文档库 最新最全的文档下载
当前位置:文档库 › Architectural design influences the diversity and structure of the built environment microbiome

Architectural design influences the diversity and structure of the built environment microbiome

Architectural design influences the diversity and structure of the built environment microbiome
Architectural design influences the diversity and structure of the built environment microbiome

ORIGINAL ARTICLE

Architectural design influences the diversity and structure of the built environment microbiome

Steven W Kembel 1,Evan Jones 1,Jeff Kline 1,2,Dale Northcutt 1,2,Jason Stenson 1,2,Ann M Womack 1,Brendan JM Bohannan 1,G Z Brown 1,2and Jessica L Green 1,3

1

Biology and the Built Environment Center,Institute of Ecology and Evolution,Department of Biology,University of Oregon,Eugene,OR,USA;2Energy Studies in Buildings Laboratory,Department of Architecture,University of Oregon,Eugene,OR,USA and 3Santa Fe Institute,Santa Fe,NM,USA

Buildings are complex ecosystems that house trillions of microorganisms interacting with each other,with humans and with their environment.Understanding the ecological and evolutionary processes that determine the diversity and composition of the built environment microbiome—the community of microorganisms that live indoors—is important for understanding the relationship between building design,biodiversity and human health.In this study,we used high-throughput sequencing of the bacterial 16S rRNA gene to quantify relationships between building attributes and airborne bacterial communities at a health-care facility.We quantified airborne bacterial community structure and environmental conditions in patient rooms exposed to mechanical or window ventilation and in outdoor air.The phylogenetic diversity of airborne bacterial communities was lower indoors than outdoors,and mechanically ventilated rooms contained less diverse microbial communities than did window-ventilated rooms.Bacterial communities in indoor environments contained many taxa that are absent or rare outdoors,including taxa closely related to potential human pathogens.Building attributes,specifically the source of ventilation air,airflow rates,relative humidity and temperature,were correlated with the diversity and composition of indoor bacterial communities.The relative abundance of bacteria closely related to human pathogens was higher indoors than outdoors,and higher in rooms with lower airflow rates and lower relative humidity.The observed relationship between building design and airborne bacterial diversity suggests that we can manage indoor environments,altering through building design and operation the community of microbial species that potentially colonize the human microbiome during our time indoors.The ISME Journal (2012)6,1469–1479;doi:10.1038/ismej.2011.211;published online 26January 2012Subject Category:microbial population and community ecology

Keywords:aeromicrobiology;bacteria;built environment microbiome;community ecology;dispersal;

environmental filtering

Introduction

Humans spend up to 90%of their lives indoors (Klepeis et al .,2001).Consequently,the way we design and operate the indoor environment has a profound impact on our health (Guenther and Vittori,2008).One step toward better understanding of how building design impacts human health is to study buildings as ecosystems.Built envi-ronments are complex ecosystems that contain numerous organisms including trillions of micro-organisms (Rintala et al .,2008;Tringe et al .,2008;Amend et al .,2010).The collection of microbial life that exists indoors—the built environment

microbiome—includes human pathogens and com-mensals interacting with each other and with their environment (Eames et al .,2009).There have been few attempts to comprehensively survey the built environment microbiome (Rintala et al .,2008;Tringe et al .,2008;Amend et al .,2010),with most studies focused on measures of total bioaerosol concentrations or the abundance of culturable or pathogenic strains (Berglund et al .,1992;Toivola et al .,2002;Mentese et al .,2009),rather than a more comprehensive measure of microbial diversity in indoor spaces.For this reason,the factors that determine the diversity and composition of the built environment microbiome are poorly understood.However,the situation is changing.The develop-ment of culture-independent,high-throughput molecular sequencing approaches has transformed the study of microbial diversity in a variety of environments,as demonstrated by the recent explo-sion of research on the microbial ecology of aquatic and terrestrial ecosystems (Nemergut et al .,2011)

Received 23October 2011;revised 13December 2011;accepted 13December 2011;published online 26January 2012

Correspondence:SW Kembel,Biology and the Built Environment Center,Institute of Ecology and Evolution,Department of Biology,University of Oregon,Eugene,OR 97405,USA.E-mail:skembel@https://www.wendangku.net/doc/958814185.html,

The ISME Journal (2012)6,1469–1479

&2012International Society for Microbial Ecology All rights reserved 1751-7362/12

https://www.wendangku.net/doc/958814185.html,/ismej

and the human microbiome(Turnbaugh et al.,2007; Badger et al.,2011;Pflughoeft and Versalovic,2011). In this study,we apply these approaches to study the ecology and diversity of the built environment microbiome.

The health benefits of well-planned architecture have been recognized for many years(Sternberg, 2009).A prominent example is the work of Florence Nightingale,who over150years ago wrote that open windows were the hallmark of a healthy hospital ward(Nightingale,1859).Today,ventilation remains a key design strategy to mitigate the spread of infectious disease indoors(Arundel et al.,1986; Li et al.,2007;Guenther and Vittori,2008).Despite the growing body of data linking architecture and human health,we continue to live in an era where many buildings are associated with significant health risks.These risks include,but are not limited to,sick building syndrome,other health risks resulting from exposure to indoor pollutants (Institute of Medicine,2011)and hospital-acquired infections,which remain among the leading causes of death in developed countries(Institute of Medicine,2001,2004).Scientific studies and data are increasingly focused on understanding how improved design can make buildings less risky for their occupants(Ulrich et al.,2008).

As for any other biome,the composition of the built environment microbiome is determined by some combination of two simultaneous ecological processes:the dispersal of microbes from a pool of available species and selection of certain microbial types by the environment(Martiny et al.,2006).The microbial species available for dispersal into most built environments are likely to come primarily from outside air(introduced through ventilation),indoor surfaces and the bodies of humans and other micro-and macroorganisms residing and moving through indoor spaces(Pakarinen et al.,2008;Rintala et al., 2008;Grice and Segre,2011).It is unclear which of these sources is the most important,or what factors might determine their relative importance within and among buildings(Rintala et al.,2008).It has been hypothesized that filtration by mechanical ventilation is a form of dispersal limitation,result-ing in indoor microbial communities that represent a subset of outdoor microbes(Lee et al.,2006). However,indoor environments have been found to harbor microbial taxa not commonly found outdoors (Tringe et al.,2008;Amend et al.,2010).Selection of specific microbial taxa by environmental conditions has been suggested to occur in built environments, but this has been demonstrated for only a few taxa (Shaman and Kohn,2009).For example,it has been reported that air temperature and relative humidity (Arundel et al.,1986;Tang,2009),as well as the source of ventilation air and occupant density(Qian et al.,2010),can influence the abundance and transmission of some pathogenic microbes indoors. In this study,we used high-throughput,culture-independent approaches to survey the built environment microbiome of a health-care facility. We chose a health-care facility because it allowed us to sample across a range of design and environ-mental factors(including ventilation source,tem-perature and humidity)and because there is keen interest in the role that the microbiome of health-care facilities has in human health(Guenther and Vittori,2008).We focused our survey on bacteria, the most common cause of hospital-associated infections(Edmond et al.,1999).Our study addre-sses three general questions:First,what is the com-position of airborne microbial communities indoors? Second,how does building design,in particular ventilation source,influence the diversity and struc-ture of the built environment microbiome?Third, are ventilation sources or environmental conditions correlated with the abundance of human-associated microbes in the built environment?

Materials and methods

Setting and study design

Airborne microbial communities and environmental conditions were sampled six times at Providence Milwaukie Hospital,Milwaukie,OR,USA,on27–28 February2010(Supplementary Table S1).At each sampling time,a sample was collected from outdoor air,indoor air from a mechanically ventilated room and indoor air from a‘naturally’ventilated(that is, primarily window ventilated)room simultaneously. Outdoor samples were collected from the roof of the hospital immediately adjacent to the air intake for the building’s heating,ventilating and air condition-ing(HVAC)system.Indoor samples were collected in researcher-occupied patient rooms.Mechanically ventilated rooms had ventilation air supplied by the HVAC system through a supply duct and removed through a return duct and bathroom exhaust. Window-ventilated rooms had ventilation air sup-plied directly from the outside through a window and removed through a return duct,bathroom exhaust and the window.A detailed description of the architectural attributes of the building is provided in the Supplementary Information.

Environmental measurements

During each sampling period,environmental condi-tions,including air temperature,relative humidity, absolute humidity and air flow rate,were measured using TSI Inc.(Shoreview,MN,USA)V elociCalc multi-function ventilation meters(Series9555with probe964)placed at the patient bed and in air supply in patient rooms,and Davis Instruments(Hayward, CA,USA)Vantage Pro2meters placed adjacent to BioSamplers(SKC Inc.,Eight Four,PA,USA)outdoors. Sampling occurred every second,and1-min averages were stored for indoor samples.For outdoor readings, the variables were sampled and stored every15min. Environmental conditions for each sample represent

Architecture influences indoor microbial ecology

SW Kembel et al 1470

The ISME Journal

the average of all measurements for the entire sampling period.Air changes per hour were calcu-lated for patient rooms taking into account room volume,air speed and volume flowing into the room through the window(window-ventilated rooms)or diffuser(mechanically ventilated rooms).

Microbial community sampling

Each microbial sample was collected by drawing air through two liquid impingers(BioSamplers)filled with sterile molecular-grade water for1h at a rate of 12.5l minà1,resulting in a total sampled air volume of1500l per sample.Impingers were refilled with sterile water midway through each sampling to maintain a constant liquid volume and collection efficiency.The impingers and all tubing used to connect the impingers to vacuum pumps were autoclaved and maintained in a sterile condition before sampling.Outdoor samples were collected with impingers placed at the roof surface immedi-ately adjacent to the hospital’s HVAC air intake vents.Indoor samples were collected from impin-gers placed at B30cm above the middle of the bed in patient rooms occupied by two researchers for the duration of each sampling.Window-ventilated rooms were ventilated exclusively by window for at least1h before sampling.

Bacterial cell density estimation,DNA extraction and bacterial16S gene amplification procedures are described in detail in the Supplementary Information.Total bacterial cell density counts were performed using epifluorescence microscopy of 4’,6-diamidino-2-phenylindole-stained samples.We extracted DNA from impinger liquid using standard methods,and gene fragments from the V2–V3region of the bacterial16S SSU-rRNA gene(Pace,1997; Hamady et al.,2008;Huse et al.,2008)were amplified using universal bacterial16S primers 27F and338R modified for use with the GS FLX Titanium platform(454Life Sciences,Branford, CT,USA).

