyze the short-term data from accel-erated testing of FRP composites used in naval waterfront infra-structures,but details of how to superimpose the accelerated data sets were not provided.Dejke?2001?suggested a time shift factor based on the Arrhenius relation to correlate strength retentions of concrete-encased GFRP bars exposed to solutions at20and60°C. Since data from only two different exposure temperatures were used to calculate the activation energy,the time shift factor may not be generally applicable.Bank et al.?2003?provided a proto-

col for predicting long-term property values of FRP composites subjected to accelerated aging based on the Arrhenius relation. However,a recent study by Gonenc?2003?showed that this method cannot be directly applied to GFRP bars.

Diffusion models based on Fick’s law were also used to cor-relate the losses in tensile strength with the moisture absorption of FRP bars by Katsuki and Uomoto?1995?and Tannous and Saadatmanesh?1998?.But the main assumption of this approach, that the matrix and?bers within the depth of the damaged zone ?the area with diffused chemicals?were completely degraded, may not be accurate,as shown by Aguí?iga et al.?2004?.This approach cannot be applied to specimens exposed to water since the concentration of solution is required in the analysis.Also, high-quality matrices typically used currently may not allow dif-fusion of ions in measurable quantities?Dejke2001?.

From the literature review,one can conclude that no consensus was reached on using a particular accelerated test method or pre-diction model.Also,no correlation between accelerated test results and real-life aging was suggested by the relevant ACI committee report?ACI2004?.Prediction models based on the Arrhenius relation have often been used in the published litera-ture,such as Litherland et al.?1981?and Phani and Bose?1987?, but concern remains about the implicit assumption that the elevated temperature will only increase the rate of degradation without in?uencing the degradation mechanism or introducing other degradation mechanisms for FRP bars.

A comprehensive study on the durability of FRP bars subjected to environmental agents such as water,seawater,alkaline solu-tions,wetting and drying cycles,and freezing and thawing cycles was recently reported by Chen et al.?2006?.Based on that study, the most signi?cant degradation was found to occur for GFRP bars exposed to alkaline solutions.In the present study,critical short-term data on the durability of GFRP bars are obtained through accelerated aging tests by exposing specimens to simu-lated concrete pore solutions at different temperatures.Based on these short-term data,a detailed procedure is developed and veri?ed to predict the long-term behavior of GFRP bars in simu-

lated concrete pore solutions.This procedure includes a modi?ed

Arrhenius analysis to evaluate the validity of accelerated tests

before the prediction is made.

Experimental Program

Materials

In this study,GFRP bars made of E-glass?bers and vinyl ester

resin were selected due to their wide application in civil engineer-

ing infrastructure.For the purpose of developing and verifying

the proposed prediction procedure,two types of GFRP bars with

a9.53mm diameter?No.3?were used.The bars were produced

using the same resin but different types of E-glass?bers.Both

GFRP1and GFRP2bars were helically wrapped and slightly sand

coated?Fig.1?and were manufactured by a commercial pultru-

sion process.The glass?ber contents of both GFRP bars were

above70%by weight.Both types of bars were provided by the

same manufacturer,and GFRP2bar is a commercially available

product.

Testing Plan

Tensile strengths of specimens were measured before and after

the exposures,since changes in tensile strength values can reli-

ably be used as indicators of the durability performance.The

tensile test was conducted in accordance with ASTM D3916-94?ASTM2000?with some modi?cations.The overall length of the specimens was1.02m.The end grip used in this study was a

200-mm long steel pipe cut lengthwise into two halves.After

being coated with epoxy in their inner surface,the split pipes

were bonded on each end of the bar.The length-to-diameter ratio

of the test specimens was64.The tests were carried out on a

Baldwin machine,and the duration of the loading was2to4min

for each

specimen.

Fig.1.GFRP bars

280/JOURNAL OF COMPOSITES FOR CONSTRUCTION?ASCE/JULY/AUGUST2006

In this study,groups of GFRP bars were tested before and after immersion in simulated pore solutions at different temperatures for different exposure times.Two types of alkaline solutions were made to simulate the pore solutions of normal concrete ?NC ?and high-performance concrete ?HPC ?,respectively.Due to the increasing use of HPC in civil infrastructure,a simulated HPC pore solution was included in this study.Solutions 1and 2were both made with combined sodium hydroxide ?NaOH ?,potassium hydroxide ?KOH ?,and calcium hydroxide ?Ca ?OH ?2?,according to Shi et al.?1998?and Gowripalan and Mohamed ?1998?.Solution 1,with a pH value of about 13.6,was intended to simu-late the pore solution of NC,and Solution 2,with a pH value of about 12.7and different proportions of hydroxides compared to Solution 1,was made to simulate the pore solution of HPC.The compositions of Solutions 1and 2are listed in Table 1.

Elevated temperatures of 40and 60°C were adopted to accel-erate the attack of simulated environments on specimens.These temperatures were well below the glass transition temperature of selected GFRP bars.Temperature-controlled tanks ?Fig.2?were custom designed for specimens exposed to solutions at tempera-tures of 40and 60°C.For exposure of specimens in solutions at room temperature ?RT,about 20°C ?,polypropylene heavy-wall tanks were used.

For illustrative purpose to develop and verify the proposed prediction procedure,GFRP1bars were immersed in Solution 1

and GFRP2bars in Solution 2.The justi?cation for exposing a particular type of GFRP bars in a speci?c type of solution is based on previous ?ndings by Chen et al.?2006?of a comprehensive study on interactions of GFRP bars and various simulated solu-tions.In that study,it was observed that in terms of durability,GFRP2bars performed better than GFRP1bars,and in terms of its reactivity with GFRP bars,Solution 2was less aggressive than Solution 1.

Since the objective of the current paper is to develop a proce-dure to evaluate the durability of GFRP bars,it is necessary to verify the validity of the procedure through at least two distinct conditions in terms of the reactivity between a ?ber-resin system of GFRP bars and solutions.Considering this objective,two dis-tinct conditions are formulated,in which GFRP1bars exposed in Solution 1are regarded as a high-reactivity condition,and GFRP2bars exposed in Solution 2are considered as a relatively low-reactivity condition.The applicability of the model when includ-ing these two distinct conditions will enable evaluation of its accuracy for predicting durability from critical short-term data of accelerated tests.

The environmental exposure plan for specimens is summa-rized in Table 2.After each exposure,usually three to six GFRP bars were removed from solutions and tested for tensile strength retention compared to baseline specimens.

Test Results and Discussion

During the tensile test of dry specimens,both types of GFRP bars showed an approximately linear behavior up to failure and failed through the rupture of ?bers.The failure of both types of GFRP bars was accompanied by the separation of ?bers and the rupture of spiral bundles on the deformed surface of bars,as shown in

Table https://www.wendangku.net/doc/948287447.html,positions of Simulated Concrete Pore Solutions

Quantities ?g/L ?

Solution type NaOH KOH Ca ?OH ?21 2.419.622

0.6

1.4

0.037

Fig.2.Temperature-controlled tank:?a ?digital temperature control;?b ?Te?on-coated immersion heater

Fig.3.Similar but less catastrophic failure was observed for con-ditioned specimens,and similar tensile failure modes of GFRP bars were also observed by Micelli and Nanni ?2004?.

The tensile test results of unconditioned and conditioned specimens are summarized in Figs.4–6?the overbar represents a standard deviation ?.Each data represents an average of three to six test results.As shown in Figs.4?a and b ?the tensile strengths for pristine GFRP1and GFRP2bars were 925and 771MPa,respectively.Note that the tensile strength of GFRP1bars reduced to 352MPa after only 120days exposure to Solution 1at 60°C,and the tensile strength of GFRP 2bars reduced to 455after 120days exposure to Solution 2at 60°C.

Figs.5and 6show that the tensile strength decreased with an increase in exposure time for both GFRP bars at all temperatures,and degradation was more severe for specimens in solutions at higher temperatures.A comparison of GFRP bar and solution interaction con?rms the previous ?nding of greater reactivity of the GFRP1–Solution 1combination.One can also observe that the degradation was signi?cant for both GFRP bars in such short exposure times compared to their expected service life.The rapid degradation may be due to the direct exposure of specimens to strong alkaline solutions.The degradation of the bars was made visibly apparent by white blisters on the surface,as described in Chen et al.?2006?.The blisters may be the manifestation of osmosis in the surface of bars.

Predictions of Long-Term Behavior of GFRP Bars The basis for the proposed prediction is the Arrhenius relation,which is introduced ?rst.Then a detailed procedure is carried out on the short-term data to predict the long-term behavior of GFRP bars.A modi?ed Arrhenius analysis is included in the procedure to determine the validity of the accelerated test.Then,based on the results of this study,comments and discussions are given on both the present prediction procedure and those proposed by other researchers.

