文档库 最新最全的文档下载
当前位置:文档库 › 热电偶与热电阻温度对照表

热电偶与热电阻温度对照表

热电偶与热电阻温度对照表
热电偶与热电阻温度对照表

热电阻

温度(℃) PT100电阻值

(Ω) Cu50电阻值

(Ω)

Cu53电阻值

(Ω)

Cu100电阻值

(Ω)

-50 80.31 39.24 41.74 78.49. -40 84.27 41.40 43.99 82.80 -30 88.22 43.55 46.24 87.10 -20 92.16 45.70 48.50 91.40 -10 96.09 47.85 50.75 95.70 0 100.00 50.00 53.00 100.00 10 103.90 52.14 55.25 104.28 20 107.79 54.28 57.50 108.56 30 111.67 56.42 59.75 112.84 40 115.54 58.56 62.01 117.12 50 119.40 60.70 64.26 121.40 60 123.24 62.84 66.52 125.68 70 127.07 64.98 68.77 129.96 80 130.89 67.12 71.02 134.24 90 134.70 69.26 73.27 138.52 100 138.50 71.40 75.52 142.80 110 142.29 73.54 77.78 147.08 120 146.06 75.68 80.03 151.36 130 149.82 77.83 82.28 155.66 140 153.58 79.98 84.54 159.96 150 157.31 82.13 86.79

热电偶

TCB 铂铑30 铂铑60 0 ~ 14mV 对映0~1820度TCE 镍铬-铜镍-10~77mv 对映-270~1000度TCJ 铁-铜镍-8.1~69.536mv 对映-210~1200度TCK 镍铬-镍硅-6.5~55mv 对映-270~1372度TCK 镍铬硅-镍硅-4.4~48mv 对映-270~1300度TCS 铂铑10 -0.3~19mV 对映-50~1770度

TCT 铜-铜镍-6.3~21mV对映-270~400度TCR 铂铑13-铂0~20mV 对映0~1700度

热电偶测量误差分析(精)

热电偶测量误差分析 一、热电偶测温基本原理 将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,就构成热电偶。如图1所示。温度t端为感温端称为测量端,温度t0端为连接仪表端称为参比端或冷端,当导体A和B的两个执着点t和t0之间存在温差时,就在回路中产生电动势EAB(t,t0),因而在回路中形成电流,这种现象称为热电效应".这个电动势称为热电势,热电偶就是利用这一效应来工作的.热电势的大小与t和t0之差的大小有关.当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论知热电偶两端的热电势差可以用下式表示:EAB(t,t0)=EAB(t)-EAB(t0) 式中 EAB(t,t0)-热电偶的热电势; EAB(t)-温度为t时工作端的热电势; EAB(t0)-温度为t0时冷端的热电势。 从上式可看出!当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出EAB(t,t0)和知道EAB(t0)就可得到EAB(t),将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t值。 要真正了解热电偶的应用则不得不提到热电偶回路的几条重要性质: 质材料定律:由一种均质材料组成的闭合回路,不论材料长度方向各处温度如何分布,回路中均不产生热电势。这条规律要求组成热电偶的两种材料必须各自都是均质的,否则会由于沿热电偶长度方向存在温度梯度而产生附加电势,从而因热电偶材料不均引入误差。 中间导体定律:在热电偶回路中插入第三种(或多种)均质材料,只要所插入的材料两端连接点温度相同,则所插入的第三种材料不影响原回路的热电势。这条定律表明在热电偶回路中可拉入测量热电势的仪表,只要仪表处于稳定的环境温度即可。同时还表明热电偶的接点不仅可经焊接而成,也可以借用均质等温的导体加以连接。 中间温度定律:两种不同材料组成的热电偶回路,其接点温度分别为t和to时的热电势EAB(t,to)等于热电偶在连接点温度为(t,tn)和(tn,to)时相应的热电势EAB(t,tn)和EAB(tn,to)的代数和,其中tn为中间温度。该定律说明当热电偶参比端温度不为0℃时,只要能测得热电势EAB (t,to),且to已知,仍可以采用热电偶分度表求得被测温度t值。 连接导体定律:在热电偶回路中,如果热电偶的电极材料A和B分别与连接导线A1和B1相连接(如下图所示),各有关接点温度为t,tn和to,那么回路的总热电势等于热电偶两端处于t和tn温度条件下的热电势EAB(t,tn)与连接导线A1和B1两端处于tn和to温度条件的热电势EA1B1(tn,to)的代数和。 中间温度定律和连接导体定律是工业热电偶测温中应用补偿导线的理论依据。 二、各种误差引起的原因及解决方式 2.1 热电偶热电特性不稳定的影响