Sequence processing

Pyrosequencing of the DNA library resulted in 179146sequences.Raw sequences from454pyro-sequencing were processed with the QIIME pipeline (Caporaso et al.,2010)using standard quality control guidelines to eliminate low-quality sequences and assign sequences to different samples based on their barcodes.Criteria for sequence inclusion in subsequent analyses were based on QIIME version1.1defaults,with the exception of a minimum sequence quality score of20and up to three ambiguous bases and three primer mismatches permitted per sequence.After quality control, 107820sequences remained and were included in subsequent analyses.Quality-controlled sequences were denoised using the QIIME denoiser using default settings and binned into operational taxonomic units(OTUs)at a97%sequence similar-

ity cutoff using uclust(Edgar,2010),resulting in

10585OTUs.The97%sequence similarity cutoff

is the highest similarity cutoff that can be used to accurately bin sequences into OTUs due to the sequencing error rates inherent in the454sequen-

cing technology(Kunin et al.,2010).The longest, highest-quality sequence from each OTU was chosen as a representative sequence for that OTU

in subsequent analyses.After quality control and

OTU binning,the median sequence length was329 nucleotides(mean length(±s.d.)?310±49nucleo-tides).A check for chimeric sequences with the ChimeraSlayer algorithm identified o1%of OTUs

and sequences as potentially chimeric;these sequences were excluded from subsequent analyses. Because our primary interest concerned the structure of airborne bacterial communities,we excluded chloroplast and all other nonbacterial

16S sequences from subsequent analyses.To ensure adequate sampling depth for statistical comparison

among samples,we eliminated samples containing

fewer than700sequences after quality control. Additionally,a single outdoor air sample was eliminated from subsequent analyses because it contained495%identical sequences that likely represented contamination during sample proces-

sing.The median number of sequences in each of

the13remaining samples(5from mechanically ventilated patient rooms,4from window-ventilated

patient rooms and4from outdoors)was2756(range:

702–6830sequences per sample).

Representative sequences for each OTU were identified taxonomically using the Ribosomal Database Project Bayesian classifier algorithm(Cole

et al.,2009),with a50%support cutoff.Phylo-genetic relationships among OTUs were inferred

based on the representative sequence for each OTU. Representative sequences for each OTU were aligned using the Infernal aligner(Nawrocki et al., 2009),with default settings provided by the Ribosomal Database Project(RDP)pyro pipeline

(Cole et al.,2009).Representative sequence align-

ments were masked with the RDP hard mask(Cole

et al.,2009),sites with o50%coverage were removed and sequences with o50nucleotides remaining after masking were removed.We inferred

a phylogeny among the10486remaining represen-

tative OTU sequences using FastTree version2.0.1 (Price et al.,2010)with a GTRtCAT model of evolution and pseudocount distances.

Microbial community analyses

After sequence processing,all data were imported

into the R version 2.11.statistical computing environment(R Development Core Team,2010),

and all subsequent analyses and visualizations were performed in R using functions from the picante (Kembel et al.,2010)version1.2,vegan(Oksanen

et al.,2007)version1.17,and ggplot2(Wickham, Architecture influences indoor microbial ecology

SW Kembel et al

1471

The ISME Journal

2009)version0.8.9packages.Bacterial community dissimilarity was quantified using the normalized weighted UniFrac distance metric(Lozupone et al., 2006;Hamady et al.,2009),which measures the phylogenetic distinctness of organisms in different communities,based on abundances and phylo-genetic relationships of the representative OTU sequences.The compositional similarity of all samples was visualized using a nonmetric multi-dimensional scaling(NMDS)ordination of weighted UniFrac dissimilarities.The relative strength of relationships between airborne bacterial community structure and environmental variables were quanti-fied using an analysis of molecular variance analysis (Excoffier et al.,1992)of the weighted UniFrac dissimilarities,which quantifies the variance in community dissimilarity explained by different explanatory variables.For each environmental vari-able,we measured the variance in community dissimilarity explained by that variable.Because environmental conditions differed among rooms exposed to different ventilation sources,we also measured the variance in community dissimilarity explained by each environmental variable after accounting for the variance explained by ventilation source.We repeated these analyses including indoor and outdoor samples,as well as for indoor samples only.

We tested for a relationship between ventilation source and diversity using mixed models,with rarefied diversity as the response variable,ventila-tion source as a fixed effect and time of sample collection as a random effect.Phylogenetic diversity (PD)was calculated as Faith’s PD(Faith,1992),the total phylogenetic branch length separating OTUs in each rarefied sample.To allow robust comparisons among samples containing different numbers of sequences,sample diversity was calculated based on samples rarefied to contain700sequences,as the sample with the fewest sequences contained702 sequences.Pairwise differences in diversity and abundance of different taxa among environments and ventilation sources were tested using Tukey’s honestly significant difference(HSD)tests.Repeated analyses of rarefied data yielded nearly identical results;hence results of a single representative rarefaction of the data are presented.The taxonomic composition of bacterial communities in each sample was quantified by calculating the relative abundance of sequences assigned to different taxa by the RDP naive Bayesian taxonomic classifier algorithm at a50%cutoff(Cole et al.,2009).

We estimated the relative abundance of poten-tially pathogenic bacteria in each sample by iden-tifying sequences that were related to bacterial strains that are known human pathogens,based on published lists of human pathogens including the UK select agents list(UK Health and Safety Execu-tive Advisory Committee on Dangerous Pathogens, 2004),the Microbial Rosetta Stone Database of global and emerging infectious microorganisms and bioterrorist threat agents(Ecker et al.,2005), and several studies that provide lists of human pathogens associated with health-care facilities and other buildings(Rinttila¨et al.,2004;Brodie et al., 2007;Luna et al.,2007).We conducted a Basic Local Alignment Search Tool(BLAST)sequence similarity search(Altschul et al.,1990)comparing each OTU with a database of reference sequences(Pruitt et al., 2005).We classified an OTU as a potential human pathogen if it shared97%or greater sequence identity with a strain in the reference database that has been classified as a potential human pathogen (UK Health and Safety Executive Advisory Commit-tee on Dangerous Pathogens,2004;Rinttila¨et al., 2004;Ecker et al.,2005;Brodie et al.,2007;Luna et al.,2007).We repeated this analysis using a variety of different taxonomic classification similar-ity(that is,confamilials or congeners of known pathogens)and sequence similarity cutoffs(95and 97%sequence similarity),and the results were nearly identical;we present only the results based on the97%sequence similarity cutoff.

We identified OTUs that were characteristic of mechanically ventilated indoor,window-ventilated indoor and outdoor environments using indicator species analysis(Dufre?ne and Legendre,1997). Indicator species analysis uses a randomization test approach to identify OTUs that have higher fidelity (relative abundance and occurrence frequency)in an environment than expected(P o0.05)based on 1000random assignments of samples to different environments.

Results

Does architectural design influence the built environment microbiome?

The composition of airborne bacterial communities differed among outdoor air,mechanically ventilated rooms and window-ventilated rooms(analysis of molecular variance;weighted UniFrac phylogenetic community dissimilarity;R2?0.57,P o0.01). Microbial community composition in mechani-cally ventilated patient rooms was distinct from the composition of communities in outdoor air,as shown by the lack of overlap among samples from these environments in terms of their phylogenetic similarity(first axis of NMDS ordination;Figure1). Community composition in window-ventilated patient rooms was intermediate between mechani-cally ventilated patient rooms and outdoor air. Window-ventilated rooms with higher air tempera-ture,lower relative humidity and lower rates of air flow contained bacterial communities more similar to mechanically ventilated rooms than to outdoor air (correlations between first axis of NMDS ordination and environmental conditions;Figure1).Thus, there exists a gradient in the composition of airborne microbial communities with mechanically venti-lated patient rooms with relatively warm and dry air

Architecture influences indoor microbial ecology

SW Kembel et al 1472

The ISME Journal

at one extreme,relatively cool and moist outdoor air communities at the other extreme,and window-ventilated rooms having greater compositional similarity to mechanically ventilated rooms or out-door air depending on the environmental conditions in the room (Figure 1).

Airborne bacterial cell density in samples varied from 502000to 2580000cells m à3(Supplementary Table S1),but cell density did not vary signifi-cantly among environments (analysis of variance (ANOVA);log 10(airborne bacterial cell density)versus environment;R 2?0.02,F 2,10?1.1,P ?0.36).The PD of airborne bacterial communities differed significantly among environments (ANOVA;F 2,6?15.5,P ?0.005),with highest diversity in outdoor air and lowest in indoor air from rooms that were mechanically ventilated (Figure 2).The taxonomic composition of airborne bacterial com-munities also varied with ventilation source (Figure 3).Betaproteobacteria were the dominant taxa in all the airborne communities,but were more abundant indoors than outdoors.In outdoor air,Actinobacteria,Gammaproteobacteria and Alpha-proteobacteria were the dominant taxa,and Acid-obacteria and Sphingobacteria were more abundant in outdoor air than indoors.

We observed a significant relationship between indoor ventilation source and environmental condi-tions versus airborne bacterial community structure.Ventilation source (mechanical versus

window)

Figure 2PD (total phylogenetic branch length;Faith’s PD per 700sequences)in different environments at a health-care facility:outdoors and indoors in patient rooms exposed to different ventilation sources (mechanical or window ventilation).PD (based on samples rarefied to 700sequences per sample)was significantly different among all environments (Tukey’s HSD;mixed model with fixed effect of environment,random effect of measurement time,overall model significant (P o 0.05),pairwise differences significant (P o

0.05)).

Figure 3Taxonomic composition of airborne bacterial commu-nities in different environments at a health-care facility:outdoors (blue)and indoors in patient rooms exposed to different ventilation sources (mechanical (red)or window (green)ventila-tion).Composition estimates (mean ±s.d.)are based on relative abundances of bacterial 16S sequences assigned to different phyla.Asterisk symbols indicate taxonomic groups whose relative abundance differed significantly among ventilation treatments (ANOVA;*P o 0.1,**P o 0.05and ***P o

0.01).

Figure 1Ordination diagram (axis 1and 2from a NMDS ordination)summarizing similarity of airborne bacterial commu-nity composition (weighted UniFrac community phylogenetic dissimilarity)in samples from outdoors (blue),indoor mechani-cally ventilated patient rooms (red)and indoor window-venti-lated patient rooms (green)at a health-care facility.Distances among communities indicate the phylogenetic similarity of bacteria in those communities.Symbols indicate sample location (J ?room 229,&?room 231,B ?room 235and W ?roof;Supplementary Table S1).Ellipses are 95%confidence intervals around samples from each environment.Arrows indicate direc-tion of correlation between axis 1scores from the NMDS ordination versus relative humidity (%;r ?0.67,P ?0.01),temperature (1C;r ?à0.68,P ?0.01)and air flow velocity (m s à1;r ?0.50,P ?0.07).

Architecture influences indoor microbial ecology SW Kembel et al

1473

The ISME Journal

explained the majority of variation in bacterial community structure among rooms in the hospital we studied (analysis of molecular variance;weighted UniFrac phylogenetic community dissim-ilarity versus ventilation source;R 2?0.66,P o 0.01;Table 1).However,after accounting for the effect of ventilation source,bacterial community composi-tion indoors was related to the environmental conditions in a room (Table 1),especially relative humidity (R 2?0.11,P ?0.05)and air changes per hour (R 2?0.11,P ?0.1).

Correlates of human-associated bacterial abundance in the built environment

Air in mechanically ventilated rooms contained significantly less chloroplast DNA compared with window-ventilated rooms and outdoor air (ANOVA and Tukey’s HSD test;P o 0.01).The relative abun-dance of potentially pathogenic bacteria (bacterial OTUs with a 97%or greater sequence similarity to known human pathogens;UK Health and Safety Executive Advisory Committee on Dangerous Patho-gens,2004;Rinttila ¨et al .,2004;Ecker et al .,2005;Brodie et al .,2007;Luna et al .,2007)was higher in indoor air than in outdoor air (ANOVA;P o 0.01).Indoor air contained communities that were domi-nated by a few closely related bacteria that were

related to known human pathogens and human-associated bacteria (Figure 4a).The relative abun-dance of potentially pathogenic bacteria in patient rooms was independent of ventilation source (ANOVA;P ?0.2),but decreased with increasing air flow rates (Figure 4b;P ?0.04),air changes per hour (P ?0.004)and relative humidity (Figure 4c;P ?0.02).Because airborne bacterial cell density did not differ among rooms with different ventilation sources,this suggests that the absolute abundance of potential pathogens was lower with higher rates of airflow.