Arrhenius Relation

In the Arrhenius relation,the degradation rate is expressed as follows ?Nelson 1990?:

k =A exp

??E a RT

?

?1?

where k ?degradation rate ?1/time ?;A ?constant of the material and degradation process;E a ?activation energy;R ?universal gas constant;and T ?Kelvin temperature.The primary assumption of this model is that the single dominant degradation mechanism of the material will not change with time and temperature during the exposure,but the rate of degradation will be accelerated with the increase in temperature.Eq.?1?can be transformed into

1k =1A exp ?E a RT ?

?2?

ln

?1k ?

=

E a R 1

T

?ln ?A ??3?

From Eq.?2?,the degradation rate k can be expressed as the

inverse of time needed for a material property to reach a given value.From Eq.?3?one can further observe that the logarithm of time needed for a material property to reach a given value is a linear function of 1/T with the slope of E a /R .Prediction Procedure

For the ?rst step,the relationship between tensile strength reten-tion ?the percentage of residual strength over original tensile strength ?of GFRP bars and exposure time for the accelerated test was de?ned as

Y =100exp ??

t ?

?

?4?

where Y ?tensile strength retention value ?%?;t ?exposure time;and ??1/k ,as expressed in Eq.?2?.The form of this equation was modi?ed from a study by Phani and Bose ?1987?by assuming that GFRP bars degraded completely at in?nite exposure time.The data of Figs.5and 6were used in Eq.?4?in order to obtain the coef?cient ?by regression analysis.Corresponding ?values and correlation coef?cients ?r ?are summarized in Table 3,with all regression lines having a correlation coef?cient above 0.93.Thus,the time to reach a given tensile strength retention at different temperatures can be approximately calculated through Eq.?4?.In the second step,the Arrhenius relationships were obtained by plotting the natural log of time to reach 50,60,70,and 80%tensile strength of GFRP bars versus 1/T ?the inverse of exposure temperature ?in Figs.7and 8.Straight lines were ?tted to the data

Table 2.Environmental Exposure Plan of GFRP Bars

Bar type Solution type Temperature

?°C ?

Exposure time

?days ??days ??days ??days ?GFRP1

1

606090120240406090120240206090120240GFRP22

606070901204060709012020

60

70

90

120

Fig.3.Typical failure mode of GFRP bars

with the assumption that the degradation rate was a function of

temperature as expressed in Eq.?3?.Eq.?2?was also ?tted to the data of Table 3to obtain E a /R .From the analysis,the regression coef?cients ?E a /R ?and correlation coef?cients ?r ?are listed in Table 4.The correlation coef?cients for all regression lines were close to 1,and straight lines in Arrhenius plots for different strength retentions were nearly parallel to each other ?the slopes of straight lines are E a /R ?.This implies that the Arrhenius rela-tion can be used to describe the degradation rate of GFRP bars,as the degradation mechanism may not change with temperature and time during exposure in the range tested.Moreover,Eq.?4?can be used to de?ne the time and temperature dependence of tensile strength for GFRP bars exposed to alkaline solutions.

For the third step,the acceleration factor ?AF ?for the same solution at two different temperatures can be obtained from pre-vious Arrhenius plots.The AF can be expressed as AF =t 0t 1=c /k 0c /k 1=k 1k 0=A exp

??E a

RT 1?

A exp

??E a RT 0

?

=exp ?E a R ?1

T 0?

1T 1

??

?5?

where AF ?acceleration factor;t 1and t 0?times required for some property to reach a given value at temperatures of T 1and T 0,respectively;c ?constant;and k 1and k 0?degradation rates at temperatures of T 1and T 0,respectively,as expressed in Eq.?1?.For example,for 70%retention of tensile strength of GFRP2bars ?as shown in Fig.8?,the AF for Solution 2at 60°C in relation to 20°C can be calculated,AF ?7.5.Since the ?tted lines are parallel to each other ?Figs.7and 8?,the acceleration factor remains constant for all strength retention values,such as those shown from 50to 80%,at each speci?ed temperature level,either 40or 60°C.The AF values with reference temperature T 0?20°C are listed in Table 5.Therefore,Eq.?5?can be ?tted to data in Table 5to obtain the AF values for other temperatures based on the reference temperature of 20°C.

For the fourth step,once the AF values for 60and 40°C were obtained,Figs.5and 6were transformed into Figs.9and 10by multiplying exposure times at 60and 40°C with corresponding AF values.Master curves for tensile strength retention versus exposure time at 20°C were obtained by ?tting Eq.?4?to data in Figs.9and 10.As listed in Table 6,these data have correlation coef?cients of 0.92and 0.99,respectively.Interestingly,the val-ues for ?correspond exactly to those at 20°C given in Table 3;this close correlation also con?rms the validity of this procedure.Finally,Eq.?4?with the values for ?listed in Table 6could be used to predict the tensile strength retention at any exposure time.

Table 3.Coef?cients of Regression Equations for GFRP Tensile Strength Retention

Temperature ?°C ?

GFRP1bars in Solution 1

GFRP2bars in Solution 2

?r ?r 601430.932220.99402000.987140.9620

256

0.96

1,667

0.94

Fig.4.Tensile strength of GFRP bars:?a ?tensile strength of GFRP1bars in Solution 1after 120days exposure;?b ?tensile strength of GFRP2bars in Solution 2after 120days

exposure

Fig. 5.Tensile strength retention of GFRP1bars exposed to Solution 1at 20,40,and

60°C

Fig. 6.Tensile strength retention of GFRP2bars exposed to Solution 2at 20,40,and 60°C

For example,from the master curves,after only 178-day exposure in Solution 1at 20°C,the tensile strength retention of GFRP1bars will drop to 50%.For GFRP2bars exposed to Solution 2at 20°C,the tensile strength retention will be 50%at 1,156days.

Discussions

The Arrhenius analysis ?the ?rst and second steps in the above prediction procedure ?was also used to determine the validity of the accelerated tests.If the ?tted straight lines in Arrhenius plots had a low correlation coef?cient ?e.g.,r ?0.8?and/or were not parallel to each other,one would infer that the degradation mechanism would have changed with temperature and time,indi-cating that the accelerated tests are not valid and the procedure could not be used to predict long-term behavior.

Note that the slope ?E a /R ?of Arrhenius plots for GFRP1bars is about 1,420,which was much lower than about 4,890for GFRP2bars,revealing that the activation energy ?E a ?for degra-dations of GFRP1bars in Solution 1is much lower than for GFRP2bars in Solution 2,resulting in different degradation rates and probably mechanisms.In a recent study ?Dejke 2001?,an E a /R value of 6,300was obtained for GFRP bars embedded in moisture concrete,and therefore the degradation of different GFRP bars in different alkaline environments will be different.

So it is worth noting that if the master curve for prediction is developed for one type of GFRP bars in a speci?c exposure condition,it may not be applicable to other types of GFRP bars used in different environments.

From the obtained master curve,the degradation was signi?-cant for both GFRP bars in such short exposure times compared to their expected service life.Based on a diffusion model,a simi-lar trend was also predicted for GFRP bars directly exposed to alkaline solution by Sen et al.?2002?.The predicted service life for a speci?c E-glass/vinyl ester reinforcement used by the U.S.Navy was only between 1.6and 4.6years.

Prediction procedures proposed by other researchers were also used to analyze the data from this study.In the model proposed by Bank et al.?2003?,the relationship between strength retention and log of exposure time was assumed linear.The Arrhenius plots were directly used to predict the service life of different strength retentions,and second group of Arrhenius plots was also obtained and used to predict the strength retentions at different exposure periods.Following the procedure proposed by Bank et al.?2003?,straight lines of Arrhenius plots obtained using their approach were found not to be parallel to each other,which invalidates the procedure based on the assumption that the degradation mechanism will not change with time.The same situation was also found in a recent study ?Gonenc 2001?when the procedure given in Bank et al.?2003?was applied to GFRP rods.The pro-cedure proposed by Caceres et al.?2000?was also applied to the present data.Since no details were given on how to super-impose the accelerated test data for different temperatures,results were signi?cantly in?uenced by the superposition method used.Moreover,as stated in Caceres et al.?2000?,extrapolation of the master curve obtained using their procedure may lead to unreal-istic predictions.