热电偶温度传感器设计报告

传感器课程设计 设计题目:热电偶温度传感器 2010年12月30日 目录 1、序言 (3) 2、方案设计及论证 (4)

3、设计图纸 (9) 4、设计心得和体会 (10) 5、主要参考文献 (11) 一、序言 随着信息时代的到来,传感器技术已经成为国内外优先发展的科技领域之一。测控系统的设计通常是从对象信息的有效获取开始的不同种

类的物理量不仅需要不同种类的传感器进行采集,而且因信号性质的不同,还需要采用不同的测量电路对信号进行调理以满足测量的要去。因此,触感其与检测技术在现代测量与控制系统中具有非常重要的地位。 而在所有的传感器中,热电偶具有构造简单、适用温度范围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合。 因此,我们想设计一种热电偶传感器能够在低温下使用,可以适用于试验和科研中,测量为温度范围:-200 ℃ ~500 ℃,电路不太复杂的简易的热电偶温度传感器,考虑到制作材料相对便宜,我们选择了铜-铜镍(康铜)。在选择测量电路时,我们从简单,符合测量范围要求及热电偶的技术特性,我们采用了AD592对T型热电偶进行冷结点的补偿电路。这种型号的电路允许的误差(0.5 ℃或0.004x|t|)相对于其他类型的热电偶具有测量温度精度高,稳定好,低温时灵敏度高,价格低廉。能较好的满足测量范围。 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,

K热电偶分度毫伏与温度换算表--实用.doc

K 型镍铬-镍硅(镍铬-镍铝)热电动势(mV)( JJG 351-84 )参考端温度为 0℃ 温度℃ 2 3 4 5 6 7 8 9 0 1 -50-1.889-1.925-1.961-1.996-2.032-2.067-2.102-2.137-2.173-2.208 -40-1.527-1.563-1.600-1.636-1.673-1.709-1.745-1.781-1.817-1.853 -30-1.156-1.193-1.231-1.268-1.305-1.342-1.379-1.416-1.453-1.490 -20-0.777-0.816-0.854-0.892-0.930-0.968-1.005-1.043-1.081-1.118 -10-0.392-0.431-0.469-0.508-0.547-0.585-0.624-0.662-0.701-0.739

-00-0.039-0.0790.118-0.157-0.1970.236-0.275-0.314-0.353 000.0390.0790.1190.1580.1980.2380.2770.3170.357 100.3970.4370.4770.5170.5570.5970.6370.6770.7180.758 200.7980.8380.8790.9190.960 1.000 1.041 1.081 1.122 1.162 30 1.203 1.244 1.285 1.325 1.366 1.407 1.448 1.489 1.529 1.570 40 1.611 1.652 1.693 1.734 1.776 1.817 1.858 1.899 1.940 1.981

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定 律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

DS18B20数字温度计设计实验报告

单片机原理及应用 课程设计报告书 题目:DS18B20数字温度计 姓名学号:20133522080 赵晓磊 20130123096 段石磊 20133522028 付成 指导老师:万青 设计时间: 2015年12月

电子与信息工程学院 目录 1.引言 (3) 1.1.设计意义 (3) 1.2.系统功能要求 (3) 2.方案设计 (4) 3.硬件设计 (2) 4.软件设计 (5) 5.系统调试 (7) 6.设计总结 (8) 7.附录 (9) 8.作品展示 (15) 9.参考文献 (17)

DS18B20数字温度计设计 1.引言 1.1. 设计意义 在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。其缺点如下: ●硬件电路复杂; ●软件调试复杂; ●制作成本高。 本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。 DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。 1.2. 系统功能要求 设计出的DS18B20数字温度计测温范围在-55~125℃,误差在±0.5℃以内,采用LED数码管直接读显示。

2. 方案设计 按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电 路和显示电路。 数字温度计总体电路结构框图如4.1图所示: 图4.1 3. 硬件设计 温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传 感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。 主控制器 单片机AT89C2051 具有低电压供电和小体积等特点, 两个端口刚好满足电路系统的设计需AT89C2051 主 控 制 器 DS18B20 显示电路 扫描驱动