The abundance of individual bacterial taxa also responded to indoor environmental conditions and ventilation source.Indicator species analyses indicated that several bacterial taxa that are com-monly found in the human microbiome (Turnbaugh et al .,2007;Costello et al .,2009;Grice and Segre,2011),including members of the families Burkhol-deriaceae,Pseudomonadaceae,Staphylococcaceae and genera Micrococcus ,Pseudomonas ,Ralstonia and Staphylococcus ,were common and abundant in indoor air,especially in air from mechanically ventilated rooms,but nearly absent from outdoor air (Figure 5,Table 2).Several indicator OTUs found in mechanically ventilated patient rooms were closely related (497%sequence similarity)to the facultative human pathogens Staphylococcus

Table 1Variance in phylogenetic similarity of airborne bacterial communities (weighted UniFrac distance (35))explained by different environmental factors for samples from different environments at a health-care facility ((A)indoors and outdoors;(B)indoors in window-ventilated rooms and mechanically ventilated rooms)

Variance explained (total)Variance explained (after accounting for environment)

R 2

P -value

R 2

P -value

(A)All samples (indoor and outdoor)Environment 0.57o 0.01

Relative humidity 0.31o 0.010.140.08Humidity ratio 0.220.010.070.59Temperature 0.31o 0.010.140.12Air flow velocity 0.170.030.130.20Time 0.09

0.07

0.090.32

Variance explained (total)Variance explained (after accounting for ventilation method)

R 2

P -value

R 2

P -value

(B)Indoor samples only (mechanical and window-ventilated rooms)Ventilation method 0.66o 0.01Relative humidity 0.380.010.11

0.05Humidity ratio 0.070.310.020.77Temperature 0.140.080.100.15Air changes per hour 0.380.020.110.10Air flow velocity at bed 0.100.130.070.22Air flow velocity at supply 0.370.030.030.60Time of sampling 0.060.220.120.11Room 0.120.27

0.090.34

Abbreviation:AMOVA,analysis of molecular variance.

Variance explained (total)indicates variance explained by that variable alone,variance explained (after accounting for environment)represents variance explained after accounting for environment effects;for AMOVA,analyses (34)of variance in weighted UniFrac distance among samples explained by different variables.

Architecture influences indoor microbial ecology

SW Kembel et al

1474

The ISME Journal

Figure 4Relative abundance of sequences from bacterial sequences closely related to human pathogens (95%or greater sequence similarity)in airborne microbial samples versus PD and environmental conditions at a health-care facility.Solid line is best fit (with shaded 95%confidence interval)from a linear model of relative abundance of potentially pathogenic sequences versus (a)PD (total phylogenetic branch length;Faith’s PD (23)per 700sequences;%;R 2?0.53,P ?0.005),(b)air flow velocity measured at the patient bed (m s à1;R 2?0.27P ?0.04),(c )relative humidity (%;R 2?0.29,P ?0.02)and (d)temperature (1C;R 2?0.33,P ?

0.01).

Figure 5Temperature and relative humidity of air in hospital patient rooms exposed to mechanical and window ventilation.Contours indicate relative abundance of sequences closely related (97%or greater sequence similarity)to the potential human pathogens (a)R.pickettii ,(b)S.epidermidis and (c)S.haemolyticus ,based on a polynomial spline surface fit to sample environmental coordinates.

Architecture influences indoor microbial ecology SW Kembel et al

1475

The ISME Journal

epidermidis ,S.haemolyticus and Ralstonia pick-ettii .Bacteria commonly found in soil and water,including members of the Acidobacteria,Plancto-mycetales,Gemmatimonadales,Methylococcales and Sphingobacteriales,were abundant and com-mon in outdoor air,but relatively rare or absent indoors.

Discussion

Our results indicate that architectural design,in particular the source of ventilation air,does influ-ence the diversity and composition of the built environment microbiome.Most of the observed variation in airborne microbial community structure

in patient rooms at the sampled health-care facility was explained by ventilation source.Mechanically ventilated patient rooms contained an ecologically distinctive set of microbial taxa from those found in outdoor air,and window-ventilated rooms con-tained airborne bacterial communities intermediate in structure between mechanically ventilated patient rooms and outdoor air.Although indoor air had a lower PD of microbes relative to outdoor air,this is not readily explained by the filtering of bacterial taxa dispersed from outdoors.The outdoor air communities were dominated by bacterial taxa common in aquatic and soil habitats (Fierer et al .,2008;Womack et al .,2010).In contrast,the indoor air communities were dominated by a small number of bacterial taxa from clades that are commonly

Table 2Taxonomic identity of indicator OTUs in different environments at a hospital

Environment

Indicator OTU class

Indicator OTU family

Indicator OTU closest BLAST hit

Indicator OTU

%ID

Indoor

Actinobacteria Actinomycetales Kytococcus sedentarius 98.8Mechanical

Bacteroidetes Flavobacteriaceae Firmicutes Staphylococcaceae Staphylococcus epidermidis*99.1S.haemolyticus*98.5Proteobacteria

Burkholderiaceae Ralstonia pickettii*98.2Caulobacteraceae Enterobacteriaceae Enterobacter spp.98.5Indoor Actinobacteria Actinomycetales Kocuria rhizophila 96.1Window

Micrococcus luteus

99.7

Cyanobacteria Bacillariophyta Proteobacteria

Acetobacteraceae Moraxellaceae Rhodobacteraceae

Outdoor

Acidobacteria Actinobacteria

Acidimicrobiales Actinomycetales Solirubrobacterales

Bacteroidetes Chitinophagaceae

Cytophagaceae

Chloroflexi Chloroflexaceae Cyanobacteria Bangiophyceae

Microcystis aeruginosa 95.1Streptophyta

Prochlorococcus marinus 95

Deinococcus-Thermus Deinococcaceae Gemmatimonadetes Gemmatimonadaceae Proteobacteria Acetobacteraceae

Beijerinckiaceae Methylocella silvestris 95.2

Bradyrhizobiaceae Caulobacteraceae Erythrobacteraceae Halothiobacillaceae Methylobacteriaceae

Methylobacterium extorquens 96.7M.radiotolerans 99.0

Methylococcaceae Methylocystaceae Oxalobacteraceae Pasteurellaceae Rhodospirillaceae Sinobacteraceae

Sphingomonadaceae

Verrucomicrobia

Abbreviations:BLAST,Basic Local Alignment Search Tool;OUT,operational taxonomic unit;RDP ,Ribosomal Database Project.

Indicator OTUs are OTUs with greater abundance and occurrence frequency in an environment than expected by chance.Taxonomic identity based on assignment to class/family by the RDP taxonomic classifier.The closest BLAST hit in the reference database is shown for indicator OTUs with 95%or greater sequence similarity to reference taxa.Asterisk symbols indicate potentially pathogenic indicator taxa with 97%or greater similarity to known human pathogens.

Architecture influences indoor microbial ecology

SW Kembel et al

1476

The ISME Journal

associated with humans as commensals or patho-gens,and as a result they were characterized by low PD.These findings suggest that humans can be important dispersal vectors for microbes that colo-nize the built environment(Klevens et al.,2007). Architects and engineers design buildings for human comfort by controlling factors such as humidity,temperature and airflow(Olgyay,1973), but we understand little about how these factors influence the diversity and distribution of microorganisms indoors.We observed a significant relationship between indoor environmental condi-tions—including relative humidity and tempera-ture—and airborne bacterial community structure. This relationship could be due to a direct link between the growth or survival of certain taxa and environ-mental conditions in patient rooms,or an increase in the dispersal of microbes from humans or material surfaces to the built environment under these condi-tions.It has been suggested that the indoor climate can influence human health through direct effects on microbial populations(Arundel et al.,1986)and communities,and our data are consistent with this hypothesis.In general,our findings are consistent with a role for both species-neutral processes such as dispersal as well as niche-based processes such as environmental filtering(Martiny et al.,2006),in the assembly of the built environment microbiome. Ventilation method and airflow have long been known to impact allergen,pollutant and pathogen load in the built environment(Nightingale,1863; Berglund et al.,1992;Sundell,2004;Li et al.,2007). Mechanical ventilation greatly reduced the relative abundance of chloroplast DNA in the hospital air, and this was likely due to the filtration of pollen by the mechanical air ventilation system.Ventilation method,however,did not significantly impact the potential pathogen load indoors.In both mechani-cally and window-ventilated rooms,the abundance of potentially pathogenic airborne bacteria was negatively correlated with airflow rates.Our finding that increased airflow rates decreased the potential pathogen load is consistent with the hypothesis that ventilation is beneficial to human health,as modeled by the classic Wells–Riley equation(Wells,1955;Riley et al.,1978).Given the observed similarity between indoor-and human-associated bacterial communi-ties,it is parsimonious to assume that many of the potentially pathogenic bacteria detected indoors were emitted from humans or material surfaces indoors, and that increased airflow diluted the concentration of these bacteria relative to the non-human-associated bacteria that are more common in outdoor air. There has been significant interest in alternatives to mechanical ventilation for infection control in health-care settings,including natural ventilation and displacement ventilation(Escombe et al.,2007; Atkinson et al.,2009),due to the lower costs of construction and operation of natural ventilation systems(Omer,2008).Our study did not directly examine natural ventilation,but we were able to assess the effect of ventilating rooms with outdoor

air entering directly through open windows.

Our findings suggest that it is worthwhile to explore

the effects of natural ventilation on microbial communities more rigorously using modern mole-

cular tools,as we found that the abundance of potentially pathogenic bacteria was not higher in window-ventilated patient rooms than in mechani-

cally ventilated rooms.The use of high-throughput molecular sequencing methods can reveal indoor microbial biodiversity that was previously difficult

or impossible to observe,and to fully understand the microbiology of the built environment,additional studies in different geographic regions,seasons and architectural settings will be required.

In conclusion,we note that architects use a

‘comfort zone’model to design indoor spaces within

an envelope of temperature,humidity,airflow and

light availability that is physically comfortable for humans(Olgyay,1973).An improved understanding

of the ecology of the built environment microbiome

could allow this model to be expanded to design

indoor spaces that maximize human health and

well-being by linking architectural and environ-

mental conditions to the ecology of indoor microbes.

Our data suggest that reducing direct contact with

the outdoor environment may not always be an optimal design strategy for bacterial pathogen management.Just as we currently manage natural ecosystems to promote the growth of certain species

and inhibit the growth of others,an evidence-based understanding of the ecology of the built environ-

ment microbiome opens the possibility that we can similarly manage indoor environments,altering through building design and operation the pool of species that potentially colonize the human micro-

biome during our time indoors.

Acknowledgements

This study was funded by a grant from the Alfred P.Sloan foundation to the Biology and the Built Environment Center,University of Oregon.We thank Richard Beam,

Garth Didlick,William Heston,Dee Putzier,Doug Spencer

and Rodney Waage for logistical assistance at the hospital.