Compared to the procedures proposed by other researchers,the procedure in this study can be used for short-term data for GFRP bars successfully and ef?ciently.The proposed procedure can be easily carried out by de?ning simple plots and performing regression analysis.The results indicate that increasing the num-ber of exposure temperatures and using longer exposure durations in accelerated tests can lead to more precise predictions.This procedure may also be used for FRP materials exposed to other

Tensile strength retention ?%?

GFRP1bars in Solution 1GFRP2bars in Solution 2E a /R

r

E a /R r 501,4200.994,8910.99601,4230.994,8920.99701,4200.994,8910.99801,4200.99

4,8920.99Eq.?2?

a

1,4150.994,899

0.99

a

For Eq.?2?based on data in Table 3.

Table 5.Values for Acceleration Factors Temperature ?°C ?

GFRP1in Solution 1

GFRP2in Solution 2

60 1.807.5040 1.28 2.3320 1.00 1.00

Fig.7.Arrhenius plots of tensile strength degradation for GFRP1bars exposed to Solution

1

Fig.8.Arrhenius plots of tensile strength degradation for GFRP2bars exposed to Solution 2

solutions or even embedded in moist concrete.Due to the com-plexity of the degradation mechanism,no degradation model has been proposed to simulate exactly the degradation of GFRP bars in alkaline media.The accelerated test method and prediction procedure used in this study may be good options to assess the long-term durability performance of GFRP bars.

Conclusions and Recommendations

This study is part of an ongoing durability research program on FRP reinforcing bars for concrete.From the short-term data and prediction procedure presented in this paper,the following con-cluding remarks and recommendations can be made.

Possibly due to lower alkalinity,HPC pore solutions may be less aggressive to GFRP bars than those of NC in spite of having different ionic proportions.Simulated pore solutions with differ-ent compositions may result in different degradation mechanisms for various kinds of GFRP bars.Thus,the guidelines in ACI 440.3R2-04?ACI 2004?,in which one kind of alkaline solution is used to represent different pore solutions of various kinds of con-crete,would have to be revised.

There is a dominant degradation mechanism for GFRP bars in alkaline solutions that does not appear to change with temperature or time.Elevated temperature can be used to accelerate the degradation of GFRP bars in alkaline solutions.Further,the

temperature dependence of the degradation rate can be described by the Arrhenius equation.Eqs.?1?and ?4?can be used to predict the relation between tensile strength retention of GFRP bars with exposure time and temperature.The method presented in this study can probably be used to evaluate the durability performance of FRP composites,while the Arrhenius analysis in this procedure can be used to determine the validity of the accelerated test using elevated temperatures.

From the master curves of this study,the tensile strength retention of GFRP1bars drops to 50%after only a half-year exposure in Solution 1at 20°C,and for GFRP 2bars exposed to Solution 2at 20°C,the tensile strength retention is 50%after about 3years.But in a recent study ?Mufti et al.?2005?,much less degradation was found for GFRP bars in ?eld concrete structures.Since in the present study bare GFRP specimens were directly exposed to simulated pore solutions,the reported short-term results and the predicted tensile strength retention should be considered conservative.Note also that the master curves in this paper are only applicable to the GFRP bars tested and exposed to the speci?c simulated pore solutions in this study.

To investigate the durability of GFRP bars in concrete,specimens embedded in concrete should be tested.To predict long-term behaviors of GFRP bars based on the short-term data,the correlation between degradations of GFRP bars in accelerated tests and real applications needs to be investigated.Long-term data,including those in real applications,should be collected to validate accelerated tests and prediction models.Moreover,coupling effects of sustained load and environmental exposures should also be included in future studies to simulate real-life conditions.

Acknowledgments

We appreciate the ?nancial support from the Korea Institute of Construction Technology ?KICT ?,Republic of Korea.The fund-ing provided by the college dean,Eugene Cilento,and department chair,David Martinelli,at West Virginia University is also grate-fully acknowledged.We thank Doug Gremel of Hughes Brothers,Inc.for supplying FRP bars and for his valuable technical suggestions.

References

American Concrete Institute ?ACI ?.?2001?.“Guide for the design and construction of concrete reinforced with FRP bars.”ACI 440.1R-01,Farmington Hills,Mich.

American Concrete Institute ?ACI ?.?2004?.“Guide test methods for ?ber-reinforced polymers ?FRPs ?for reinforcing or strengthening concrete structures.”ACI 440.3R-04,Farmington Hills,Mich.

Aguí?iga, F.,Bradberry,T.,and Trejo, D.?2004?.“Time-dependent mechanical property changes of glass ?ber reinforced polymers exposed to high pH environments.”Proc.,9th ASCE Aerospace Division Int.Conf.on Engineering,Construction and Operations in Bar type Solution type ?r GFRP112560.92GFRP2

2

1,667

0.99

Fig.9.Tensile strength retention versus exposure time for GFRP1

bars

Fig.10.Tensile strength retention versus exposure time for GFRP2bars

Almusallam,T.H.,and Al-Salloum,Y.?2006?“Durability of GFRP rebars in concrete beams under sustained loads at severe environ-ments.”https://www.wendangku.net/doc/948287447.html,pos.Mater.,40?7?,623–637.

Anderson,K.,Allard,B.,Bengtsson,M.,and Magnusson,B.?1989?.

“Chemical composition of cement pore solutions.”Cem.Concr.Res., 19?33?,327–333.

ASTM.?2000?.Annual book of ASTM standards,ASTM,West Conshohocken,Pa.

Bank,L. C.,and Gentry,T.R.?1995?.“Accelerated test methods to determine the long-term behavior of FRP composite structures: Environmental effects.”https://www.wendangku.net/doc/948287447.html,pos.,14?6?,559–587. Bank,C.L.,Gentry,T.R.,Thompson,B.P.,and Russell,S.J.?2003?.

“A model speci?cation for FRP composites for civil engineering structures.”Constr.Build.Mater.,17?6-7?,405–437. Benmokrane, B.,Wang,P.,Ton-That,T.M.,Rahman,H.,and Robert,J.-F.?2002?.“Durability of glass?ber-reinforced polymer reinforcing bars in concrete environment.”https://www.wendangku.net/doc/948287447.html,pos.Constr.,6?3?, 143–153.

Bradshaw,R.D.,and Brinson,L.C.?1997?“Physical aging in polymer composites:An analysis and method for time aging time super-position.”Polym.Eng.Sci.,31?1?,31–34.

Caceres,A.,Jamond,R.M.,Hoffard,T.A.,and Malvar,L.J.?2000?.

“Accelerated testing of?ber reinforced polymer matrix composites—Test plan.”SP-2091-SHR,Naval Facilities Engineering Service Center,Port Hueneme,Calif.

Chen,Y.,Davalos,J.F.,Ray,I.,and Kim,H.Y.?2005?.“Accelerated aging tests for evaluations of durability performance of FRP reinforc-ing bars for concrete structures.”Compos.Struct.,in press. Dejke,V.?2001?.“Durability of FRP reinforcement in concrete—Literature review and experiments.”Licentiate of engineering thesis, Dept.of Building Materials,Chalmers Univ.of Technology, Goteborg,Sweden.

Diamond,S.?1981?.“Effects of two Danish?y ashes on alkali contents of pore solutions of cement-?y ash pastes.”Cem.Concr.Res.,11?3?, 383–394.

Gonenc,O.?2001?.“Durability and service-life prediction of concrete reinforcing materials.”MS thesis,Univ.of Wisconsin-Madison, Madison,Wis.

Gowripalan,N.,and Mohamed,H.M.?1998?.“Chloride-ion induced corrosion of galvanized and ordinary steel reinforcement in high-performance concrete.”Cem.Concr.Res.,28?8?,1119–1131. Greenwood,M.?2002?.“Creep-rupture testing to predict long-term per-formance.”Proc.,2nd Int.Conf.on Durability of Fiber Reinforced Polymer(FRP)Composites for Construction,ISIS Canada,Montréal, 203–212.

Japanese Society of Civil Engineering?JSCE?.?1997?.“Recommendation for design and construction of concrete structures using continuous ?ber reinforcing materials.”Concrete Engineering Series,No.23, JSCE,Tokyo?can be found at http://www.jsce.or.jp/committee/ concrete/e/publication-e.html?.

Karbhari,V.M.,and Chu,W.?2005?.“Degradation kinetics of pultruded E-glass/vinylester in alkaline media.”ACI Mater.J.,102?1?,34–41.Katsuki,F.,and Uomoto,T.?1995?.“Prediction of deterioration of FRP rods due to alkali attack.”Non-metallic(FRP)reinforcement for concrete structures,RILEM,London.