热电偶的测温原理

热电偶的测温原理 摘要:通过对金属的接触电动势和温差电动势来进行简化的数学推导,从根源来阐述热电偶的工作原理,并通过实验来简化。从而系统地解释了热电偶的输入量(温度)和输出量(电流,电压)的线性关系。以及热电偶的选型要求,和材料性能。 关键词:热电效应、电动势、选型、材料; 0 引言 温度测量是通过某些测温物质的各种物理性能变化,例如固体的尺寸,密度,硬度 粘度,电导率,热辐射等的变化来判断被测物体的温度。在许多测量方法中,热电偶测温的应用为最广泛之一。主要优点:①接触式测温,准确度较高;②结构简单,体积小,安装方便;③测量范围广:-150oC----1600oC,采用特殊材料时可达2800oC。④热容量小,响应速度快,热电极不受形状限制 1热电偶传感器的工作原理 1.1 热电效应 如图1所示,由两种导体A,B 构成一个闭合回路,使两端结点处于不同温度下。回路中便产生热电势和电流。这种物理现象称为热电效应。 图 1 定义:导体A,B为热电极;测温结点处在T温度场下为测量端,或工作端,热端。结点处在To温度场下为参考端,或自由端,冷端。 1.2 热电偶中的电势 1.2.1接触电势(伯尔帖电势) 互相接触的两种金属导体内部因自由电子密度不同,当接触时两种导体在接触界面上会发生电子扩散。电子扩散的速率与自由电子的密度及金属所

处的温度呈正比。假定,金属A 的自由电子的密度为NA,金属B 的自由电子的密度为NB. 自由电子的密度大的向自由电子的密度小的方向扩散。 失去电子一方带正电,得到电子一方带负电。 这种扩散运动逐渐在界面上建立电势,类似于势垒,它又阻碍自由电子进一步扩散,产生了一个动态平衡。 图 2 接触电势的关系式: 图 3 K:波尔兹曼常数 J/K T:接触界面处的温度 e:电子电荷量 C NA,NB 分别为金属A,B 的自由电子密度. 对于To 结点有: 回路总接触电势: B A AB N N e kT T e ln )( =

热电偶传感器习题及答案

第九章热电偶传感器 一、单项选择题 1)正常人的体温为37C,则此时的华氏温度约为______,热力学温度约为______。 A. 32F,100K B. 99F,236K C .99F,310K D. 37F,310K 2)_____的数值越大,热电偶的输出热电势就越大。 A. 热端直径 B. 热端和冷端的温度 C. 热端和冷端的温差 D. 热电极的电导率 3)测量钢水的温度,最好选择______热电偶;测量钢退火炉的温度,最好选择_____热电偶;测量汽轮机高压蒸气(200C左右)的温度,且希望灵敏度高一些,选择______热电偶为宜。 A. R B. B C. S D. K E .E 4)测量CPU散热片的温度应选用______型的热电偶;测量锅炉烟道中的烟气温度,应选用______型的热电偶;测量100m深的岩石钻孔中的温度,应选用______型的热电偶。 A. 普通 B.铠装 C. 薄膜 D. 热电堆 5)在热电偶测温回路中经常使用补偿导线的最主要的目的是______。 A. 补偿热电偶冷端热电势的损失 B. 起冷端温度补偿作用 C. 将热电偶冷端延长到远离高温区的地方 D. 提高灵敏度 二、分析与问答 1、简述热电偶与热电阻的测量原理的异同。 2、设一热电偶工作时产生的热电动势可表示为E AB (t , t ),其中A、B、t、t 各代表什么意义? t 在实际应用时常应为多少? 3、用热电偶测温时,为什么要进行冷端补偿?冷端补偿的方法有哪几种? 三、计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时 的热电动势为,求被测的温度大小? 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料 制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作? 2)A、B开路是否影响装置正常工作?原因? 3)采用A`、B`的好处? 4)若已知t 01=t 02 =40℃,电压表示数为,则钢水温度为多少? 5)此种测温方法的理论依据是什么? 3、试说明下面各图中分别是测量哪些被测温度量? 习题答案:

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

热电偶测温基本原理

A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1) 在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3 ) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补