We thank Colin Bohannan,Adam Burns,Ed Clark,Mitzi

Liu,Gwynhwyfer Mhuireach and Tim O’Connor for assis-

tance with sample collection and processing.

References

Altschul SF,Gish W,Miller W,Myers EW,Lipman DJ.

(1990).Basic local alignment search tool.J Mol Biol

215:403–410.

Amend AS,Seifert KA,Samson R,Bruns TD.(2010).

Indoor fungal composition is geographically patterned

and more diverse in temperate zones than in the

tropics.Proc Natl Acad Sci USA107:13748–13753. Architecture influences indoor microbial ecology

SW Kembel et al

1477

The ISME Journal

Arundel AV,Sterling EM,Biggin JH,Sterling TD.

(1986).Indirect health effects of relative humidity in indoor environments.Environ Health Perspect65: 351–361.

Atkinson J,Chartier Y,Pessoa-Silva CL,Jensen P,Li Y, Seto W-H(eds).(2009).Natural Ventilation for Infection Control in Health-Care Settings.World Health Organization:Geneva,Switzerland.

Badger JH,Ng PC,Venter JC.(2011).The human genome, microbiomes,and disease.In Nelson KE,(ed).

Metagenomics of the Human Body.Springer New York:New York,NY,pp1–14.

Berglund B,Brunekreef B,Kno¨ppe H,Lindvall T,Maroni M,M?lhave L et al.(1992).Effects of indoor air pollution on human health.Indoor Air2:2–25. Brodie EL,DeSantis TZ,Parker JPM,Zubietta IX,Piceno YM,Andersen GL.(2007).Urban aerosols harbor diverse and dynamic bacterial populations.Proc Natl Acad Sci USA104:299–304.

Caporaso JG,Kuczynski J,Stombaugh J,Bittinger K, Bushman FD,Costello EK et al.(2010).QIIME allows analysis of high-throughput community sequencing data.Nat Methods7:335–336.

Cole JR,Wang Q,Cardenas E,Fish J,Chai B,Farris RJ et al.

(2009).The Ribosomal Database Project:improved alignments and new tools for rRNA analysis.Nucleic Acids Res37:D141–D145.

Costello EK,Lauber CL,Hamady M,Fierer N,Gordon JI, Knight R.(2009).Bacterial community variation in human body habitats across space and time.Science 326:1694–1697.

Dufre?ne M,Legendre P.(1997).Species assemblages and indicator species:the need for a flexible asymmetrical approach.Ecol Monogr67:345–366.

Eames I,Tang JW,Li Y,Wilson P.(2009).Airborne transmission of disease in hospitals.J R Soc Interface 6(Suppl6):S697–S702.

Ecker DJ,Sampath R,Willett P,Wyatt JR,Samant V, Massire C et al.(2005).The Microbial Rosetta Stone Database:a compilation of global and emerging infectious microorganisms and bioterrorist threat agents.BMC Microbiol5:19.

Edgar RC.(2010).Search and clustering orders of magnitude faster than BLAST.Bioinformatics26: 2460–2461.

Edmond MB,Wallace SE,McClish DK,Pfaller MA,Jones RN,Wenzel RP.(1999).Nosocomial bloodstream infections in United States hospitals:a three-year analysis.Clin Infect Dis29:239–244.

Escombe AR,Oeser CC,Gilman RH,Navincopa M, Ticona E,Pan W et al.(2007).Natural ventilation for the prevention of airborne contagion.PLoS Med 4:e68.

Excoffier L,Smouse PE,Quattro JM.(1992).Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mito-chondrial DNA restriction data.Genetics131:479–491. Faith DP.(1992).Conservation evaluation and phylo-genetic diversity.Biol Conserv61:1–10.

Fierer N,Liu Z,Rodriguez-Hernandez M,Knight R,Henn M,Hernandez MT.(2008).Short-term temporal varia-bility in airborne bacterial and fungal populations.

Appl Environ Microbiol74:200–207.

Grice EA,Segre JA.(2011).The skin microbiome.Nat Rev Micro9:244–253.

Guenther R,Vittori G.(2008).Sustainable Healthcare Architecture.John Wiley and Sons:New Jersey.Hamady M,Lozupone C,Knight R.(2009).Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrose-quencing and PhyloChip data.ISME J4:17–27. Hamady M,Walker JJ,Harris JK,Gold NJ,Knight R.(2008).

Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.Nat Methods5: 235–237.

Huse SM,Dethlefsen L,Huber JA,Welch DM,Relman DA, Sogin ML.(2008).Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequen-cing.PLoS Genet4:e1000255.

Institute of Medicine.(2001).Crossing the Quality Chasm:

A New Health System for the21st Century.National

Academy Press:Washington,DC.

Institute of Medicine.(2004).Keeping Patients Safe: Transforming the Work Environment of Nurses.

National Academy Press:Washington,DC.

Institute of Medicine.(2011).Climate Change,the Indoor Environment,and Health.National Academy Press: Washington,DC.

Kembel SW,Cowan PD,Helmus MR,Cornwell WK, Morlon H,Ackerly DD et al.(2010).Picante:R tools for integrating phylogenies and ecology.Bioinfor-matics26:1463–1464.

Klepeis NE,Nelson WC,Ott WR,Robinson JP,Tsang AM, Switzer P et al.(2001).The National Human Activity Pattern Survey(NHAPS):a resource for assessing exposure to environmental pollutants.J Expo Anal Environ Epidemiol11:231–252.

Klevens RM,Edwards JR,Richards CL,Horan TC,Gaynes RP,Pollock DA et al.(2007).Estimating health care-associated infections and deaths in US hospitals, 2002.Public Health Rep122:160–166.

Kunin V,Engelbrektson A,Ochman H,Hugenholtz P.

(2010).Wrinkles in the rare biosphere:pyrosequen-cing errors can lead to artificial inflation of diversity estimates.Environ Microbiol12:118–123.

Lee T,Grinshpun SA,Martuzevicius D,Adhikari A, Crawford CM,Luo J et al.(2006).Relationship between indoor and outdoor bio-aerosols collected with a button inhalable aerosol sampler in urban homes.Indoor Air16:37–47.

Li Y,Leung GM,Tang JW,Yang X,Chao CYH,Lin JZ et al.

(2007).Role of ventilation in airborne transmission of infectious agents in the built environment—a multidisciplinary systematic review.Indoor Air17: 2–18.

Lozupone C,Hamady M,Knight R.(2006).UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context.BMC Bioinfor-matics7:371.

Luna RA,Fasciano LR,Jones SC,Boyanton BL,Ton TT, Versalovic J.(2007).DNA pyrosequencing-based bac-terial pathogen identification in a pediatric hospital setting.J Clin Microbiol45:2985–2992.

Martiny JBH,Bohannan BJM,Brown JH,Colwell RK, Fuhrman JA,Green JL et al.(2006).Microbial biogeography:putting microorganisms on the map.

Nat Rev Micro4:102–112.

Mentese S,Arisoy M,Rad AY,Gu¨llu¨G.(2009).Bacteria and fungi levels in various indoor and outdoor environments in Ankara,Turkey.Clean Soil Air Water 37:487–493.

Nawrocki EP,Kolbe DL,Eddy SR.(2009).Infernal1.0: inference of RNA alignments.Bioinformatics25: 1335–1337.

Architecture influences indoor microbial ecology

SW Kembel et al 1478

The ISME Journal

Nemergut DR,Costello EK,Hamady M,Lozupone C,Jiang

L,Schmidt SK et al.(2011).Global patterns in the biogeography of bacterial taxa.Environ Microbiol 13:135–144.

Nightingale F.(1863).Notes on Hospitals .Longman,

Green,Longman,Roberts,and Green:London.

Nightingale F.(1859).Notes on Nursing . D.Appleton:

London.

Oksanen J,Kindt R,Legendre P ,O’Hara B,Simpson GL,

Solymos P et al.(2007).Vegan:community ecology package.R Package Version 1.17.

Olgyay V.(1973).Design with Climate:Bioclimatic

Approach to Architectural Regionalism .Princeton University Press:Princeton,NJ.

Omer AM.(2008).Energy,environment and sustainable

development.Renew Sustain Energy Rev 12:2265–2300.Pace NR.(1997).A molecular view of microbial diversity

and the biosphere.Science 276:734–740.Pakarinen J,Hyva ¨rinen A,Salkinoja-Salonen M,Laitinen

S,Nevalainen A,Ma ¨kela ¨MJ et al.(2008).Predomi-nance of gram-positive bacteria in house dust in the low-allergy risk Russian Karelia.Environ Microbiol 10:3317–3325.

Pflughoeft KJ,Versalovic J.(2011).Human microbiome in

health and disease.Annu Rev Pathol 7:99–122.

Price MN,Dehal PS,Arkin AP .(2010).FastTree 2:

approximately maximum-likelihood trees for large alignments.PLoS One 5:e9490.

Pruitt KD,Tatusova T,Maglott DR.(2005).NCBI Reference

Sequence (RefSeq):a curated non-redundant sequence database of genomes,transcripts and proteins.Nucleic Acids Res 33:D501–D504.

Qian H,Li Y,Seto WH,Ching P ,Ching WH,Sun HQ.

(2010).Natural ventilation for reducing airborne infection in hospitals.Build Environ 45:559–565.R Development Core Team.(2010).R:A Language and

Environment for Statistical Computing .Vienna,Aus-tria,https://www.wendangku.net/doc/958814185.html,.

Riley EC,Murphy G,Riley RL.(1978).Airborne spread

of measles in a suburban elementary school.Am J Epidemiol 107:421–432.

Rintala H,Pitkaranta M,Toivola M,Paulin L,Nevalainen A.

(2008).Diversity and seasonal dynamics of bacterial community in indoor environment.BMC Microbiol 8:56.Rinttila ¨T,Kassinen A,Malinen E,Krogius L,Palva A.

(2004).Development of an extensive set of 16S

rDNA-targeted primers for quantification of patho-genic and indigenous bacteria in faecal samples by real-time PCR.J Appl Microbiol 97:1166–1177.

Shaman J,Kohn M.(2009).Absolute humidity modulates

influenza survival,transmission,and seasonality.Proc Natl Acad Sci USA 106:3243–3248.

Sternberg EM.(2009).Healing Spaces:the Science of

Place and Well-Being .Belknap Press:Cambridge.

Sundell J.(2004).On the history of indoor air quality and

health.Indoor Air 14:51–58.

Tang JW.(2009).The effect of environmental parameters

on the survival of airborne infectious agents.J R Soc Interface 6:S737–S746.

Toivola M,Alm S,Reponen T,Kolari S,Nevalainen A.

(2002).Personal exposures and microenvironmental concentrations of particles and bioaerosols.J Environ Monit 4:166–174.

Tringe SG,Zhang T,Liu X,Yu Y,Lee WH,Yap J et al.

(2008).The airborne metagenome in an indoor urban environment.PLoS One 3:e1862.

Turnbaugh PJ,Ley RE,Hamady M,Fraser-Liggett CM,

Knight R,Gordon JI.(2007).The human microbiome project.Nature 449:804–810.

UK Health and Safety Executive Advisory Committee on

Dangerous Pathogens.(2004).The Approved List of Biological Agents .UK Health and Safety Executive.https://www.wendangku.net/doc/958814185.html,/pubns/misc208.pdf.

Ulrich R,Zimring C,Zhu X,DuBose J,Seo H,Choi Y et al.