Litherland,K.L.,Oakley,D.R.,and Proctor,B.A.?1981?.“The use of accelerated aging procedures to predict the long term strength of GRC composites.”Cem.Concr.Res.,1?11?,455–466.

Micelli,F.,and Nanni,A.?2004?.“Durability of FRP rods for concrete structures.”Constr.Build.Mater.,18?7?,491–503.

Mufti,A.,et al.?2005?.“Durability of GFRP reinforced concrete in ?eld structures.”Proc.,7th Int.Symp.on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures,American Concrete Institute,Detroit.

Mukherjee, A.,and Arwikar,S.J.?2005?.“Performance of glass ?ber-reinforced polymer reinforcing bars in tropical environments.I: Structural scale tests.”ACI Struct.J.,102?5?,745–753.

Nelson,W.?1990?.Accelerated testing—Statistical models,test plans, and data analyses,Wiley,New York.

Nkurunziza,G.,Benmokrane,B.,Debaiky,A.S.,and Masmoudi,R.

?2005?.“Effect of sustained load and environment on long-term tensile properties of glass?ber-reinforced polymer reinforcing bars.”

ACI Struct.J.,102?4?,615–621.

Nkurunziza,G.,Cousin,P.,Masmoudi,R.,and Benmokrane,B.?2003?.

“Effect of sustained tensile stress and temperature on GFRP compos-ite bars properties.1:Preliminary experiment in deionised water and alkaline solution.”Int.J.Mater.Prod.Technol.,19?1–2?,15–27. Phani,K.K.,and Bose,N.R.?1987?.“Temperature dependence of hydrothermal ageing of CSM-Laminate during water immersion.”

Compos.Sci.Technol.,29?2?,79–87.

Porter,M.L.and Barnes, B. A.?1998?.“Accelerated durability of FRP reinforcement for concrete structures.”Proc.,1st Int.Conf.on Durability of Fiber Reinforced Polymer(FRP)Composites for Construction,ISIS Canada,Sherbrooke,Canada,191–201. Rahman,A.H.,Lauzier,C.,Kingsley,C.,Richard,J.,and Crimi,J.

?1998?.“Experimental investigation of the mechanism of deterioration of FRP reinforcement for concrete.”Proc.,2nd Int.Conf.on Compos-ites in Infrastructure,501–511.

Sen,R.,Mullins,G.,and Salem,T.?2002?.“Durability of E-glass/vinyl ester reinforcement in alkaline solution.”ACI Struct.J.,99?3?, 369–375.

Shi, C.,Stegemann,J. A.,and Caldwell,R.J.?1998?.“Effect of supplementary cementing materials on the speci?c conductivity of pore solution and its implications on the rapid chloride permeability test?AASHTO T277and ASTM C1202?results.”ACI Mater.J., 95?4?,389–394.

Tannous,F.E.,and Saadatmanesh,H.?1998?.“Environmental effects on the mechanical properties of E-Glass FRP rebars.”ACI Mater.J., 95?2?,87–100.

Uomoto,T.,Mutsuyoshi,H.,Katsuki,F.,and Misra,S.?2002?.“Use of ?ber reinforced polymer composites as reinforcing material for concrete.”J.Mater.Civ.Eng.,14?3?,191–209.

286/JOURNAL OF COMPOSITES FOR CONSTRUCTION?ASCE/JULY/AUGUST2006

浅谈混凝土结构耐久性问题

④ XXXXXXX(XX)现代远程教育 毕业设计(论文)题目:浅谈混凝土结构耐久性问题 学习中心:XXXXXX 年级专业:函授XXX 专升本 学生姓名:XXX 学号:XXXXXXXXX 指导教师:X X X职称:副教授 导师单位:威海职业学院 中国石油大学(华东)远程与继续教育学院 论文完成时间:2012 年 6 月30 日

XXXXXXX(XX)现代远程教育 毕业设计(论文)任务书 发给学员xxx 1.设计(论文)题目:浅谈混凝土结构耐久性问题 2.学生完成设计(论文)期限:2012 年 1 月30 日至2012 年6 月30 日3.设计(论文)课题要求: 1)、重点论述提高我国中小型出口企业国际竞争力的对策 2)、论文字数不少于6000字。 3)、论文要求结构完整,思路清晰,论据缺凿,论点明确,有说服力。 4)、要从安全角度分析,从各个方面去论述。 5)、针对论文所重点阐述的内容,广泛查阅相关资料,为论文的写作奠定坚实的基础,提供有力的证据。 4.实验(上机、调研)部分要求内容: 如果条件具备,可深入企业进行实际调研,写出调研报告,为论文写作提供充分的素材 5.文献查阅要求: 广泛查阅与本文相关的文献材料,为论文写作奠定坚实的基础,通知注意文献材料的真实性。 6.发出日期:2012 年 1 月30 日 7.学员完成日期:2012 年 6 月30 日 指导教师签名: 学生签名:

摘要 混凝土耐久性是指结构在规定的使用年限内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、正常使用和可接受的外观能力。影响混凝土结构耐久性的因素有很多,本文通过从混凝土的渗透破坏、冻融破坏、侵蚀性介质的腐蚀、碱骨料反应、碳化和钢筋锈蚀六个方面论述了混凝土发生耐久性失效的原因及影响因素,对混凝土耐久性问题进行了研究。最终提出从混凝土材料的选择、结构设计和质量的生产控制三方面进行提高混土耐久性的处理措施。混凝土结构以其整体性好、耐久性好、可塑性强、维修费用少等优点广泛使用,随着混凝土结构应用领域越来越广泛,大量的混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限,混凝土耐久性发生失效现象日趋严重。 关键词:混凝土;耐久性;影响因素;措施

混凝土结构耐久性浅谈

网络教育学院 本科生毕业论文(设计) 题目:混凝土结构耐久性浅谈 学习中心: 层次:专科起点本科 专业:土木工程 年级: 学号: 学生: 指导教师: 完成日期:2013 年11 月14 日

混凝土结构耐久性浅谈 内容摘要 混凝土由于其具有经济、耐久、节能等众多优点, 而成为重要的建筑材料, 其应用范围十分广泛。作为目前世界最大宗的人造建筑材料, 其在给人类带来巨大文 明进步的同时 , 也面临由此造成的严峻的资源、能源和环境问题。传统意义上的混 凝土由于自身结构材料和使用环境的特点, 还存在着严重的耐久性问题, 已不能满足混凝土行业的绿色可持续发展的要求。因此, 提高混凝土的耐久性是实现混凝土 环保化、节约化的积极有效措施。本文综述了耐久性对混凝土的重要意义, 并着重分析了影响混凝土耐久性的主要因素。最后介绍了目前世界上提高混凝土的耐久 性的研究结果以及目前国际上对混凝土的耐久性设计要求。 关键词:耐久性;混凝土;影响因素

混凝土结构耐久性浅谈 目录 内容摘 要 .................................................. ..................................................... ....................I 引言......................................... ......................................... ......................................... . 1 1 绪论......................................... ......................................... ......................................... . 2 1.1 混凝土耐久性问题的提出................................................... (2) 1.2 混凝土耐久性的概 念 .................................... ........................................ (2) 2 混凝土结构耐久性问题的分 析 ........................................... (3) 2.1 混凝土冻融破 坏 .................................... ........................................ (3) 2.1.1 破坏机 理 .......................... ............................. ............................. (3) 2.1.2 影响因 素 .......................... ............................. ............................. (4) 2.2 混凝土渗透破 坏 .................................... ........................................ (4) 2.2.1 破坏原 因 .......................... ............................. ............................. (4) 2.2.2 影响因 素 .......................... ............................. ............................. (5) 2.3 碱骨料反 应 ..................................... ........................................ (5) 2.3.1 破坏原 因 .......................... ............................. ............................. (5) 2.3.2 影响因 素 .......................... ............................. ............................. (6) 2.4 混凝土的碳 化 .................................... ........................................ (6) 2.4.1 破坏原 因 .......................... ............................. ............................. (6) 2.4.2 影响因 素 .......................... ............................. ............................. (7) 2.5 钢筋锈 蚀 ..................................... ........................................ (7) 2.5.1 破坏原 因 .......................... ............................. ............................. (7) 影响因 素 ..........................