热电偶温度计的设计

热电偶温度计的设计 Xxx xxxxxxxx 计算机科学与工程学院 计算机科学与技术xxxxx 班 学号:xxxxxx 邮编:xxxxx 摘要 热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。 在本实验中利用点热偶测量温度,其基本原理就是热电效应。将两种不同的金属两端分别连接起来,构成一个闭合回路,一端加热一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计测量温度。 关键字 热电偶,温度差,电动势,水浴锅 前言 在做热电偶温度计设计这一实验中时,了解了热电偶和温度差现象, 引发了我对它的兴趣,经过自己的查阅资料成功设计出该实验的设计 方案。 实验仪器介绍 铜- 康铜温差电偶、数字电压表、水浴锅、保温杯 实验原理 1)温度差现象 把两种不同的导体(称为热电偶丝材或热电极)两端接合连接成回路,并使两接点处于不同温度,则回路中就产生电动势。这种现象称为塞贝克效应(热电效应)。这种电动势与两接点的温度及两材料性质有关,所以称为热电动势温差电现是由温差而引起电动势以及由电流而引起吸热和放热的现象,又称热电现象。它包括塞贝克、珀耳帖及汤姆孙等三个效

应。 塞贝克效应将两个不同导体(或半导体)两端相连,组成一回路,当两个接头处在不同温度时,在回路中有电动势产生的现象。1821 年由德国物理学家T. 塞贝克发现。这电动势称为温差电动势。金属的塞贝克效应常被应用于测量温度,而半导体的塞贝克效应常可被用来将热能直接转化成电能,即制成半导体温差发电器。 珀耳帖效应当有电流通过由两种不同材料组成的回路时,在两种材料的接头处会发生吸热或放热的现象。1834年由法国物理学家J. 珀耳帖发现。汤姆孙效应当有电流流过存在温度梯度的导体(或半导体)时,除焦耳热外,还会产生附加的吸热或放热的现象。1856 年由英国物理学家W.汤姆孙发现,称为汤姆孙效应。 热电偶 是利用温差电现象制成的一种元件。利用两种能产生显著温差电现象的金属丝(如铜和康铜)焊接而成。温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求准确度不太高时,可以取一级近似,写为 E=a+bt,式中,a 取决于参考点温度,b 称为温差系数,其大小决定了组成电偶材料的性质。热电偶就是由两种不同的金属材料焊接而成。其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为参考端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电动势。 使用时通常将一端(参考端)保持在一定的恒定温度(如0℃或

热电偶测量温度原理

1、2两点的温度不同时,回路中就会产生热电势,因而?就有电流产生,电流表就会?发生偏转,这一现象称为热?电效应(塞贝克效应),产生的电势、电流分别叫热电?势、热电流。 热电偶温度计属于接触式温度测量仪表。是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。显示仪表所测电势只随被测温度而t变化。 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对

MAX6675的温度传感器报告

课程设计 课程名称:传感器原理及应用 实验项目:热电偶温度传感器的设计 实验地点:信息学院传感器实验室 专业班级:电科1401班学号:2014001864 学生姓名:李康泽 2018年12月26日

太原理工大学课程设计任务书 1.课程设计完成后,学生提交的归档文件应按照:封面—任务书—说明书—图纸的顺序进行装订上交(大张图纸不必装订)。 2.可根据实际内容需要续表,但应保持原格式不变。

一、设计方案 设计中采用了两个方案,具体的方案见方案一和方案二。 方案一:分立元气件冷端补偿方案 该方案的热电偶冷端温度补偿器件是由分立元件构成的,其体积大,使用不够方便,而且在改变桥路电源或热电偶类型时需要重新调整电路的元件值。主要包括温度采集电路、信号放大电路、A/D转换电路、热电偶冷端补偿电路、数码管显示电路等。其系统框图如图1。 图1:分立元气件冷端补偿 方案二:集成电路温度补偿方案 采用热电偶冷端补偿专用芯片MAX6675,MAX6675温度转换芯片具有冷端温度补偿及对温度进行数字化测量这两项功能。一方面利用内置温度敏感二极管将环境温度转换成补偿电压,另一方面又通过模数转换器将热电势和补偿电压转换为代表温度的数字量, 将二者相加后从串行接口输出测量结果,即为实际温度数据。主要包括温度采集电路、MAX6675温度转换电路、数码管显示电路等。其系统框图如图2。 图2:集成电路温度补偿方案