(2008).A review of the research literature on evidence-based healthcare design.HERD 1:61–125.

Wells WF.(1955).Airborne Contagion and Air Hygiene:

An Ecological Study of Droplet Infections .Harvard University Press:Cambridge,MA.

Wickham H.(2009).ggplot2:Elegant Graphics for Data

Analysis .Springer:New York.

Womack AM,Bohannan BJM,Green JL.(2010).Biodiver-sity and biogeography of the atmosphere.Philos Trans

B Biol Sci 365:3645–3653.

This work is licensed under the Creative CommonsAttribution-NonCommercial-Share

Unported License.To view a copy of this license,visit https://www.wendangku.net/doc/958814185.html,/licenses/by-nc-sa/3.0/

Supplementary Information accompanies the paper on The ISME Journal website (https://www.wendangku.net/doc/958814185.html,/ismej)

Architecture influences indoor microbial ecology SW Kembel et al

1479

The ISME Journal

国内外网络课程设计有什么异同

国内外网络课程设计有什么异同 一、国内外开放教育资源的比较维度 从传播效果看,国内外开放教育资源主要涉及中国国 家精品课程、英国开放大学的开放学习项目、Learn)(Open 美国麻省理工大学的开放课程及卡耐基梅隆大学(MITOCW)的开放学习项目。下文将从建设现状、共享利用、(CMUOLI)质量保障、评估机制和推广策略等方面对国家精品课程与国外项目展开比较分析。OER 一比较建设现状)( 建设理念和开发目标不同。秉承“自由、 1.OCWMIT

开放、共享”的理念,采用结构化可重用的资源设计,以 交流为原则的反馈和更新,虚拟学习社区的学习支持系统,注重课程的整体设计。课程开发支持多种反馈渠OLICMU 道,是一种“往返回馈”模式,通过认知导师促进学生知 识的建构,通过虚拟实验促进知识的联系和融合。国家精 品课程关注课程资源本身的规划,组织耦合程度较低,运 作实施模式较复杂,技术平台数据兼容性较差,产权保障 和项目评价机制不够完善。 向全社会开放高校课程,使用对象为普通教OCWMIT 师、学生及社会自学者,关注资源共享的教学模式和学习 模式的转变,定位清晰国家精品课程以培养高素质人才为; 目标,以提高学生国际竞争能力为重点,整合各类教学改

革成果,加大教学过程中使用信息技术的力度,提倡和促进学生主动、自主学习。二者服务对象定位不同,MIT 的目标明晰准确,国家精品课程的目标宏观笼统,开OCW 放性不够。 资源数量和呈现形式不同。的课程资料数OCWMIT2. 量庞大,涉及面较广,人文与科学学科数目相当、文理比例基本持平国家精品课程分布在个学科,理工科多于文13;史类,课程提供的资源数量和类型较多,但学生作品和讲评类资源在中很少见到,课程内容则OLICMUOCW MIT 横跨多门学科。国外项目为专家合作的结晶,国家精OER 品课程则强调课程负责人的功劳,二者在数量上无明显差

网络课程的设计与开发

网络课程的设计与开发 余胜泉、王耀武 ysq@https://www.wendangku.net/doc/958814185.html, 北京师范大学现代教育技术研究所(100875) 【摘要】网络课程是通过网络表现的某门学科的教学内容及实施的教学活动的总和,它包括两个组成部分:按一定的教学目标、教学策略组织起来的教学内容和网络教学支撑环境。网络课程设计包括教学内容的设计、网络教学环境的设计以及在网络教学环境上实施的教学活动设计。本文从这设计三个方面出发,介绍了网络课程设计的过程模式。 【关键词】网络课程、网络课程设计、网络教学支撑环境、网络学习资源设计、网络学习活动设计 在网络教学环境中,教师和学生在地理位置上的分离,使得教学无法围绕教师为中心来展开,而必须以学生为中心,学生已经成为教学过程中的主体,所有的教学资源都必须围绕学生学习来进行优化配置,教师不再是知识的唯一源泉,最大的知识源泉是网络,教师的任务是指导学生如何获取信息,帮助学生解决学习过程中的问题,并帮助学生形成一套有效的学习方法和解决问题的方法。学生的地位也应该由原来的被动接受者转变为主动参与者,学生应该成为知识的探究者和意义建构的主体。学生的头脑不再被看作是一个需要填满的容器,而是一支需要点燃的火把。网络学习环境不再是教师讲解的辅助工具,而变为帮助学生探索、发现、学习用的认知工具。网络教学应该围绕如何促进学生的自主学习、促进学生思维的深度与广度发展、组织学生的自主学习活动来展开。这些内容构成了支撑网络教育教学观念的基石。 网络课程是通过网络表现的某门学科的教学内容及实施的教学活动的总和,它包括两个组成部分:按一定的教学目标、教学策略组织起来的教学内容和网络教学

网络课程设计与开发

[88988土688GO吒竝讽9069016*入"8刃:■&临型毎具制匹

河北大学成人教育学院试卷 专业—年级______ 课程课程设计姓名_____________ 学号 学员必读: 1、本学期7月9日下午在语音室,对本资料进行集中辅导。 2、辅导资料完成后请于2011年7月之前交到教务处,其中出勤成绩,平 时测验成绩包含在辅导资料成绩中。(满分35分) 3、作业需单独完成从课后做题,作业本写满位置,作业必须独立完成, 复印无效,另算成绩。(满分15分) 4、本学期考试时间为2011年7月(以准考证为准),请各位学员7月15 日来校领准考证。 5、考试和交作业,不再另行通知,如果不参加考试或不交作业,没有成 绩,后果自负!切记! 6、考试题从复习资料中抽取。 7、联系电话:校长室:3216556 教务处:3258890 财务处:3038890 一、填空。(每空2分,共19空) 1、课程概念应该包括以下4个基本要素:_________ 、课程内 容、_________ 、 ________ o 2、教学系统赢包括的4各要素分别是:教师、__________ 、教材 和_________ O 3、一般的网络课程设计应包括课程设计和 ________ 两个阶段。 4、网络课程的设计与开发应分为 _________ 、课程设计、教学设计、和

课程实施5个实施阶段。 5、课程设计阶段的主要工作包括____________ 、 __________ 、确定内容的组织结构、计划网络课程中教与学的活动。 6、媒体在教学过程中能起到各种各样的作用,最常见的5中使用目的是,_________ 、创设情境、 _________ 、_______ 、探究发现。 7、生成性目标导向下的问题情境设计包括两个阶段: 和___________ O 8、表现性任务可以归为三大类:简短评价任务、_____________ 以 及____________ o 9、补充学习材料是对教学内容的拓展和丰富,可以使与教学内容相关 的___________ 、讲解性材料和 ________ 等。 10、______________________________________________ 网络教师在教学中扮演着多种角色,包括____________________________ 、组织 者、_________ 、指导者、辅导者,是至关重要的人力资源。 11、“生成性目标一问题中心”的网络课程是以________ 为中心组织网络课程各要素的,其教学策略主要包 括:_________ 、 ________ 、 ________ 、随机进入策略等。 12、“表现性目标一活动中心”的网络课程是以________ 为中心组织网络课程各要素的,其教学策略主要包括:_________ 、抛锚策 略、_________ 、 ________ 和教练策略。 13、网络课程中反馈系统主要体现在学习过程状态信息反

基于课程标准的教学设计培训

基于课程标准的教学设计培训 一、目前教学设计存在的主要问题 1.没有明确的教学目标,只是知识点的罗列,误以为知识点的罗 列可以代替教学目标的确定。 2.教学目标不全面,只有知识技能目标,缺少过程方法目标。3.抄袭教参目标,与学生实际脱节、与教学内容脱节、与自主的 教学实际脱节。 4.教学目标的表述不全面、不恰当,不具有可操作性和可测量性。5.教学活动没有围绕教学目标展开、教师自身的目标意识不强。 主要原因有三:责任心不强;观念陈旧,不懂得教学目标的重 要性;没有时间深入研究 二、议课就是议学习效果 (一)、一堂好课的标准 示准一(从课堂教学整体评价): 1.一堂好课应该是有意义的课,是一堂扎实的课,而不是图热闹的课 2.一堂好课应该是有效益的课,是充实的课,有内容、有实效性的课 3.一堂好课应该是有生成的课,是丰实的课 4.一堂好课应该是常态下的课,是平实的课 5.一堂好课应该是真实的课,是有缺憾的课

示准二(从学生的角度评价): 1.学生的情趣应该是健康的 2.学生的学习参与应该是主动的 3.学生的学习动机应该是端正的 4.学生的活动时间应该是充足的 5.学生的认知状况应该是高水平的 6.学生的学习方式应该是多元的 7.学生的学习效率应该是高效的 标准三(从教师的角度评价) 1.教师的课前准备应该是充分的 2.教师的教学设计应该是科学合理的 3.教师的角色应该是帮助指导服务的 4.教师的专业功底应该是厚实的 (二)、什么样的课是有效益的 准则一:学生思维最大限度地得到激发。 准则二:教师讲解遵从学生的认知规律。 准则三:教师深刻把握教学内容的学科本质。 观课(自我反思)准则 语言是有激情,能引发学生的学习兴趣;学生的问答自信、有独特的见解;师生、生生对话有效。 关注全体学生;学生能主动、自动地学习;课堂环境民主、平等、和谐、合作。

面相中的十大凶相都有这些,你知道吗,看完该注意了

面相中的十大凶相都有这些,你知道吗,看完该注意了 谓的面相‘五官’,指的就是‘耳、眉、眼、鼻、口’等五种人体器官。面相就是一个人所具有的独特气质,而成为形或色表现于面上,给人的一种感受。接下来为大家详细介绍面相算命图解大全。面相可分为三庭看,人的眉以上是上庭,人的眉至鼻头是中庭,人的鼻头以下就为下庭。面部三庭要均匀。即额头、眉眼鼻、嘴与下巴的比例要均匀,整个面部显得大方磊落。若是额形生得略高阔饱满,则代表少年运佳,但额不能太高,过高会克夫,太低则少年运差,当然没法早嫁。在面部五官之后,再细分便是十二宫。这十二个宫位囊括了面部所有的特性和吉凶。第一宫:命宫,又为愿望之宫。麻衣曰:其居两眉间,山根之上,为印堂。第二宫:财帛宫,位于土宿,包括天仓、地库、金甲、井灶。主察财运。第三宫:兄弟宫,又称交友宫。麻衣曰:位居两眉。主交友运。第四宫:田宅宫,田宅宫,位于两眼,及上眼睑。主家业运第五宫:男女宫,又称子女宫。麻衣曰:位于两眼之下,又称为泪堂。看子嗣运。第六宫:奴仆宫,麻衣说它位居地阁,重接水星。看管理运。第七宫:妻妾宫,也可以称为夫妻宫,就在眼尾。第八宫:疾厄宫,一说是山根位,一说是年寿位,建议以鼻梁统看。第九宫:迁移宫,迁移者,位居眉角。古相士,以迁移宫的位置看人阴阳宅状况。第十宫:官禄宫,