试论混凝土结构的耐久性检测

试论混凝土结构的耐久性及其检测 摘要:混凝土结构是目前应用最广泛的工程结构,因此对现有混凝土结构及正在建设的混凝土结构进行的耐久性检测与评估就显得十分重要。本文结合作者的工作实际对混凝土结构的耐久性检测与评估过程进行讨论。 1、前言 混凝土结构在土木工程中得到应用以来,它的诸多优点已经得到充分体现,因此混凝土结构是目前应用最广泛的结构。虽然混凝土结构具有寿命长和较长时间无需维护的特点,但任何结构在长期的自然环境和使用环境的双重作用下,其功能将逐步衰减,这是一个不可逆的客观规律。混凝土结构在外部因素及其自身内在因素作用下,其安全性和使用功能都将有所下降。在这种情况下,混凝土结构耐久性问题就日益突出。 从混凝土应用于土木工程至今,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限;这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化引起的,但更多的是由于结构的耐久性不足导致的;特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,导致钢筋锈蚀而使结构发生早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。 所谓混凝土结构耐久性,是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。国内外经验表明,混凝土对环境作用的抗力不够只是一个方面,施工质量差则是混凝土结构耐久性不良的主要原因之一。多种环境侵蚀会损害混凝土耐久性,但其中最主要的是钢筋锈蚀应起的混凝土开裂、剥落,钢筋断面减小,粘结力丧失,最终导致混凝土结构破坏,缩短使用寿命。 在施工、设计、维护等都会影响混凝土耐久性。常见的施工问题如混凝土质量不合格、钢筋保护层厚度不足都有可能导致钢筋提前锈蚀。另外,在混凝土结构的使用过程中,由于没有合理的维护而造成结构耐久性的降低也是不容忽视的,如对结构的碰撞、磨损以及使用环境的劣化,都会使混凝土结构无法达到预定的使用年限。 一位美国学者通过调查研究得出工程质量风险管理费用的“五倍定律”:对新建项目在钢筋防护方面在五个不同阶段的投资,每推迟一个阶段进行防护,其投入的资金分别是上一阶段的五倍。这四个阶段是建设阶段,始锈阶段,涨裂阶段,破坏阶段。所以对混凝土结构的耐久性检测与评估就显示出其重要性与必要性。我们国家现在正是进入大规模建设的阶段,在建设阶段投入必要的资金对混凝土结构进行必要的耐久性设计与施工控制,将大大减少后期对建筑维护的投资,真正做到使用寿命设计。 2、影响混凝土材料耐久性的机理

钢与混凝土组合梁

第四章 钢与混凝土组合梁 思考题: 1.组合梁是由哪几部分组成的?钢梁与混凝土板之间能够共同工作的条件是什么? 2.组合梁的设计计算理论有哪两种?一般各在什么情况下应用? 3.组合梁按塑性理论计算时,钢梁截面应满足哪些要求?为什么? 4.完全剪切连接组合梁按塑性理论计算时采用了哪些基本假定? 5.连续组合梁在受力性能和设计计算方面有什么特点? 6.连续组合梁按照弹性理论计算的原则和方法是什么? 7.连续组合梁按塑性理论计算时应满足哪些要求? 8.组合梁中的钢梁在哪些情况下可不进行整体稳定性验算? 9.什么是部分剪切连接?一般在什么条件下,采用部分剪切连接的设计方法? 10.在简支组合梁的变形计算中为什么采用折减刚度,而不直接采用换算截面刚度? 习题: 1.某平台次梁采用钢与混凝土简支组合梁,梁的跨度为6m ,梁间距为2m ,梁的截面尺寸见题图4.1。施工阶段和使用阶段的活荷载标准值分别为1.5kN/m 2和6kN/m 2,使用阶段活荷载的准永久值系数5.0=q ψ。平台上有30mm 厚水泥砂浆面层,钢梁与混凝土之间无温差。混凝土的强度等级为C25(2N/mm 9.11=c f ,24N/mm 1080.2?=c E ),钢材采用Q235钢(2N/mm 215=f ,2N/mm 125=v f ,25N/mm 1006.2?=s E )。钢梁与混凝土板之间采用栓钉连接件,以承受交界面上全部的纵向剪力.试按弹性理论进行以下内容的验算: 施工阶段:(1) 钢梁的受弯承载力;(2) 钢梁的受剪承载力;(3) 钢梁的挠度; 使用阶段:(1)组合梁的受弯承载力;(2) 组合梁的受剪承载力;(3) 组合梁 的挠度;(4) 钢梁腹板的局部稳定性;(5) 剪切连接件设计。

2016继续教育-混凝土力学性能检测

千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注: 第4题 结果计算精确至()MPa。 A.0.1 B.1 C.10 D.100

您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答案:B,C,D 您的答案:B,C,D 题目分数:13 此题得分:13.0 批注: 第7题 对中状态下,读数应和它们的平均值相差在20%以内,否则应重新对中试件后重复6.6中的步骤。如果无法使差值降到20%以内,则此次试验无效。 答案:正确 您的答案:正确

混凝土的耐久性和可持续发展问题述评_周维

混凝土技术发展的一个终极目标是最大限度地延长其使 用寿命,也即耐用性(Serviceability)问题。这就对混凝土的长期性能特别是耐久性提出了更高的要求。另外一个很重要的问题是混凝土技术的可持续发展,其目标就是要使混凝土技术的发展与资源、环境等实现良性循环,尽量减少造成修补或拆除的浪费和建筑垃圾,大量利用优质的工业废弃物和矿石,尽量减少自然资源和能源的消耗,减少对环境的污染[1]。 1混凝土的耐久性 混凝土的耐久性可定义为“在使用过程中经受气候变化、化学侵蚀、磨蚀等各种破坏因素的作用而能保持其使用功能 的能力”[2-3] 。一般混凝土建筑物的使用寿命要求在50年以上,很多国家对桥梁、水电站大坝、海底隧道、海上采油平台、核反应堆等重要结构的混凝土耐久性要求在100年以上。气候条件适中的陆上建筑物,应要求混凝土在200年内安全使用。我国GB50010—2002《混凝土结构设计规范》规定,混凝土的耐久性设计应按照环境类别和设计使用年限进行,分为50年和100年2个耐久性预期目标,对于重大、重要工程应按照100年寿命来设计混凝土。近几年来,我国已有不少工程的混凝土设计寿命达到100年,这些工程大都结合环境条件和特点,采取专门有效的措施,以充分保证混凝土工程的耐久 性设计要求。比较著名的百年工程有三峡大坝、东海大桥、南 京地铁1号线、崇明越江通道北港桥梁、重庆朝天门大桥空心桥墩、杭州湾大桥等[4]。 但是近几十年以来,混凝土构筑物因材质劣化造成失效以至破坏崩塌的事故在国内外也是屡见不鲜,并有愈演愈烈之势。 国际上混凝土的大量使用始于20世纪30年代,到五六十年代达到高峰[1]。许多发达国家每年用于建筑维修的费用都超过新建的费用。 过去,除了大型水利工程外,我国混凝土工程的耐久性问题长期不受重视,混凝土结构没有达到预期的使用寿命,受环境作用过早破坏的实例很多,由此造成的经济损失也很大。由于许多工程设计只满足荷载要求,而没有提出耐久性的要求,使已建成的混凝土构筑物存在耐久性隐患。我国在50年代兴建的水电站大坝有很多已经成为“病坝”,我国的混凝土工程量在改革开放30多年来突飞猛进,可以预见,耐久性不佳的混凝土工程的劣化问题将会日趋严重。因此,混凝土耐久性问题越来越受到人们的重视。1.1混凝土的耐久性破坏 混凝土耐久性涉及到混凝土性能的方方面面,是影响混凝土使用寿命的首要因素。造成混凝土耐久性不佳的原因多种多样,主要可分为:(1)物理破坏:由温度变化引起的收缩膨胀裂缝(这是由于混凝土内骨料和硬化水泥浆体不同的温度膨胀系数而引起),如冻融循环、除冰盐分对混凝土的剥蚀等;(2)化学破坏:由混凝土内部材料引起的碱骨料反应以及外部侵蚀性离子(Cl-)引起的诸如钢筋锈蚀、硫酸盐侵蚀(SO42-)以 混凝土的耐久性和可持续发展问题述评 周维1,朱惠英2 (1.广西建筑工程质量检测中心,广西南宁 530011; 2.广西建筑科学研究设计院,广西南宁530011) 摘要:从提高混凝土耐久性和混凝土技术可持续发展方面概述现代混凝土技术的发展趋势和发展方向。混凝土技术发展的根 本方向是坚持可持续发展战略,在与地球资源环境和谐共生的发展基础上,最大限度地改善混凝土的耐久性,提高其使用寿命。 关键词:混凝土;耐久性;可持续发展中图分类号:TU528 文献标识码:A 文章编号:1001-702X(2007)09-0077-05 Reviewofdurabilityandsustainabledevelopmentofconcrete ZHOUWei1,ZHUHuiying2 (1.GuangxiBuildingEngineeringQualityInspectionCenter,Nanning530011,Guangxi,China;2.GuangxiBuildingScienceResearch&DesignInstitute,Nanning530011,Guangxi,China) 收稿日期:2007-05-12 作者简介:周维,男,1965年生,广西柳州人,高级工程师。通迅联系 人: 朱惠英。 全国中文核心期刊