测温的模拟电路是把当前K型热电偶传感器的电阻值,转换为容易测量的电压值,经过放大器放大信号后送给A/D转换器把模拟电压转为数字信号,再传给单片机AT89S51,单片机再根据公式换算把测量得的温度传感器的电阻值转换为温度值,并将数据送出到数码管进行显示。 综合对比以上两种方案,方案一电路复杂,且测量不精确照成误差较大,方案二采用集成温度转换芯片不仅能很好的解决冷端温度补偿及温度数值化问题,并消除由热电偶非线性而造成的测量误差,且精确度高,可实现电路的优化设计。故最后采用方案二。 二、传感器的选择: 物体的冷热水平可以通过温度来衡量,从分子水平看,又可以表示物体分子运动状态,温度越高,分子运动越猛烈。物体温度改变后显示出的一些特点只可以由温度间接测量。最基本的环境方法——温度,对周边环境会产生重要影响、和人们的衣食住行、农业生产等方面密不可分。温度的测量在工业、农业生产中必不可少,在工业生产中甚至需要时刻观察温度的变化。所以通过对温度的测量和测温设备的研究具有非比寻常的意义。 在社会生产力的不断提高下,对温度测量系统收集的温度数据方法要求越来越高,已经渗透到社会方方面面。温度的测量主要应用于工业、农业这两大领域。在这两大领域中,无论是机械的正常运转还是农作物的蓬勃生长,都离不开温度的测量。在工业生产中,由于生产环境的限制,员工不可长时间停留观察设备运行正常或因为其他原因不能在现场。这是找到最佳的方式收集数据的迫切需要,将数据发送到一个比较好操作的控制室,便于工作人员对数据的分析与处理;在农业生产上,对温室大棚的温度监测,以前都是选择分区取样的人工处理方式,工作辛苦,精确度不高。而且在实际操作中,因为大棚的诸多环境限制因素,例如占地面积广、测量点分散而且数目多,所以这种测量方式已经被淘汰。当前的科技水平下,为了取得更大的效益促使我们必须找到一种精确、简便易行的温度采集测量方法。在科学技术的不断发展下,现代社会对各种参数:准确度和精密度的要求有一个几何增长。在以此基础上,如何快速、准确获取这些参数需要依

热电偶测温原理

热电偶测温原理 教育知识 热电偶测温原理与检定 前言 热电偶是热电效应理论的具体应用,它在温度测量中得到了广泛的应用。热电偶具有结构简单,容易制造,使用方便和测量精度高等优点。 本论文阐述了热电偶的测温原理、热电偶的安装使用方法以及热电偶检定等方面,特别重点讨论了热电偶的测温原理和检定方法,以便能重点突出本论文的写作目的及观点。通过撰写此论文,使自己能更进一步地掌握和熟悉这些关于热电偶的知识点,为以后在工作岗位上的实践和对热电偶进一步的讨论中打下坚实而有力的基础。 撰写人:王彭 2006年1月12日 摘要:热电偶的测温原理是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 关键词:原理,使用,检定,实例 热电偶测温原理与检定 第一章热电偶测温原理及正确使用 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶

仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1—1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。这一现象现今称为温差电效应或塞贝克效应,相应的电势称为温差热电势或塞贝克电势,它在热电偶回路中产生的电流称为热电流。A、B称为热电极,接点a是用焊接的方法连接一起的,测温时,将它置于被测温度场中,称为测量端或者工作端,接点b一般要求恒定在某一温度称为参考端或自由端。 A A T a b T0 图1—1塞贝克效应示意图 不同的导体材料的电子密度不同,即使相同的导体材料,温度不同,其电子密度也不相同,当异质金属A、B组成闭合回路,由于接点a、b的温度不同(设T>T0),则同一导体温度高的地方自由电子密度大,温度低的地方自由电子密度小,即NA,T>NA,T0;NB,T>NB,T0。由于两金属导体的自由电子密度不同(设NA,T>NB,T;NA,T0>NB,T0),所以在闭合回路中,自由电子密度大的要向自由电子密度小的区域扩散,这样在回路中就产生了“净”电荷流动,即回路中有电动势eAB,这就是产生塞贝克电动势原因。实验证明,当热电极材料一定后,则热电势仅与两接点的温度有关,即: dEAB(T,T0)=SABdT (1—1) 式中:SAB——热电势率或塞贝克系数,其随热电极材料和两接点温度而定。 当两接点的温度分别为T,T0时,回路的热电势为: EAB(T,T0)= SABdT=eAB (T)- eAB (T0) (1—2) 式中:eAB (T),eAB (T0)——接点a,b的分热电势或分塞贝克电势 式(1—2)中角标A、B表示不同的热电极材料,按正极写在前,负极写在后的顺序排列。当温度T>T0时,eAB(T)与总电动势的方向一致,eAB (T0)与总热电动势的方向相反。如果接点的分热电势角标颠倒,它不会改变分热电势的大小,而改变热电势的方向,即: eAB (T0)=- eBA(T0) (1—3) 代入式(1—2)得: EAB(T,T0)= eAB (T)+ eBA(T0) (1—4) 由此可知,热电偶回路的总热电动势的大小仅与热电极的材料和两接点的温度有关,与热电极中间温度分布无关。 对于已定的热电偶,当其参考端温度T0恒定时,eAB(T0)为一常数,则热电势EAB(T,T0)仅是测量端温度的函数,即:

热电阻热电偶温度阻值对照表

工业铂热电阻温度与电阻值对照表 Pt100BA1BA2 温度(℃)阻值(Ω)温度(℃)阻值(Ω)温度(℃)阻值(Ω) -20018.49-2007.95-20017.28 -19022.80-1909.96-19021.65 -18027.08-18011.95-18025.98 -17031.32-17013.93-17030.29 -16035.53-16015.90-16034.56 -15039.71-15017.85-15038.80 -14043.87-14019.79-14043.02 -13048.00-13021.72-13047.21 -12052.11-12023.63-12051.38 -11056.19-11025.54-11055.52 -10060.25-10027.44-10059.65 -9064.30-9029.33-9063.75 -8068.33-8031.21-8067.84 -7072.33-7033.08-7071.91 -6076.33-6034.94-6075.96 -5080.31-5036.80-5080.00 -4084.27-4038.65-4084.03 -3088.22-3040.50-3088.03 -2092.16-2042.34-2092.04 -1096.09-1044.17-1096.03 0100.00046.000100.00 10103.901047.8210103.96 20107.792049.6420107.91 30111.673051.4530111.85 40115.544053.2640115.78 50119.405055.0650119.70 60123.246056.8660123.60 70127.077058.6570127.49 80130.898060.4380131.37 90134.709062.2190135.24 100138.5010063.99100139.10 110142.2911065.76110142.10

热电偶、热电阻工作原理及特点

热电偶、热电阻工作原理及特点 热电偶工作原理 将两种不同的金属导体焊接在一起,构成闭合回路,如在焊接端(即测量端)加热产生温差,则在回路中就会产生热电动势,此种现象称为塞贝克效应(Seebeck-effect)。如将另一端(即参考端)温度保持一定(一般为0℃),那么回路的热电动势则变成测量端温度的单值函数。这种以测量热电动势的方法来测量温度的元件,即两种成对的金属导体,称为热电偶。 热电偶产生的热电动势,其大小仅与热电极材料及两端温差有关,与热电极长度、直径无 关。 热电偶工作原理图 热电阻工作原理 工业用热电阻分铂热电阻和铜热电阻两大类。 热电阻是利用物质在温度变化时自身电阻也随着发生变化的特性来测量温度的。热电阻的受热部份(感温元件)是用细金属丝均匀地双绕在绝缘材料制成的骨架上。当被测介质中有温度发生变化时,所测得的温度是感温元件所在范围内介质中的平均温度。 热电偶、热电阻特点 热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有

热电偶热电阻 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小, ·准确度高, ·测温范围广, ·能适应各种测量对象的要求(特定部位或狭小场所),如点温和面温的测量,·适于远距离测量和控制。 b、缺点 ·测量准确度难以超过0.2℃, ·必须有参考端,并且温度要保持恒定。·在高温或长期使用时,因受被测介质影响或气氛腐蚀作用(如氧化、还原)等而发生劣化。热电阻同其它种温度计相比具有如下特点:a、优点 ·准确度高。在所有常用温度计中,准确度最高,可达1mk。 ·输出信号大,灵敏度高。如在0℃用Pt100铂热电阻测温,当温度变化1℃时,其电阻值约变化0.4Ω,如果通过电流为2mA,则其电压输出量变化为800μV。在相同条件下,即使灵敏度比较高的K型热电偶,其热电动势变化也只有40μV左右。由此可见,热电阻的灵敏度较热电偶高一个数量级。 ·测温范围广,稳定性好。在振动小而适宜的环境下,可在很长时间内保持0.1℃以下的稳定性。 ·无需参考点。温度值可由测得的电阻值直接求出。 ·输出线性好。只用简单的辅助回路就能得到线性输出,显示仪表可均匀刻度。 b、缺点 ·采用细金属丝的热电阻元件抗机械冲击与振动性能差。 ·元件结构复杂,制造困难大,尺寸较大,因此,热响应时间长。·不适宜测量体积狭小和温度瞬变区域。

相关文档