官禄者,为居中正,上合离宫。反应人的禄命官运。第十一宫:福德宫,福德者,位居天仓,牵连地阁。看福禄之运。第十二宫:父母宫,便是额头的日月角。主看父母的福祸疾厄。看面相,形体外貌、精神气质、举止情态皆可一视而察,情人、恋人、夫妻、同事、朋友之间、感情总会有变化的、是相互信任、倾慕也可以从面相看出来。额头眉毛之间只有一道纵纹。这种面相在相学中被称为天柱纹。有此面相的人个性都很顽强。是属于做事不达目的绝不会放弃,对利益也是分得很清楚。一般来讲他们是不做对自己无利的事情。这样的人不但严以律己。同时对别人的要求也非常严格。但还有就是是这种面相的人有一个特征,那就好是这道纵纹平时是不会出现。当他的身心俱疲的时候,这道皱纹才会出现。鼻子的上部这些部位若是出现了数条横纹的人。有此面相特征者对事物都会表现出十足的热情。甚至可以说是充满激情。不仅是做事情又积极又主动。待人处事也是持着一颗平常心。此外,如果是说笑时出现这种皱纹的人。一般性格都是较为温和。缺点就是比较好管别人的事情。也常常为此惹祸上身。 1、男人的眉毛中间稀疏杂乱、毛形逆生,是为乱性之相, 情绪十分不稳定,伴有较重的暴力倾向。-2、双眉过低而压眼,是为心性阴沉扭曲而走极端。-3、女子眉过粗浓,不仅一生婚姻难成,且有妨夫。-4、印堂过窄小,难容两指的人,一生运势不顺且多灾厄。-5、女子双颧露骨而突起,对夫运

网络课程设计与开发

河北大学成人教育学院试卷 专业年级课程课程设计姓名学号 学员必读: 1、本学期7月9日下午在语音室,对本资料进行集中辅导。 2、辅导资料完成后请于2011年7月之前交到教务处,其中出勤成绩,平时测验 成绩包含在辅导资料成绩中。(满分35分) 3、作业需单独完成从课后做题,作业本写满位置,作业必须独立完成,复印无 效,另算成绩。(满分15分) 4、本学期考试时间为2011年7月(以准考证为准),请各位学员7月15日来校 领准考证。 5、考试和交作业,不再另行通知,如果不参加考试或不交作业,没有成绩,后 果自负!切记! 6、考试题从复习资料中抽取。 7、联系电话:校长室:3216556 教务处:3258890 财务处:3038890 一、填空。(每空2分,共19空) 1、课程概念应该包括以下4个基本要素:、课程内容、、。 2、教学系统赢包括的4各要素分别是:教师、、教材和。 3、一般的网络课程设计应包括课程设计和两个阶段。 4、网络课程的设计与开发应分为、课程设计、教学设计、和课程实施5个实施阶段。 5、课程设计阶段的主要工作包括、、确定内容的组织结构、计划网络课程中教与学的活动。 6、媒体在教学过程中能起到各种各样的作用,最常见的5中使用目的是,、创设情境、、、探究发现。 7、生成性目标导向下的问题情境设计包括两个阶段:和。 8、表现性任务可以归为三大类:简短评价任务、以及。 9、补充学习材料是对教学内容的拓展和丰富,可以使与教学内容相关的、讲解性材料和等。 10、网络教师在教学中扮演着多种角色,包括、组织者、、指导者、辅导者,是至关重要的人力资源。

11、“生成性目标—问题中心”的网络课程是以为中心组织网络课程各要素的,其教学策略主要包括:、、、随机进入策略等。 12、“表现性目标—活动中心”的网络课程是以为中心组织网络课程各要素的,其教学策略主要包括:、抛锚策略、、和教练策略。 13、网络课程中反馈系统主要体现在学习过程状态信息反馈,,教师和学习者的反馈信息。 14、课程中的导航系统按照导航功能分为导航、导航、导航。 15、学习导航的主要技术方法有:学习内容直接引导、、、学习内容隐藏4种。 16、按照学习发生的进程来看,网络课程的教学活动主要分为学习发生前的导学活动、学习进行过程中的辅导活动和。 17、网络环境下的讨论按照发生时间可分为和。 18、网络环境下的讨论按照讨论的形式可分为、和问题式讨论。 19、目前基于互联网络实施网上答疑的方式主要有:异步答疑和同步答疑两种。异步答疑主要包括:常见问题答疑、、;同步答疑主要为:。 20、网络教师在网络课程教学活动中可能扮演多种角色,如、学习方法和学习过程指导者、。 21、网络教师所扮演的角色主要有三种:、亦师亦友、。 22、行为目标导向下的网络课程学习评价反馈的内容包括:、、测试用时。 23、图、文、声、象是网络课程的基本组成单位。其中多媒体图片、文字、影像动画都属于,而声音属于。 24、不论网页界面中的图形图片跟内容和形式如何复杂多变,作为视觉形式的语言,构成图的最基本造型元素都是、、。

全国高校师资网络培训主讲教师教学设计方案表

全国高校师资网络培训主讲教师教学设计方案表教学设计方案描述 课程名称计算机应用基础 学科分类(一级)(二级) 开课时间 2010-9-26 至 2010-9-27 实际培训 天数 2天 培训课程介绍 1.课程介绍 课程定位:“计算机应用基础”课程是面向全校非计算机专业学生开设的公共基础课,涉及面广,影响大。该课程对大学生计算机应用能力的培养,对顺利完成后续课程的学习,对毕业后能迅速适应岗位需要、具有可持续发展的再学习能力,具有重要作用。 课程目标:从现代办公应用中所遇到的实际问题出发,通过提出问题、找出解决方案,到最后解决问题的案例式教学来提高学生应用办公软件处理复杂办公事务的能力和素质,并注重培养学生的自主学习能力、创新能力与合作能力。经过本课程的学习,要求学生获取相应能力认证证书,或者经过学校计算机技能达标考核。 课程内容:第一,通过Word2003的学习,掌握艺术排版的各种技术,并能对具有复杂结构的长文档进行排版;第二,能利用Excel 2003进行较复杂的数据分析处理;第三,能利用PowerPoint 2003制作艺术性较高的专业演示文稿。第四,能利用Photoshop进行简单的图像处理,掌握基本的数码照片编辑技巧。 2.本次培训 本次培训,将围绕教学内容、实践教学体系、教学方法和手段、资源建设、高职考核方式和教材建设等方面介绍深圳职业技术学院国家精品课程“计算机应用基础”的改革思路和实施方法,并采用“提出问题、找出解决问题方案、解决问题”的案例教学方法,对重点章节进行示范性教学;同时和学员一起探讨和交流计算机应用基础课程教学中的热点话题。 培训内容及日程安排 第一天目 标 建立学员对此门课程和该精品课程的深入、全面理 解,了解该精品课程的建设思路、理念及经验。 主讲 教师

培训教学设计与课程设置

培训教学设计与课程设置 一、培训教学设计 (一)培训教学设计的涵义与特点 培训教学设计是以传播信息和学习理论技能为基础,应用系统的观点与方法,分析培训教学中的问题与需求,确立目标,明确解决问题的措施与步骤,选用相应的教学方法和教学媒体,然后分析、评价其结果,以使培训教学效果达到最优化的过程。 培训教学设计的主要特点有: 1.培训教学目的建立在对培训系统内外环境分析的基础之上。 2.培训教学目标用可观察的术语来描述。 3.培训教学的计划、开发、传递和评价以系统理论为基础。 4.研究重点放在培训教学计划、方法和媒体的选择上。 5.教学评价是设计和修改过程的一部分。 (二)培训教学设计的原则 培训教学设计受社会生产力发展水平、教育方针、培训政策以及各国历史文化传统等因素的制约和影响。在现阶段,培训教学设计应遵循以下原则: 1.系统综合原则: 培训教学是一个涉及各方面的大系统,因此,在进行培训教学设计时,必须考虑系统中各要素及其相互间的关系,要综合培训问题对立统一的各个方面,对培训教学的各个环节既不能以偏概全,也不能无所侧重。 2.针对性原则: 培训教育是继续教育的组成部分,它不等同于单纯的学历教育。因此,培训教学活动也应针对培训工作的性质、特点和各种培训对象的不同,设计出不同的教学计划,安排不同的教学进度,选择不同的教学方法和教学媒介。 3.最优化原则: 最优化原则是培训教学设计的中心指导思想,是培训教学设计活动所要解决的核心问题。本世纪60年代,系统方法的建立和发展,大大推动了最优化思想的研究,越来越多的教育学家致力于探讨教学最优的问题,即帮助教师力求完成复杂教学任务的捷径。培训教学最优化,其实质是探索在培训教学中如何花费最少的时间而获取最大的效果。可用下列公式表示:优化程度=培训效果÷时间 要达到培训教学的最优化,必须考虑在培训过程中抓住最主要、最本质的东西。要做到正确分析培训对象特点、科学设置培训课程,合理安排教学进度,选择教学方法与教学媒介等。 (三)培训教学设计的基本内容 针对不同的培训对象,培训教学设计的具体方法和步骤可能会有所不同,但其基本内容是一致的。这主要包括: 1.期望学习什么内容?即教学目标的确定。 2.为达到预期目标,如何进行教学和学习?即教学策略与教学媒体的选择。 3.在教学过程中,如何合理安排时间?即教学进度的安排。 4.在进行培训时,如何及时反馈信息?即教学评价的实施。 5. 教学设计的以上基本内容,可用下图表示: (四)培训教学设计的程序 由于培训对象和培训任务的不同,培训教学设计的程序也各不相同,下面介绍几种常见的教学设计程

网络课程的设计方法与开发技术研究

网络课程的设计方法与开发技术研究 【摘要】随着教学理念的不断发展,传统的教学理念发生里本质的变化,教学模式从过去的单一的教师的“教”与学生的“学”,转变为现代的以学生为主体,以“学”为中心的教学一体化教学设计。同时由于多媒体技术与计算机技术带来了教育技术的革命,信息技术与网络技术又使Internet(互联网)成为知识的载体。正是由于两者的有机结合,形成了一种全新的教学与学习模式------网络课程的产生。本文从《计算机等级考试培训》实际网络课程的研究与开发入手,探索适应现代远程教学规律的,适应本院学生的新型网络课程的方法与技术。 【关键词】教学模式教学设计网络技术网络课程远程教育 1 国内外网络课程的现状 随着网络技术、多媒体技术的日臻完善,现代教育技术已悄然向第三阶段网络教学(Web-Based Instruction,即WBI)过渡,教学的网络化和多媒化是现代教育的一大特征。而Internet(互联网)的迅速普及、通信技术和信息处理技术的飞速发展,使我们利用网络教学手段进行远程教育成为可能。 在国外,1996年美国民众中掀起旨在推动学校联网的“网络日”志愿活动,克林顿政府提出“教育技术行动”纲领。该纲领指出:到2000年,全国的每间教室和每个图书馆都联上信息高速公路,每个孩子都能在21世纪的技术文化方面受到教育。到目前为止,一个覆盖全国主要教育机构的网络业已形成,几乎全国所有的学校都能开展网络教育。在高校,网络教育所开设的学历、学位课程已超过5万门,基本覆盖了美国高等学校所有的学科和专业。全美100多所著名大学将利用InternetII开展远程教育,75%的美国大学将提供网络教育。 在国内,上世纪九十年代互联网进入中国以后,国内的教育界就开始了网络课程教育的研究。开发了一些信息技术学科的网络课程。自从教育部于2003年4月启动了精品课程建设工作以后,国内网络课程的建设进入了一个快速发展时期。经过五、六年时间的建设和发展,目前国内建设了近千余门网络课程。高校精品课程形成了国家级、省级和校级三个层次。但是对于高职院校而言,网络课程建设相对薄弱,浏览高职院校网络课程时发现高达30.39%的课程连接状态显示为不通。在点击课程网站时存在着找不到服务器、页面无法显示、无权查看等问题。网站的畅通性未得到有效保障,影响了资源共享。 2 网络课程研究与开发 以“学”为中心的教学设计理论与传统的以“教”为中心的教学设计完全不同,它的全部理论、方法都是围绕如何帮助学生的“学”,即如何促进学生主动建构知识的意义而展开。其优点是有利于充分调动学生的主动性、创造性,有利于学生认知主体作用的体现;建构主义学习理论和学习环境强调以学生为中心,不仅要求学生由外部刺激的被动接受者和知识的灌输对象转变为信息加工的主体、知识