钢-砼组合梁施工工艺

钢-砼组合梁施工工艺标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

钢-砼组合梁施工方法与施工工艺 按设计要求,主线桥每个钢梁分六段、H匝道桥分四段工厂制作,现场拼装,通过高强螺栓连接。 一、钢梁制作 钢梁制作选择有施工资质的工厂制造。 我单位提供钢箱梁全部设计详图及设计说明。另外结合施工现场情况,提供必要的施工安装说明等。 制作过程中,会同监理单位进行质量检验验收。并要求工厂提供各种材质试验、焊接试验及钢结构探伤试验报告;提供构件编号及工地预拼图。 焊缝要求:所有对接接头均为Ⅰ级焊缝;腹板与上翼板及底板之间为双面贴角焊缝,焊缝标准为Ⅰ级;其他焊缝均为Ⅱ级。 桥梁钢结构内外表面均须进行二次除锈(污)。第一次是钢材进厂之后在下料之前要进行一次预处理-喷丸(在喷丸机上进行)。并及时涂装车间底漆(约15-20μm)。第二次钢构件焊接成型后在涂装之前要进行一次喷砂(金刚砂)喷砂要在密闭空间、保温保湿的条件下进行(内表面不喷砂)。钢板外露面喷底漆和面漆等。 二、钢梁运输 钢梁制作完成后,经验收达到要求后由工厂运输至工地预拼场,运输采用预先制订的装车及运输方案进行,保证钢梁各种构件不致损伤、变形。 三、钢梁工地试拼装、钢梁组合连接 钢梁运至现场后,在吊装前需要进行试拼装。钢梁试拼前,应根据事先计算的预拱度和准确试拼位置;预先制造好胎模,确保试拼达到要求后,便于钢梁组合连接。钢梁组合拼装时,对容易变形的够应进行强度和稳定性验算,必要时采取加固措施。钢梁拼装、连接过程中,每完成一节应测量其位置、轴线、标高和预拱度,如有不符和要求即进行校正。钢梁连接高强度螺栓,长度与施工图一致,安装时应按顺序穿入孔内,方向全桥一致,不得强行穿入,且施工的预拉力应符合规范要求。 四、钢梁移梁及吊装就位 根据工地现场情况,采用增设临时支承,通过在广深高速公路两侧支立的两台220吨吊车,将钢梁段吊放在永久桥墩和临时支承上,进而进行钢梁连

混凝土耐久性试验室

《混凝土耐久性试验室“浙商品牌杭州中测”》 一、概述 本试验系统是一种综合性的多功能气候模拟试验设备,其能够在一定范围内模拟自然环境中的温湿度、日照、淋雨、盐雾(NaCl、MgCl2等)、冻融与干湿交替、盐溶液(氯盐、硫酸盐、镁盐)中的腐蚀与干湿交替、大气、CO2、NOx、SO2气体等环境,实现对水泥(沥青)混凝土耐久性的评定。主要功能是在一定空间内模拟一种或多种气候条件状态,可进行混凝土试件的高温干燥试验、低温冻融试验、湿热寒潮试验、高低温交变循环试验、、温湿交变循环试验、盐雾试验、淋雨试验、光照试验及具有盐类或化学物质浸蚀的试验等,为试验样品提供多种环境条件和不同的测试手段,并实现不同环境耦合的模拟试验、不同环境与荷载耦合试验,包括气候环境与力学荷载作用的综合、气候环境与腐蚀工业环境的综合等,且充分考虑试验的综合环境设置、荷载施加反力架的布置、腐蚀环境下加载方式和设备防护等多种综合因素。本试验系统是以“工程应用环境模拟与仿真”为基础,提供了在不同的工程应用环境条件下,为工程材料提供多种环境条件和不同的测试手段下耐久性能的智能环境模拟测试系统。 防腐蚀处理:系统材料、设备及相关附属配件均选用高耐腐蚀性SUS316不锈钢材料和非金属复合材料;有关电器元件均进行隔离或密封防腐蚀处理,系统设计时对试验装置的整体及与腐蚀介质接触的各个部件、管路、电器元件都进行了防腐和密封设计,包括材质、部件的连接、节点的处理等均具有一定的防腐质保年限。

二、满足标准: GB-T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 三、主要技术规格及参数: 1 工作室尺寸: 3500×4300×2000(宽×长×高)mm 2 温度范围:-20℃~+60℃ 3 温度偏差:±3℃ 4 温度波动度:≤±1℃ 5盐水浓度:3~5% 6.雾粒大小: (5~10)um 7.盐水流量:150~250L/h 8.人工雨方向:垂直向下 9.承重: 2吨/车×2辆 10.试件尺寸: 2500×600×500(mm) 11.试件数量:两件 12.制冷系统冷却方式:风冷式 13.温度控制方式: PID控制方式 14.光源:紫外灯管(UVA) 15.灯管距试件距离: 50mm 16.灯管间距: 70mm 17.碳化试验:通过流量、时间控制浓度,CO2气体浓度用进口浓度仪控制。 18.电源: 380V±10%,50Hz,120KW

钢一混凝土组合梁

钢-混凝土组合梁 钢-混凝土组合梁(以下简称组合梁)是在钢结构和混凝土结构基础上发展起来的一种新型梁,通常其肋部采用钢梁,翼板采用混凝土板,两者间用抗剪连接件或开孔钢板连成整体。抗剪连接件是钢梁与混凝土板共同工作的基础,它沿钢梁与混凝土板的交界面设置。两种材料按组合梁的形式结合在一起,可以避免各自的缺点,充分发挥两种材料的优势,形成强度高、刚度大、延性好的结构形式。近几年,钢-混凝土组合梁在我国的应用实践表明,它不仅可以很好地满足结构的功能要求,而且还具有良好的技术经济效益。 钢-混凝土组合梁的特点 钢-混凝土组合梁可以广泛的用于建筑结构和桥梁结构等领域。对比钢梁和钢筋混凝土梁,钢-混凝土组合梁具有以下主要特点: (1)由于混凝土板与钢梁共同工作,可以充分发挥钢材与混凝土材料各自材料特性;另外,钢-混凝土组合梁与钢板梁相比节省钢材约20%-40%,可以降低造价。 (2)增大梁的截面刚度,降低梁的截面高度和建筑高度。 (3)组合梁的混凝土受压翼板增加了梁的侧向刚度,防止了主梁在使用荷载下的扭曲失稳。 (4)降低冲击系数,抗冲击、抗疲劳和抗震性能好。 (5)可以节省施工支模工序和模板,有利于现场施工。 钢-混凝土组合梁发展 钢-混凝土组合梁结构是在钢结构和钢筋混凝土结构基础上发展起来的一种新型结构,其与木结构、砌体结构、钢筋混凝土结构和钢结构并列,已经扩展成为第五大结构(组合结构),它是通过连接件把钢梁和混凝土板连接成整体而共同工作的受弯构件。在荷载作用下,混凝土板受压而钢梁受拉,充分发挥钢材与混凝土的材料特性,实践表明,它兼顾钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,将成为结构体系的重要发展方向之一,作为组合结构体系中重要的横向承重构件的钢-混凝土组合梁在建筑及桥梁结构等领域必将具有广阔的应用前景。其发展过程大致经历以下四个阶段: 1、20世纪20年代--30年代。萌芽阶段。 钢一混凝土组合梁的研究始于1922年,MackayMH在加拿大Domion桥梁公司进行了两根外包混凝土钢梁试验,同时英国国家物理实验室也进行了外包混凝土钢梁的试验,随后在30 年代中期出现了钢梁和混凝土翼板之间的多种抗剪连接构造方法,可以看到处于萌芽阶段的研究主要集中于考虑防火需要的外包混凝土钢梁及实用连接件的研究,而未考虑两者的组合工作效应,这一阶段探索性的研究为后续钢-混凝土组合梁的蓬勃发展奠定了一定的基础。 2、20世纪40年代~60年代。发展阶段 这一阶段是组合梁发展的第二阶段,在这一阶段,许多技术先进的国家对组合梁开展了比较深入的试验研究,对组合梁的分析基本上按照弹性理论进行分析,并制定了相关的设计规范和规程,使得组合梁的应用在科学指导下逐渐普及。 3、20世纪60年代~80年代,全面研究,实用阶段 由于钢-混凝土组合梁具有广泛的应用前景,组合梁的研究工作进一步得到深化,在总结以往研究和应用成果的基础上,进一步改进和完善了组合梁的有关设计规范或规程,组合结构的应用和发展逐步成熟,几乎日趋赶上钢结构的发展,并广泛重视,研究工作重点也由简支梁研究转而开始了连续梁的研究,由完全剪力连接转为部分剪力连接;由考虑允许应力设计方法转为考虑极限状态设计方法;由弹性理论分析转为塑性理论分析。