网络课程的设计与开发

网络课程的设计与开发 (仅供参考) 网络课程是通过网络表现的某门学科的教学内容及实施的教学活动的总和,它包括两个组成部分:按一定的教学目标、教学策略组织起来的教学内容和网络教学支撑环境,其中网络教学支撑环境特指支持网络教学的软件工具、教学资源以及在在网络教学平台上实施的教学活动。 一、基本过程 网络课程开发的基本过程如下图所示,在此,我们假设教师已经深入了解了教学对象的学习特点,而且本课程已有成型的教学大纲和知识体系结构。 图1 网络课程开发的基本过程 网络课程开发应满足如下基本要求: (1)网络课程建设要基于远程教育的特点,能提高学习者学习兴趣与自觉性。 (2)网络课程都必须满足在互联网上运行的基本条件,还应具备安全、稳定、可靠、下载快等特点。 (3)网络课程应有完整的文字与制作脚本(电子稿)。 (4)网络课程文字说明中的有关名词、概念、符号、人名、定理、定律和重要知识点都要与相关的背景资料类相链接。 (5)对课程中的重要部分,可适当采用图片、配音或动画来强化学习效果,但要避免与教学内容无关的、纯表现式的图片或动画。 下面对网络课程开发的关键环节作一简要描述:

二、确定教学大纲 教学大纲是以纲要的形式规定出学科的内容、体系和范围,它规定课程的教学目标和课程的实质性内容,是编写教科书的直依据,也是检查教学质量的直接尺度,对教学工作具有直接的指导意义。教学大纲举一般由以下几个部份构成: 说明:扼要介绍本学科的目的和任务,选材的主要依据,以及有教学与学习的原则性建议。 本文:列出按层次结构自治的知识点条目(一般是编章节目),知识点的简要说明,知识点的教学要求、教学时数、教学活动及其所用时间说明。 实施要求:列出编写教材的专考书目,教学环境要求,教学仪器设备,辅助教学手段、说明等等。 教学大纲的编写应注意如下原则:科学性、思想性、主观联系实际、基础性、系统性等等。 如果开发的课程已有教学大纲,应尽可能选用现有大纲,如果没有,要编写一个,编写的大纲要经过学科专家审查。 三、确定教学内容 根据教学大纲,编写教材、配套的练习册、实验手册,如果已有优秀教材,尽可能选用。教材的内容应具有科学性、系统性和先进性,表达形式应符合国家的有关规范标准。应当结合“高等教育面向21世纪教学内容和课程体系改革计划”的成果,符合本门课程的内在逻辑体系和学生的认知规律。 教材、配套的练习册:教材是教学内容的文字描述,教材是教学内容选择结果的体现,教学内容选择时,要选择切合实际社会需求、反应本学科最新发展动态的教材,对于那些已经过时或陈旧的内容要坚决地删除;教材不是教学内容的简单堆切,而是教学内容的的机组合,教材应能够把一门学科的基本概念、基本原理和基本技能提炼出来,并形成一个具有逻辑性、系统性的知识系统,这个系统要有利于知识的理解与迁移;练习册是选定教学内容后,诊断与巩固教学内容测验试题的集合,它是教材有重要组成部份。 实验、实验环境与实验手册:对于一些要求技能培养目标的课程来说,实验是必不可少的。实验是教材中理论知识的实践认证,技能知识的具体体现。设计实验时,要注意实践性和可行性,实践性是指实验要在理论指导下,通过具体的操作步骤,达到预期结果;可行性是指设计的实验要求的条件不能太高,要能在实际教学过程中实施。实验手册是对实验的说明,一般有实验目标、实验环境、预备知识、实验步骤、实验报告、思考与练习等几大部分。

全国高校师资网络培训主讲教师教学设计方案表

全国高校师资网络培训主讲教师教学设计方案表

(2:00-5:00) 对此门学科和学科教学过程中的难、重点进行深度剖5 析,明确解决思路;通过相对细致的案例分析和现场示” 范课形 式,使学员能够把握实际教学要点。 (请主讲教师依照所授课程具体情形设讣,可采取难重点讲 解形式,或是示范课等形式,重在教学设计,如何和学生互动,案例讲解,研究性学习,如何进行多媒体课件的有效辅助实际 教学,教学方法和技巧等) 主讲教师 陈后金 郝晓莉 集 中 培 训 ?课程重点难,对剖析 ?课程重点难点破解 ?为何介绍差不多信号与差不多运算? ?如何诠释信号的卷积与卷积和? ?可否略去经典方法时域求解系统响应? ?为何要引入信号与系统的频域分析? ?整体介绍四种信号的频谱有何利弊? ?如何介绍三大变换及其性质? ?抽样定理如何引入与论证? ?为何引入系统的复频域分析? ?如何开展信号与系统实验? ?如何融入研究性教学与案例教学? ?研究性教学示例

1-对此门学科和学科教学过程中的难.重点进行深度 剖析,明确解决思路;通过相对细致的案例分析和 现场示范课形式,使学员能够把握实际教学要点。 (8:30-10:30) 2.主讲教师提讨论题,各班级进行班级讨论:引导学员 明白 得并发觉咨询题,增加学员之间的交流、互动。 (10:30- 12:00) 1. (请主讲教师依照所授课程具体情形设讣,可采取难重点讲解 形式,或是示范课等 形式,重在教学设计,如何和学生互动, 案例讲解,研究性学习,如何进行多媒体课件的有效辅助实际 教学,教学方法和技巧等)(8 : 30-10:30) 2.主讲教师与学员的互动、交流、答疑集中培训 翌日上午 (8:30-12:00) ;、.双语教学示例 时匚实验教学示例 班级讨论(1小时30分) 2. 主讲教师提讨论题,各班级进行班级讨论 (10:30-12:00) 1) -课程教学内涵 2) -课程教学重点 3) -课程教学难点 4) -课程教学方法 5) -课程教学资源 6) -课程教学团队 7) -课程进展趋势 主讲教 师 、全 体学 员 陈后金 翌日下午 (2:00-5:00) 目标 集中培训 1. 培训内容的补充 2. 主讲教师和学员间的互动交流:主讲教师对学员两 天上课期间及班级讨论中提交的咨询题进行分析,提供 解决思路。 1?培训内容的补充如:7科前沿进展、教学磁源使川住 议、多媒体使用建议 1) -信号处理的理论和技术在相关学科领域的应用拓展 2) -信号处理系列课程与电子电路系列课程的相互关系 3) -信号与系统课程资源库建设与多媒体使用 主讲教师

网络课程设计与开发重点

1.网络课程的构成要素:教学内容、教学活动、教学策略、学习支持、学习评价、学习资源。 2.网络课程的三种课程目标对应3种课程观及课程观的特点?P6 行为目标—结构主义的课程观。结构主义课程观以结构化的目标和对行为的控制为核心,在课程的内容和结构上具有结构化、学问化和专门化的特点。 生成性目标—建构主义的课程观。首先,建构主义课程观强调课程的“生成性”,强调在问题解决过程中,充分发挥学生自己的主动性,通过多元的视角使问题完满地解决。其次建构主义课程观强调课程内容的意义建构性。最后,建构主义课程观强调课程评价的过程性、情景性。 表现性目标—人本主义的课程观,人本主义课程观的核心是培养“自我实现的人”,主张课程应当有益于人的人的尊严的实现和潜能的发挥。这种课程观视课程为经验,强调活动在课程学习中的重要性,强调以人的自我实现为课程设计的核心,强调情景教育和认知教育相统一。人本主义课程观认为课程的目标是要为每一个学习者提供有助个人发展的、有内在奖励的经验,所以课程内容必须注重对学生的个人意义,强调课程、教学与学习生活密切结合。 3.网络课程设计与开发的流程:需求分析、课程设计、教学设计、技术开发、课程实施。P8 4.在生成性目标导向下,一个问题包含的成分: 目的,即在某种情景下想干什么;个体已有的知识;障碍,指在解决问题的过程中会遇到的种种需要解决的问题;方法,指个体可以用来解决问题的程序和步骤。 5.媒体借以表达信息的基本元素主要有文本、图形、图像、音频、视频和动画。 6.在网络课程中选择与应用媒体时,应遵循媒体选择的4个基本规律:最大价值律、共同经验律、抽象层次原理、重复作用原理。 7.结构化学习资源的设计:补充学习材料、练习、测试题。 8.非结构化学习资源的设计:网络教师、学习伙伴、同步或异步交流、网络外部连接。 9.“行为目标—学科中心”网络课程中的教学策略有哪些? 讲授策略、先行组织者策略、支架—渐隐策略。 先行组织者策略实施包括两个步骤:第一,确定先行组织者,第二,计教学内容的组织策略。存在3种不同的先行组织者,所以对教学内容和过程组织相应地也有三种不同的策略:1)渐进分化策略、2)逐级归纳策略、3)整合协调策略。 10.建模策略的类型:显性的行为建模、隐形的认知建模。 11.比较抛锚策略和认知学徒策略的异同点。 抛锚策略 12.在大学物理的的网络课程中要对学生的学习过程进行跟踪,试说明要记录的学习过程数据。(P68) 1)学习者个人基本信息:2)简单基本教学交互信息:3)学习阶段评价信息:4)学习者当前状态信息:5)其他:学习者留言等。 13.试简述反馈信息的五个层次。 1)正误判断的反馈,只提供正确或者错误的简单判断,一个符号、声音或者简单文字就可以实现。2)告知正确答案的反馈,如果学习者操作错误,反馈信息直接告诉学习者正确的操作,准确的答案是什么。3)对答案进行解释的反馈。4)诊断错误原因的反馈。5)对问题进行启发的反馈。 14.试为一门大学英语的网络课程设计学习导航系统。(分类及类别设计)(P76) 学习导航系统按照导航功能分为课程内容导航、学习功能模块导航、学习进程导航。 课程内容导航的导航形式主要有:教学内容介绍、知识结构图、上下页导航、内外部链接导航、内容检索导航等。 15.分析网络课程中不同形式的答疑类教学活动的优势和不足。 目前基于互联网络实施网上答疑的方式主要有异步答疑和同步答疑两种。异步答疑主要包括:常见问题答疑系统(FAQ)、邮件答疑、BBS讨论答疑等;同步答疑主要为:值机答疑。 16.分析网络课程中不同形式的讨论类教学活动的优势和不足。 1)头脑风暴式讨论。优势:(1)网络的跨地域性能使学习者和教师不用在同一个场所,只要有相应的上网条