混凝土结构耐久性影响因素

浅谈影响混凝土结构的耐久性主要因素及防护措施随着混凝土的广泛应用,混凝土的耐久性也越来越受到人们的关注了,在实际工程中,混凝土工程质量的优劣对整个工程质量有着举足轻重的影响。混凝土结构以其整体性好、耐久性好、可塑性强、维修费用少等优点广泛使用于整个20世纪,发现混凝土的耐久性问题则是在60至70年代。一些发达国家的混凝土桥使用了三四十年后,纷纷进入老化期。人们始料不及的是混凝土材料在不利的环境、运用条件下,出现了一系列影响结构耐久性的物理、化学现象,如结构混凝土的碳化、保护层剥落、裂缝的发展、钢筋锈蚀、渗透冻融破坏、混凝土集料的化学腐蚀等等。我国七十年代后期建造的混凝土桥梁亦发现有严重的开裂现象。因而混凝土结构的耐久性问题已成为结构工程师们不容忽视的一个问题。 混凝土结构的耐久性概括起来是指混凝土抵抗周围不利因素长期作用的性能。结构耐久性问题主要表现为:混凝土损伤;钢筋的锈蚀、脆化、疲劳、应力腐蚀;以及钢筋与混凝土之间粘结锚固作用的消弱等三个方面。从短期效果而言,这些问题影响结构的外观和使用功能;从长远看,则为降低结构安全度,成为发生事故的隐患,影响结构的使用寿命。下面从影响混凝土结构耐久性的主要因素和提高耐久性的技术措施两个方面来探讨混凝土的耐久性问题。 影响混凝土耐久性的主要因素有这么几点: (1)抗冻失效。 原因:混凝土的抗冻性等级过低。寒冷地区,有较长的冰冻期,渗入到混凝土中的水结冰又融化,如此反复,使混凝土的裂缝不断扩大,导致结构慢性破坏作用。冻融的结果,加剧了碱-骨料反应、盐腐蚀的破坏作用。碱-骨料反应、盐腐蚀、冻融作用是混凝土结构的三大主要破坏因素,都因水进入混凝土内部引起。混凝土结构是多孔的,在塑性期或硬化初期会因水分蒸发造成早期开裂。在以后的使用过程中,早期产生的裂缝会随着反复荷载的冲击逐渐扩展。如果没有完善的防水系统,带有腐蚀性物质的水就会从孔隙渗入到混凝土中和从裂缝中流入到混凝土中。在混凝土内部产生的损害,它导致混凝土性质改变。 处理方法:1,调整配合比方法。主要适用于在0℃左右的混凝土施工。具体做法:①选择适当品种的水泥是提高混凝土抗冻的重要手段。试验结果表明,应使用早强硅酸盐水泥。该水泥水化热较大,且在早期放出强度最高,一般3d抗压

混凝土耐久性试验方法标准汇编

青藏铁路高原冻土区 混凝土耐久性试验方法标准汇编 青藏铁路混凝土耐久性试验中心 二○○二年八月 前言 本标准手册是按照《青藏铁路高原冻土去混凝土耐久性技术条件》(科技基函[2002]56号文发布实施)的要求编辑的,能有效方便的指导青藏铁路各施工单位和各质量监督检查部门开展混凝土试验工作。保证青藏铁路高原冻土地区桥涵、隧道、轨枕、电杆、房屋建筑、路基支挡用混凝土的施工质量。 本手册共八篇十二章。 手册编辑单位:青藏铁路混凝土耐久性试验中心 手册编写人员:谢永江黄丹仲新华张勇杨富民 目录 前言 (1) 目录 (2) 第一章抗冻性能试验方法(快冻法) (3) 第二章抗渗性能试验方法 (6) 第三章钢筋锈蚀试验方法(硬化砂浆法) (7) 第四章混凝土抗氯离子渗透性能试验方法 (9) 第五章水泥抗硫酸盐侵蚀快速试验方法 (16) 第六章混凝土用骨料碱活性试验方法(快速砂浆棒法) (19) 第七章水泥胶砂耐磨性试验方法 (25)

第八章混凝土抗裂性能试验方法 (22) 第一章抗冻性能试验方法(快冻法) 第1.1条本方法适用于在水中经快速冻融来测定混凝土的抗冻性能。快冻法抗冻性能的指标可用能经受快速冻融循环的次数或耐久性系数来表示。 本方法特别适用于抗冻性要求高的混凝土。 第1.2条本试验采用100×100×400毫米的棱柱体试件。混凝土试件每组3块,在试验过程中可连续使用,除制作冻融试件外,尚应制备同样形状尺寸,中心埋有热电偶的测温试件,制作测温试件所用混凝土的抗冻性能应高于冻融试件。 第1.3条快冻法测定混凝土抗冻性能试验所用设备应符合下列规定。 一、快速冻融装置能使试件静置在水中不动,依靠热交换液体的温度变化而连续、自动地按照本方法第1.4条第五款的要求进行冻融的装置。满载运转时冻融箱内各点温度的极差不得超过2℃ 二、试件盒由1~2毫米厚的钢板制成。其净截面尺寸应为110×110毫米,高度应比试件高出50~100毫米。试件底部垫起后盒内水面应至少高出试件顶面5毫米。 三、案秤称量10公斤,感量5克,或称量20公斤,感量10克。 四、动弹性模量测定仪共振法或敲击法动弹性模量测定仪。 五、热电偶、电位差计能在20~-20℃范围内测定试件中心温度。测量精度不低于±0.5℃。 第1.4条快冻法混凝土抗冻性能试验应按下列规定进行: 一、试件成型按照GBJ82-85进行,蒸养预制构件(含梁)的混凝土试块应在与预制构件相同的养护条件下养护,再在标准养护条件下养护28天;其它混凝土试块应在施工现场取样制作,并在与结构物相同的养护条件下养护28天,然后继续标养28天。 冻融试验前四天应把试件从养护地点取出,进行外观检查,然后在温度为15~20℃水中浸泡(包括测温试件)。浸泡时水面至少应高出试件顶面20毫米,试件浸泡4天后进行冻融试验。 二、浸泡完毕后,取出试件,用湿布擦除表面水分,称重,并按本标准动弹性模量试验的规定测定其横向基频的初始值。 三、将试件放入试件盒内,为了使试件受温均衡,并消除试件周围因水分结冰引起

混凝土结构耐久性研究

混凝土结构耐久性 1.1 混凝土结构耐久性问题的重要性 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,且一直被认为是一种非常耐久性的结构形式,其应用范围非常广泛。 然而,从混凝土应用于建筑工程至今的150年间,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限。这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的。特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,尤其是钢筋的锈蚀而造成结构的早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。耐久性失效是导致混凝土结构在正常使用状态下失效的最主要原因。 国内外统计资料表明,由于混凝土结构耐久性病害而导致的损失是巨大的,并且耐久性问题越来越严重。结构耐久性造成的损失大大超过了人们的估计。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。 因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。 正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。 图1-1 混凝土结构耐久性研究框架 ?????????????????????????????????????????????????耐久性评估耐久性设计结构层次构件承载力的变化粘结性能衰退模型混凝土锈胀开裂模型构件层次钢筋锈蚀碱-集料反应冻融破坏氯盐腐蚀混凝土碳化材料层次工业环境土壤环境海洋环境大气环境环境层次混凝土结构耐久性

混凝土结构耐久性试验系统

《混凝土结构耐久性试验系统“浙商品牌杭州中测”》 一、概述 本试验系统是一种综合性的多功能气候模拟试验设备,其能够在一定范围内模拟自然环境中的温湿度、日照、淋雨、盐雾(NaCl、MgCl2等)、冻融与干湿交替、盐溶液(氯盐、硫酸盐、镁盐)中的腐蚀与干湿交替、大气、CO2、NOx、SO2气体等环境,实现对水泥(沥青)混凝土耐久性的评定。主要功能是在一定空间内模拟一种或多种气候条件状态,可进行混凝土试件的高温干燥试验、低温冻融试验、湿热寒潮试验、高低温交变循环试验、、温湿交变循环试验、盐雾试验、淋雨试验、光照试验及具有盐类或化学物质浸蚀的试验等,为试验样品提供多种环境条件和不同的测试手段,并实现不同环境耦合的模拟试验、不同环境与荷载耦合试验,包括气候环境与力学荷载作用的综合、气候环境与腐蚀工业环境的综合等,且充分考虑试验的综合环境设置、荷载施加反力架的布置、腐蚀环境下加载方式和设备防护等多种综合因素。本试验系统是以“工程应用环境模拟与仿真”为基础,提供了在不同的工程应用环境条件下,为工程材料提供多种环境条件和不同的测试手段下耐久性能的智能环境模拟测试系统。 防腐蚀处理:系统材料、设备及相关附属配件均选用高耐腐蚀性SUS316不锈钢材料和非金属复合材料;有关电器元件均进行隔离或密封防腐蚀处理,系统设计时对试验装置的整体及与腐蚀介质接触的各个部件、管路、电器元件都进行了防腐和密封设计,包括材质、部件的连接、节点的处理等均具有一定的防腐质保年限。

二、满足标准: GB-T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 三、主要技术规格及参数: 1 工作室尺寸: 3500×4300×2000(宽×长×高)mm 2 温度范围:-20℃~+60℃ 3 温度偏差:±3℃ 4 温度波动度:≤±1℃ 5盐水浓度:3~5% 6.雾粒大小: (5~10)um 7.盐水流量:150~250L/h 8.人工雨方向:垂直向下 9.承重: 2吨/车×2辆 10.试件尺寸: 2500×600×500(mm) 11.试件数量:两件 12.制冷系统冷却方式:风冷式 13.温度控制方式: PID控制方式 14.光源:紫外灯管(UVA) 15.灯管距试件距离: 50mm 16.灯管间距: 70mm 17.碳化试验:通过流量、时间控制浓度,CO2气体浓度用进口浓度仪控制。 18.浸润试验:既可手动控制浸润,也可实现自动周期浸润。

浅议钢筋混凝土梁与钢-混凝土组合梁

浅议钢-混凝土组合梁与钢筋混凝土梁 摘要:分析钢-混凝土组合梁与钢筋混凝土梁的设计和计算的异同,重点探讨钢-混凝土组合梁与钢筋混凝土梁的变形特点、裂缝、受弯承载力,在分析的基础上,加深对其的了解,从而知道钢-混凝土组合梁是组合结构中最常见的组合构件之一,是在钢结构和混凝土结构基础上发展起来的一种新型梁,它是由钢筋混凝土翼缘板,钢梁肋部和抗剪连接件组成的整体受力构件。钢与混凝土组合梁结构充分利用了钢材受拉性能好和混凝土受压性能好的特点,是将两种材料通过连接件组合成整体而共同工作发挥作用的一种新型结构。钢筋混凝土梁形式多种多样,是房屋建筑、桥梁建筑等工程结构中最基本的承重构件,应用范围极广。 关键词:钢-混凝土组合梁、钢筋混凝土梁、变形、受弯、裂缝 前言:钢-混凝土组合梁是由钢梁、连接件和钢筋混凝土板组成,而钢筋混凝土梁是用钢筋混凝土材料制成的梁。钢-混凝土组合梁的上翼缘有截面面积较大的钢筋混凝土板承受压力,致使钢梁上翼缘截面减小,从而节约钢材,钢梁下翼缘则承受拉力,这是组合梁的受力特点。钢筋混凝土梁既可作成独立梁,也可与钢筋混凝土板组成整体的梁-板式楼盖,或与钢筋混凝土柱组成整体的单层或多层框架。 1、变形 1.1钢-混凝土组合梁 1.1.1 在荷载保持不变的情况下,由于混凝梁发生收缩徐变,组合梁的变形将不断增加。 1.1.2 混凝土的收缩徐变受到钢梁的约束,组合梁截面中将产生内力重分布,这种内力重分布也会对组合梁的长期变形产生影响[1]。 中国现行《钢结构设计规范))(G B50017,送审稿) [2] 和《公路桥涵钢结构及木结构设计规范》(JTJ025-86)[3]中均采用降低棍凝土弹性模量的方法来考虑混凝土收缩徐变对组合梁长期变形的影响,混凝土长期荷载作用下的有效弹性模量E为

混凝土结构耐久性论文

混凝土结构耐久性探析 摘要:混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。本文分析了混凝土结构耐久性影响因素,探讨了提高混凝土结构耐久性的措施。 关键词:混凝土;结构;耐久性 abstract: the durability of concrete is refers to the concrete in the use of conditions, the resistance of various factors in the surrounding environment without destroying long-term effects of ability. this paper analyzes the factors affecting the durability of concrete structure, and probes into the measures to improve the durability of concrete construction. keywords: concrete; structure; durability 中图分类号:tv331文献标识码:a 文章编号: 混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。环境对混凝土结构的物理化学作用以及混凝土结构抵御环境作用的能力,是影响混凝土结构耐久性的因素,对现有混凝土结构进行的耐久性检测与评估十分重要。 曾有调查表明 ,国内大多数工业建筑在使用25一30年后即需大修 ,处于严酷环境下的建筑物的使用寿命仅15 一20年 ,桥梁、港口等基础设施工程尤其严重。许多工程建成后几年就出现钢

混凝土耐久性评定的方法和处理

混凝土耐久性评定的方法和处理 【摘要】耐久性是混凝土检验评定的重要工作,其中最重要的包括抗冻性,抗渗性和大气稳定性方面,本文提出检验评定方面问题及具体方法。 【关键词】耐久性验评;抗冻等级;渗透性;氯离子评价 砼耐久性检验评定是一项十分重要的工作,关系到建筑砼结构的全部检验和评定,其中最重要的包括抗冻性、抗渗性和大气稳定性方面,提出检验评定方面存在的一些问题及相应的处理措施。 1 砼抗冻等级确定方法存在的问题 砼抗冻等级是衡量砼耐久性的一个重要指标。现在国家修订的标准中规定砼抗冻等级的试验方法,无论是快冻法还是慢冻法,都会使砼试块在冷冻前后完全处于水中浸泡和融化并吸收水分。其中存在的缺陷是:试块吸收水分后的含水率多少完全取决于砼试块在水中的吸水性,与完全暴露在自然环境中的实际含水率无关联性。另一个是试块完全浸在水中后,其含水率高低同时受水压力和毛细孔压力的双重影响;而暴露在自然环境中且同时临近水面的砼(水位变化处),其实际含水率同时受毛细孔压力和毛细孔凝结现象(吸湿)的双重影响,两者之间也无好的相关性。 如果根据这种抗冻试验方法确定的抗冻等级,也只能反应在规定饱和水状态下砼的抗冻性,并不能完全反应砼在自然环境中的真实抗冻性。其结果是在水中吸水性低的砼冻融循环次数多,抗冻等级则高。但砼在自然环境中的吸湿性及砼孔隙体积的吸湿性却都可能

大,砼的含湿率特别是相对于砼孔隙体积的含湿率反而更高,导致砼的实际抗冻性并不一定好,甚至比抗冻等级低的砼还要差。即使是处于自然环境中临近水面的砼,由于其含水率的高低与完全浸于水中的砼含水率不同,实际抗冻性与设计标准规定的抗冻试验结果也会不同。 2 对砼抗冻等级确定方法的处理 建筑砼的大部分结构处于自然环境中,实际含水率主要取决于砼在大气环境的吸湿性。暴露在自然环境中且同时临近水面的砼含水率,既取决于砼的吸湿性,又取决于砼在毛细孔压力作用下的吸水性。对此为了能更好地反映和评价砼工程的真实抗冻性,要求做到:2.1对于完全暴露在自然环境中的砼结构件,要重点考虑砼结构在大气环境的抗冻性。抗冻融试验方法应将水融法改为气融法。具体的试验方法可以将砼试块放在蒸气养护室或蒸气养护箱内进 行吸湿和融化,然后再放入冰箱中冷冻。砼抗冻等级的确定也应按气融法为依据,才能够较好的反映多数砼结构在实际使用环境中抗冻性。 2.2对于完全暴露在自然环境中且同时临近水面的砼工程,要同时考虑砼的吸湿性和砼在毛细孔压力作用下的吸水性对砼抗冻 性的影响。因此在进行气融法冻融试验的过程中,融化时将试块的底西面与水面保持接触,使试块同时受毛细孔吸水性和吸湿性的双重影响,然后再进行冷冻试验。 3 砼水压渗透测试方法存在的问题

相关文档