品牌设计课程教案

2012年师资培训教案用纸 单位文安职教中心姓名高志强授课名称品牌设计 人的成长与阶段性长进需求2012年师资培训教案用纸

第一课:共45分钟了解企业品牌设计全过程了解CIS CIS又是由这三个部分组成的: MI理念识别(Mind Identity 简称MI) BI行为识别(Behariour Identity 简称BI) VI和视觉识别(Visual Identity 简称VI) 1、理念识别(MI) 它是确立企业独具特色的经营理念,是企业生产经营过程中设计、科研、生产、营销、服务、管理等经营理念的识别系统。是企业对当前和未来一个时期的经营目标、经营思想、营销方式和营销形态所作的总体规划和界定,主要包括:企业精神、企业价值观、企业信条、经营宗旨、经营方针、市场定位、产业构成、组织体制、社会责任和发展规划等。属于企业文化的意识形态范畴。 2、行为识别(BI) 是企业实际经营理念与创造企业文化的准则,对企业运作方式所作的统一规划而形成的动态识别形态。它是以经营理念为基本出发点,对内是建立完善的组织制度、管理规范、职员教育、行为规范和福利制度;对外则是开拓市场调查、进行产品开发,透过社会公益文化活动、公共关系、营销活动等方式来传达企业理念,以获得社会公众对企业识别认同的形式。 3、视觉识别(VI) 是以企业标志、标准字体、标准色彩为核心展开的完整、体系的视觉传达体系,是将企业理念、文化特质、服务内容、企业规范等抽象语意转换为具体符号的概念,塑造出独特的企业形象。视觉识别系统分为基本要素系统应用要素系统两方面。基本要素系统主要包括:企业名称、企业标志、标准字、标准色、象征图案、宣传口语、市场行销报告书等。应用系统主要包括:办公事务用品、生产设备、建筑环境、产品包装、广告媒体、交通工具、衣着制服、旗帜 、招牌、标识牌、橱窗、陈列展示等。视觉识别(VI)在CI系统中最具有传播力和感染力,最容易被社会大众所接受,据有主导的地位。

《WEB应用与开发》--网上购物系统--课程设计报告

WEB应用与开发课程设计 报告 设计题目:网上购物系统 一、设计时间 2016年5月 04日-----6月08日 总的设计时间为1周,第17周。具体安排如下: 1、分析设计准备阶段(第17周周一至周二) 2、编程调试阶段(第17周周三至第17周周四) 3、书写设计报告和书写说明书阶段(第17周周五) 4、考核阶段(第17周周五) 二、设计地点 信息科学与工程学院机房 三、算法及流 程图 (一)功能模 块的实现 系统功能模 块的划分

前台系统顺序流程图 1、大类别显 示 应用程序的首页只提供了一个Enter the Store的链接时,将导航到大类别页面,要完成这个过程,需要执行一下步骤: (1)设置链接,为“Enter the Store”添加链接,代码如下:

Enter the Store (2)设置配置文件,在web.xml中添加如下代码: IndexServlet org.bzc.jpetstore.servlets.IndexServlet IndexServlet /index.do (3)在src目录的org\bzc\jpetstore\servlets文件夹中新建名为IndexServlet的类,Servlet本身并没有处理业务数据,而是调用CategoryBiz 类的相关方法操作,具体代码如下: public class IndexServlet extends HttpServlet { public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { doPost(request, response);} public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { CategoryBiz categorybiz = new CategoryBiz(); String tourl = ""; //因为其他页面也需要获取大类别数据,所以存放于session中 HttpSession session = request.getSession(); //初始化一个List对象,用来存储大类别数据 List list = new ArrayList(); try { //调用业务对象获取数据 list = categorybiz.searchById(0, ""); tourl = "/catalog/Main.jsp";} catch (Exception e) { tourl = "index.html"; e.printStackTrace();} session.setAttribute("categroyList", list); request.getRequestDispatcher(tourl).forward(request, response); } } (4)在src目录的org\bzc\jpetstore\biz文件夹中新建名为CategoryBiz

培训教学设计的步骤备课讲稿

培训教学设计的步骤 教学设计模板教学流程图的设计一、教学流程图的作用“教学流程图”顾名思义是关于教学过程的流程图,它是教师实施教学活动的蓝图,其作用在于:——它可以直观地显示整个课堂活动中各个要素之间的关系、比重;——教学中的重点和难点部分也可以简洁地呈现出来;——它也可以较好地反映出教师教学过程设计的逻辑性、层次性等教学过程流程图是浓缩了的教学过程,它层次清楚、简明扼要、使读者一目了然二、常见的图例有课题《再现与表现》教学过程:新人培训新人的加盟是培训课题的确立时机,每批招聘的新人结构均不相同,因此新人培训要考察每批新人的知识结构、原从业背景、阅历、兴趣爱好等,做为确定培训计划的依据新品上市一般新品在上市之初多被赋于一定的战略地位,是企业年度产品策略的重要组成部份,因此以新品为培训课题的确立契机,应考虑到新品在公司产品线中的战略地位、各品牌的同类型号、市场的接受程度、各品牌的推广重点及新品上市可能面临到的阻碍等进行分析,结合企业、市场内外因素进行新品深度培训,以形成统一的宣传口径及新品推广的共识!新的推广概念各品牌的炒作在终端体现在概念的炒作上,知已知彼,百战不殆因此当企业及竞品推广出新的推广概念的时候是市场部确定培训课题的契机,深入剖析各品牌的推广概念有助于导购人员形成共识,提升终端的

抗击打能力!促销活动为了确保促销活动取得预期效果,需要以此为契机确立促销活动的专题培训培训应涵盖当时的市场环境、竞品动向、主次战场的划分、企业促销的意图、促销手段、应急方案、目标任务及人员安排等方面的内容,通过培训形成最有效的终端资源整合,为促销活动保驾护航突发事件企业在进行终端销售的时候,难免会遇上一系列的突发事件,如媒体对企业的负面报道、竞品的反季节促销、竞品在终端突然发难……面对这此突发事件,如不以最快的速度进行专题培训,导购人员的销售信心将被弱化因此市场部在突发事件出来后,应以最快的速度确立专题培训课题进行培训,强化信息的沟通与到达,努力使突发事件的负面影响朝最小化发展,有时突发事件是销售和导购员士气向良性发展的契机新制度的执行世上没有一成不变的制度,世异时移,终端的销售制度也是一个动态变化的过程,新制度的出台一般多有一定的背景,为了确保新制度的执行,应在执行前对相关人员进行专题培训,让每个人理解制度的每一个细节及目的,达成共识,放弃抵抗的情绪,自觉自愿地遵守新制度总之,做为市场部要善于利用市场、企业内外部的各种契机做为培训课题确立的契机,培训除了提升销售技能外,还应承担信息沟通、达成团队共识、最终形成团队销售合力的重要使命销售终端离不开培训,培训题材源于销售终端二、培训教案的编写技巧⒈确立培训的主题主题应是开宗明

培训课程编写格式要求

培训课程编写格式要求 第一部分:培训课程教案编写格式 第二部分:培训课程讲义编写格式 第三部分:培训课程教案、讲义字体及排版要求

第一部分:培训课程教案编写格式 一、培训背景描述 (一)培训对象 (二)培训目标 (三)培训课时 二、培训教学设计 (一)教学目标(结合培训目标,分析本节教学的知识、技能、态度和价值观等方面的学习要求)。 (二)内容分析(结合自己的教学经验和对培训对象现有水平的了解,分析教学内容中的重点和难点)。 (三)学员分析(分析学员的认知特点、学员已有知识结构、工作经验和能力水平,以及对培训教学内容的了解程度等)。 (四)教学策略设计 1.教学方法设计(根据教学内容设计教学方法,并对选择教学方法的相关依据做简要说明)。 2.学员技能训练设施和教师教学资源方面的要求 三、教学资源 (一)本课程用到参考资料、教材、多媒体课件等

(二)本课程用到教学仪器设备及实物样品等(三)本课程用到的网络资源及其网址 第二部分:培训课程讲义编写格式 课程讲义标题 一、课程名称 二、课程目标 三、内容提要 四、重点、难点 五、评估方式 六、授课方式 七、讲义正文 引言部分:…… 一级标题:一、…… 二级标题:(一)…… 三级标题:1. …… 四级标题:(1)…… 八、课程小结、思考题或试题

第三部分:培训课程教案、讲义字体及排版要求 (一)标题字体:方正小标宋简体,二号。 (二)一级标题:黑体,三号。 (三)二级标题:楷体_GB2312,三号,加粗。(四)三级标题:仿宋_GB2312,三号。 (五)正文:仿宋_GB2312,三号。 (六)页面设置要求: 1.页边距:上、下 2.54cm,左、右 3.17cm。 2.页码:页面底端,右侧,普通数字。

基于课程标准的教学设计培训课件

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于课程标准的教学设计培训课件基于课程标准的教学设计培训一、目前教学设计存在的主要问题 1.没有明确的教学目标,只是知识点的罗列,误以为知识点的罗列可以代替教学目标的确定。 2.教学目标不全面,只有知识技能目标,缺少过程方法目标。 3.抄袭教参目标,与学生实际脱节、与教学内容脱节、与自主的教学实际脱节。 4.教学目标的表述不全面、不恰当,不具有可操作性和可测量性。 5.教学活动没有围绕教学目标展开、教师自身的目标意识不强。 主要原因有三: 责任心不强;观念陈旧,不懂得教学目标的重要性;没有时间深入研究二、议课就是议学习效果 (一)、一堂好课的标准示准一(从课堂教学整体评价): 1.一堂好课应该是有意义的课,是一堂扎实的课,而不是图热闹的课 2.一堂好课应该是有效益的课,是充实的课,有内容、有实效性的课 3.一堂好课应该是有生成的课,是丰实的课 4.一堂好课应该是常态下的课,是平实的课 5.一堂好课应该是真实的课,是有缺憾的课示准二(从学生的角度评价): 1.学生的情趣应该是健康的 2.学生的学习参与应该是主动的 3.学生的学习动机应该是端正的 4.学生的活动时间应该是充足的 5.学生的认知状况应该是高水平的 6.学生的学习方式应该是多元的 7.学生的学习效 1 / 9

率应该是高效的标准三(从教师的角度评价) 1.教师的课前准备应该是充分的 2.教师的教学设计应该是科学合理的 3.教师的角色应该是帮助指导服务的 4.教师的专业功底应该是厚实的 (二)、什么样的课是有效益的准则一: 学生思维最大限度地得到激发。 准则二: 教师讲解遵从学生的认知规律。 准则三: 教师深刻把握教学内容的学科本质。 观课(自我反思)准则语言是有激情,能引发学生的学习兴趣;学生的问答自信、有独特的见解;师生、生生对话有效。 关注全体学生;学生能主动、自动地学习;课堂环境民主、平等、和谐、合作。 三、什么是教学设计教学设计是实现高效教学的关键。 教学可以被看成是一系列精心安排的外部事件,这些经过设计的外部事件是为了支持内部的学习过程。 (加涅,布里斯) 教学是一项有目标的活动。 这个目标就是: 为了使学生更有效而采取的有目的、有计划地安排学习经历的过程;使学生掌握新知、获得新技能,形成新的学习态度,从而使智力得到开发。 目的性,组织性,计划性是教学的重要特点。

相关文档
相关文档 最新文档